期刊文献+
共找到271,099篇文章
< 1 2 250 >
每页显示 20 50 100
First-principles prediction of shock Hugoniot curves of boron,aluminum,and silicon from stochastic density functional theory
1
作者 Tao Chen Qianrui Liu +1 位作者 Chang Gao Mohan Chen 《Matter and Radiation at Extremes》 2025年第5期73-83,共11页
By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pr... By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pressure P=7.9×10^(3)-1.6×10^(6) GPa and temperature T=25-2800 eV),silicon(P=2.6×10^(3)-7.9×10^(5) GPa and T=21.5-1393 eV),and aluminum(P=5.2×10^(3)-9.0×10^(5) GPa and T=25-1393 eV)over wide ranges of pressure and temperature.In particular,we systematically investigate the impact of different cutoff radii in norm-conserving pseudopotentials on the calculated properties at elevated temperatures,such as pressure,ionization energy,and equation of state.By comparing the SDFT and MDFT results with those of other first-principles methods,such as extended first-principles molecular dynamics and path integral Monte Carlo methods,we find that the SDFT and MDFT methods show satisfactory precision,which advances our understanding of first-principles methods when applied to studies of matter at extremely high pressures and temperatures. 展开更多
关键词 mixed stochastic deterministic density functional theory BORON shock hugoniot curves stochastic density functional theory stochastic density functional theory sdft ALUMINUM SILICON first principles calculations
在线阅读 下载PDF
First-principles theory on electronic structure and floatability of spodumene 被引量:12
2
作者 Gui-Chun He Hua-Mei Xiang +2 位作者 Wei Jiang Qian Kang Jian-Hua Chen 《Rare Metals》 SCIE EI CAS CSCD 2014年第6期742-748,共7页
The band structure, density of states, Mulliken populations, and frontier orbital of spodumene crystal were calculated using the first-principles method based on the density functional theory(DFT) and further analyz... The band structure, density of states, Mulliken populations, and frontier orbital of spodumene crystal were calculated using the first-principles method based on the density functional theory(DFT) and further analyzed in detail. The calculation results reveal that the O in spodumene is the most active and easily links with H+in the water, but the active Li is very low, so it is better to add activator to increase the concentrate grade and recovery rate of spodumene in the flotation process. Si–O bonds in spodumene crystal are mainly covalent, since the covalency of Al–O bonds is stronger than that of Li–O bonds,and minerals dissociate along the weakest Li–O bonds. In addition, the study of the frontier orbital indicates that both O and Si atoms have large contribution to the frontier orbital in the spodumene crystal. Oleate and dodecylamine are used as the collectors of spodumene. The results contribute to the understanding of crystal structures of spodumene, and can be used in guiding related practical applications. 展开更多
关键词 SPODUMENE Electronic structure FLOATABILITY first-principles method Frontier orbital
原文传递
Effect of Ti Additions on Mechanical and Thermodynamic Properties of W-Ti Alloys: A First-principles Study
3
作者 ZHANG Jian NIE Wei +5 位作者 HUANG Jin ZHU Ke LIU Ruxia ZHANG Ruizhi LUO Guoqiang SHEN Qiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期246-257,共12页
The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory.... The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory.The results indicate that W-Ti alloys except W_(8)Ti_(8) are thermodynamically stable.The modulus and hardness of W-Ti alloys are smaller than those of pure tungsten and gradually decrease with increasing Ti concentration.However,their B/G ratios and Poisson's ratios exceed those of pure tungsten,suggesting that the introduction of Ti decreases the mechanical strength while enhancing the ductility of W-Ti alloys.The thermal expansion coefficients for W-Ti alloys all surpass those of pure tungsten,indicating that the introduction of titanium exacerbates the thermal expansion behavior of W-Ti alloys.Nevertheless,elevated pressure has the capacity to suppress the thermal expansion tendencies in titanium-doped tungsten alloys.This study offers theoretical insights for the design of nuclear materials by exploring the mechanical and thermodynamic properties of W-Ti alloys. 展开更多
关键词 first-principleS mechanical properties thermodynamic properties tungsten-titanium alloys
原文传递
Primordial hydrogen partitioning at Earth’s core-mantle boundary:Multicomponent effects revealed by machine learning-augmented first-principles simulations 被引量:1
