Ligands play a key role in controlling activity of organometallic complexes so that development of new ligands to overcome the challenge is the main topic of modern chemistry.The first example of 1,1-hydride migratory...Ligands play a key role in controlling activity of organometallic complexes so that development of new ligands to overcome the challenge is the main topic of modern chemistry.The first example of 1,1-hydride migratory insertion and intramolecular redox reaction has been realized in this work by applying a new ligand in rare-earth metal chemistry.The novel rare-earth metal complexes L^(Mes)RECH2TMS(THF)(RE=Y(1a),Dy(1b),Er(1c),Yb(1d),L^(Mes)=1-(3-(2,6-iPr_(2)C_(6)H_(3)N=CH)C8H4N)-CH_(2)CH_(2)-3-(2-CH2–4,6-Me_(2)C_(6)H_(2))-(N(CH)_(2)NC),THF=tetrahydrofuran)bearing a ligand with imino,indolyl,NHC(N-heterocyclic carbene)multiple functionalities were synthesized and characterized.Treatment of complexes 1 with silanes(PhSiH3or PhSiH2Me or PhSiD3)selectively produced the unprecedented 1,1-hydride(or deuterated H)migratory insertion of the indolyl moiety of the novel unsymmetrical dinuclear rare-earth metal complexes 2.The complex 2a reacts with Ph_(2)C=O to give the selective C=O double bond insertion to the RE–Co-methylene-Mesbond product 3a which further reacts with another Ph_(2)C=O(or DMAP,4-N,N-dimethylaminopyridine)affording the novelμ-η^(2):η^(3)-dianionic 3-iminoindolyl dinuclear rare-earth metal complex 4a.The latter is formed through an unusual intramolecular redox reaction(through electron migration from the 2-carbanion of the indolyl ring to the imino motif)resulting in the re-aromatization of the indolyl ring.展开更多
基金supported by the National Natural Science Foundation of China(22031001,21871004,21861162009,22171004)the grants from the Education Department of Anhui Province(GXXT-2021-052)。
文摘Ligands play a key role in controlling activity of organometallic complexes so that development of new ligands to overcome the challenge is the main topic of modern chemistry.The first example of 1,1-hydride migratory insertion and intramolecular redox reaction has been realized in this work by applying a new ligand in rare-earth metal chemistry.The novel rare-earth metal complexes L^(Mes)RECH2TMS(THF)(RE=Y(1a),Dy(1b),Er(1c),Yb(1d),L^(Mes)=1-(3-(2,6-iPr_(2)C_(6)H_(3)N=CH)C8H4N)-CH_(2)CH_(2)-3-(2-CH2–4,6-Me_(2)C_(6)H_(2))-(N(CH)_(2)NC),THF=tetrahydrofuran)bearing a ligand with imino,indolyl,NHC(N-heterocyclic carbene)multiple functionalities were synthesized and characterized.Treatment of complexes 1 with silanes(PhSiH3or PhSiH2Me or PhSiD3)selectively produced the unprecedented 1,1-hydride(or deuterated H)migratory insertion of the indolyl moiety of the novel unsymmetrical dinuclear rare-earth metal complexes 2.The complex 2a reacts with Ph_(2)C=O to give the selective C=O double bond insertion to the RE–Co-methylene-Mesbond product 3a which further reacts with another Ph_(2)C=O(or DMAP,4-N,N-dimethylaminopyridine)affording the novelμ-η^(2):η^(3)-dianionic 3-iminoindolyl dinuclear rare-earth metal complex 4a.The latter is formed through an unusual intramolecular redox reaction(through electron migration from the 2-carbanion of the indolyl ring to the imino motif)resulting in the re-aromatization of the indolyl ring.