4
作者 ZePing Jiang YuYang He ZhiGang Zhang 《Earth and Planetary Physics》 2025年第5期1001-1009,共9页
Hydrogen partitioning between liquid iron alloys and silicate melts governs its distribution and cycling in Earth’s deep interior.Existing models based on simplified Fe-H systems predict strong hydrogen sequestration... Hydrogen partitioning between liquid iron alloys and silicate melts governs its distribution and cycling in Earth’s deep interior.Existing models based on simplified Fe-H systems predict strong hydrogen sequestration into the core.However,these models do not account for the modulating effects of major light elements such as oxygen and silicon in the core during Earth’s primordial differentiation.In this study,we use first-principles molecular dynamics simulations,augmented by machine learning techniques,to quantify hydrogen chemical potentials in quaternary Fe-O-Si-H systems under early core-mantle boundary conditions(135 GPa,5000 K).Our results demonstrate that the presence of 5.2 wt%oxygen and 4.8 wt%silicon reduces the siderophile affinity of hydrogen by 35%,decreasing its alloy-silicate partition coefficient from 18.2(in the case of Fe-H)to 11.8(in the case of Fe-O-Si-H).These findings suggest that previous estimates of the core hydrogen content derived from binary system models require downward revision.Our study underscores the critical role of multicomponent interactions in core formation models and provides first-principles-derived constraints to reconcile Earth’s present-day hydrogen reservoirs with its accretionary history. 展开更多
关键词 partition coefficient HYDROGEN core-mantle differentiation light elements machine learning density functional theory
在线阅读 下载PDF
First-principles modeling of passivation behaviors of stainless steels in corrosive environments
5
作者 Wenjing Xu Ergen Bao +5 位作者 Yueqi Si Hui Ma Peitao Liu Yan Sun Yongpeng Shi Xing-Qiu Chen 《Journal of Materials Science & Technology》 2025年第26期58-66,共9页
Accurately determining the Flade potential(E_(Flade))is of significant importance in the design of novel corrosion-resisting alloys.However,due to the complex nature of the E_(Flade)influenced by several factors inclu... Accurately determining the Flade potential(E_(Flade))is of significant importance in the design of novel corrosion-resisting alloys.However,due to the complex nature of the E_(Flade)influenced by several factors including compositions of the alloys and corrosive solutions,there is currently a lack of truly predictive ab initio model.Here,we established the critical potential condition required for passivation in acidic solutions containing chloride ions(Cl^(-))by developing an ab initio model that incorporates the potential drop from the metal electrode to the solution,considering tunneling of electrons at metal/film interface,breakdown of the film,and electrochemical adsorption reactions at film/solution interface.These parameters were derived from the work function of the alloy substrate and passivation film,the band gap of the passivation film,and the Gibbs free energy of adsorption on the passivation film,all of which can be obtainable from first-principles calculations.This theoretical model has been successfully validated for alloyed stainless steel,exhibiting a remarkable agreement with experimental results.Importantly,enabled by the model,we have identified several alloying elements(i.e.,Ta,W,Os,and Ir)that can effec-tively lower the EFlade of the stainless steel.This work constitutes an important step forward in modeling complex passivation behaviors from first-principles,providing a useful tool for the design of corrosion-resisting alloys. 展开更多
关键词 PASSIVATION MODELING first-principles calculation Stainless steel
原文传递
First-principles analysis of effects of cerium doping on electrochemical corrosion behaviors of steel
6
作者 Xiangjun Liu Zhongqiao Ma +4 位作者 Changqiao Yang Xiang Li Jichun Yang Huiping Ren Hui Ma 《Journal of Rare Earths》 2025年第8期1758-1768,I0006,共12页
Based on first-principles calculation framework,the surface model,anodic dissolution,cathodic oxygen absorption reaction,and other related electrochemical corrosion models of Fe-Ce system were constructed,and the infl... Based on first-principles calculation framework,the surface model,anodic dissolution,cathodic oxygen absorption reaction,and other related electrochemical corrosion models of Fe-Ce system were constructed,and the influencing mechanism Ce doping on the corrosion resistance of Fe-Ce system in the Cl medium environment was analyzed.The results show that Ce doping on the first surface and subsurface inhibits the ionization of Fe atoms and greatly promotes the repassivation process of Fe matrix.Ce doping on the first layer is conducive to preventing the detachment of surface Fe atoms from Fe matrix and delaying the occurrence of corrosion.Ce atoms in the subsurface effectively increase the difficulty of Fe atoms detaching from the matrix at high Cl concentrations.When O diffusion is the controlling link of oxygen absorption reaction,Ce doping has no effects on the reaction rate of cathodic oxygen absorption.Ce doping enhances the electrochemical stability of Fe(100)1and reduces the anodic dissolution rate of Fe matrix,thereby improving its corrosion resistance. 展开更多
关键词 first-principles calculations STEEL Corrosion modeling Rare earths CHLORINE
原文传递
Wetting and interfacial behavior of high entropy alloy filler on rare earth silicate system:Phase analysis and first-principles calculations
7
作者 Shuai Zhao Buqiu Shao +6 位作者 Haiyan Chen Yuqi Hu Zhaoyi Pan Yongsheng Liu Pengcheng Wang Xiaoguo Song Wenya Li 《Journal of Materials Science & Technology》 2025年第30期223-238,共16页
The vacuum reactive wetting and brazing of Er_(2)Si_(2)O_(7)/MoSi_(2) coatings were investigated using a (CoFeNiCrMn)_(88)Nb_(12) high-entropy alloy (HEA) brazing filler. The microstructural evolution and wettability ... The vacuum reactive wetting and brazing of Er_(2)Si_(2)O_(7)/MoSi_(2) coatings were investigated using a (CoFeNiCrMn)_(88)Nb_(12) high-entropy alloy (HEA) brazing filler. The microstructural evolution and wettability of the HEA filler were analyzed, with particular attention to the surface energy, interfacial stability, and electronic properties of the HEA filler/rare earth silicate coating system, as determined by density functional theory (DFT). As Nb diffused into the interface and the ErNbO_(4) phase formed, the wetting angle gradually decreased to 23.12° The effective wetting and spreading of the HEA brazing filler on the rare earth silicate coating surface are strongly correlated with the formation of the ErNbO_(4) phase at the interface. Furthermore, DFT calculations reveal that the interfacial bonding energy between the BCC' and FCC' phases and the ErNbO_(4) phase, after the wetting reaction, is significantly higher than the bonding energy between the initial filler and Er_(2)Si_(2)O_(7). This finding suggests that the formation of the ErNbO_(4) phase improves the wetting and spreading behavior of the filler. 展开更多
关键词 High entropy alloy WETTABILITY Microstructures first-principles calculations Interfaces
原文传递
First-Principles Study on Adsorption of Magnesium Porphyrin on Sodium Chloride Covered Au(111)Surfaces
8
作者 Wenjing Zhao Jiyin Xiao +1 位作者 Liang Ma Guangjun Tian 《Chinese Journal of Chemical Physics》 2025年第4期494-502,I0060-I0084,I0105,I0106,共36页
The adsorption properties of a magnesium porphyrin(MgP)molecule on Au(111)surface covered with up to three lay-ers of sodium chloride(NaCl)were investigated by means of first-principles calculations.The most stable ad... The adsorption properties of a magnesium porphyrin(MgP)molecule on Au(111)surface covered with up to three lay-ers of sodium chloride(NaCl)were investigated by means of first-principles calculations.The most stable adsorption configuration of MgP on the NaCl/Au(111)heterosurfaces was found to be at the Cl-top site with a 20°angle between the[110]lattice direction of NaCl and the Mg–N bond of the molecule.Compared with MgP molecule adsorbed on bare Au(111),the inclusion of NaCl lay-ers can lead to a significant decrease in the adsorption energy of the MgP molecule.The exis-tence of NaCl layers also reduced the charge transfer between the molecule and the surface.For heterosurfaces with two or three monolayers of NaCl,the charge transfer was almost com-pletely suppressed.The obtained partial density of states(PDOS)showed that hybridization between the electronic structures of the adsorbed MgP molecule and the metal surface can be significantly suppressed when NaCl layers were added.For the heterosurface with three lay-ers of NaCl,the PDOS around the Fermi level was almost identical with that of the free molecule,suggesting the electronic structure of the MgP molecule was nicely preserved.Influ-ence of the NaCl layers on the electronic structure of the MgP molecule was mainly found for molecular orbitals(MOs)away from the Fermi level as a result of the large band gap of the NaCl layers. 展开更多
关键词 Surface adsorption first-principles calculation PORPHYRIN Sodium chloride
在线阅读 下载PDF
First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
9
作者 Zi-Kai Zhou Jun Kang 《Chinese Physics B》 2025年第8期413-417,共5页
Control of hyperfine interaction strength of shallow donors in Si is one of the central issues in realizing Kane quantum computers.First-principles calculations on the hyperfine Stark shift of shallow donors are chall... Control of hyperfine interaction strength of shallow donors in Si is one of the central issues in realizing Kane quantum computers.First-principles calculations on the hyperfine Stark shift of shallow donors are challenging since large supercells are needed to accommodate the delocalized donor wave functions.In this work,we investigated the hyperfine Stark shift and its strain tunability for shallow donors P and As in Si using the potential patching method based on first-principles density functional theory calculations.The good agreement between our calculations and experimental results confirms that the potential patching method is a feasible and accurate first-principles approach for studying wave-function-related properties of shallow impurities,such as the Stark shift parameter.It is further shown that the application of strain expands the range of hyperfine Stark shift and helps improve the response of shallow donor based qubit gates.The results could be useful for developing quantum computing architectures based on shallow donors in Si. 展开更多
关键词 shallow donors first-principles calculations hyperfine interaction
原文传递
Designing strategy for developing excellent elastocaloric material of Ni-Mn-Ti alloys with doping from first-principles calculations
10
作者 Lei Zhao Changlong Tan +6 位作者 Jianyong Wang Jie Yang Xiaochuan Wang Wenbin Zhao Jian Li Zhaohui Luan Xiaohua Tian 《Journal of Materials Science & Technology》 2025年第25期317-326,共10页
Ni-Mn-Ti Heusler alloys have great potential for elastocaloric refrigeration due to the colossal caloric effect and good mechanical properties. However, theoretical calculations on the characterization of the elastoca... Ni-Mn-Ti Heusler alloys have great potential for elastocaloric refrigeration due to the colossal caloric effect and good mechanical properties. However, theoretical calculations on the characterization of the elastocaloric effect are rare. An important parameter to evaluate the elastocaloric effect is the transformation entropy change, whose main source is the vibrational entropy change (ΔS_(vib)). Unfortunately, the widely used quasiharmonic approximation method fails in the prediction of the vibrational entropy for high-temperature austenite due to its dynamical instability at 0 K. To solve this problem, the temperature dependent effective potential method was used considering the temperature and anharmonic effect. Sc, V, and Zr doping at the Ti sites in B2 disordered Ni_(8)Mn_(5)Ti_(3) were studied about phase stability, martensitic transformation, and elastocaloric properties. The results revealed the austenitic structures of all the doping systems exhibit antiferromagnetic coupling characteristics at 300 K due to the temperature effect. Sc and Zr doping at the Ti sites decreased the ΔS_(vib) value, whereas V doping at the Ti site increased the ΔS_(vib) value. Further analysis proved the important evaluation criterion that the ΔS_(vib) value increases with the tetragonal distortion ratio and volume change, which has important guiding significance for improving the elastocaloric effect. Besides, the calculations of elastic constants presented all the doping systems maintain outstanding ductility evaluated from the B/G ratio. This work provides an effective strategy for designing excellent elastocaloric material with large vibrational entropy change and good mechanical properties. 展开更多
关键词 Ni-Mn-Ti Element doping first-principles calculations Temperature dependent effective potential Elastocaloric properties
原文传递
Solute Segregation and Grain Boundary Cohesion of Magnesium Binary Alloys:A First-Principles Study
11
作者 Hong Ju Cheng Wang +3 位作者 Wei-Jiang Guo Zhao-Yuan Meng Peng Chen Hui-Yuan Wang 《Acta Metallurgica Sinica(English Letters)》 2025年第12期2179-2196,共18页
Solute segregation at grain boundaries(GBs)can significantly influence GB cohesion.In this work,the segregation energies of solutes(Zn,Al,Ag,Ca,and Gd)were first investigated at six symmetrical tilt GBs rotating aroun... Solute segregation at grain boundaries(GBs)can significantly influence GB cohesion.In this work,the segregation energies of solutes(Zn,Al,Ag,Ca,and Gd)were first investigated at six symmetrical tilt GBs rotating around[0001]axis of Mg,to uncover the impact of GB characteristics on solute segregation behavior.The results reveal that solute segregation propensity is closely related to the local geometric environment of GB sites,but has little correlation with intrinsic GB properties(such as GB misorientation and GB energy).Furthermore,relationships between GB site characteristics and solute segregation tendencies were established.Ca-like solutes tend to occupy GB sites with larger Voronoi volumes(V),while Zn-like solutes prefer GB sites with smaller V as well as smaller shortest bond lengths(SBL).Based on this finding,we further evaluated the segregation capacities of 26 solutes at their most energetically stable segregation sites and their impact on GB cohesion.A descriptor that can effectively capture the strengthening/embrittling potency of segregated solutes on GBs was proposed by performing the crystal orbital Hamilton population(COHP)analyses.It was found that the discrepancies in bond strength between GBs and free surface dominate the solute-strengthening behavior.Finally,a first-principles“design map”regarding the segregation energies and strengthening energies was provided,which offers a database for designing Mg alloys with high fracture toughness. 展开更多
关键词 Magnesium alloys Solute segregation first-principles calculation Grain boundary engineering
原文传递
Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
12
作者 Tianxu Zhang Kun Zhou +5 位作者 Yingjian Li Chenhao Yi Muhammad Faizan Yuhao Fu Xinjiang Wang Lijun Zhang 《Chinese Physics B》 2025年第4期212-219,共8页
Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance.However,it is the continuous advancements in first-principles c... Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance.However,it is the continuous advancements in first-principles calculations that have enabled researchers to understand the microscopic origins of thermal expansion.In this study,we propose a coefficient of thermal expansion(CTE)calculation scheme based on self-consistent phonon theory,incorporating the fourth-order anharmonicity.We selected four structures(Si,CaZrF_(6),SrTiO_(3),NaBr)to investigate high-order anharmonicity’s impact on their CTEs,based on bonding types.The results indicate that our method goes beyond the second-order quasi-harmonic approximation and the third-order perturbation theory,aligning closely with experimental data.Furthermore,we observed that an increase in the ionicity of the structures leads to a more pronounced influence of high-order anharmonicity on CTE,with this effect primarily manifesting in variations of the Grüneisen parameter.Our research provides a theoretical foundation for accurately predicting and regulating the thermal expansion behavior of materials. 展开更多
关键词 high-order anharmonicity Grüneisen parameter thermal expansion first-principles calculations
原文传递
Microstructure and mechanical properties of 6061 aluminum alloy/galvanized steel laser-arc hybrid fusion-brazed welded joint: experiment and first-principles calculation
13
作者 Hanxuan Zhang Yuchen Dong +2 位作者 Nan Li Jie Cui Liming Liu 《China Welding》 2025年第3期192-206,共15页
In this study,6061 aluminum alloy and galvanized steel fusion-brazed lap joints were obtained using a laser-arc hybrid heat source,and the effects of laser power variation on the microstructure,mechanical properties,a... In this study,6061 aluminum alloy and galvanized steel fusion-brazed lap joints were obtained using a laser-arc hybrid heat source,and the effects of laser power variation on the microstructure,mechanical properties,and fracture mechanism of the joints were ana-lyzed.The results showed that the tensile shear load initially increased with rising laser power,followed by a decrease.At a laser power of 240 W,the maximum tensile shear load was 2479.8 N/cm and the weak section of joint was in the Al-Fe reaction layer con-sisting of Fe(Al,Si)_(3),Fe_(2)(Al,Si)_(5),and Fe(Al,Si)intermetallic compounds(IMCs).Computational results showed that the inherently high brittleness and hardness of Fe(Al,Si)_(3) and the high mismatch rates of Fe(Al,Si)_(3)/Al interfaces were the key factor leading to the failure of the joints at lower heat input. 展开更多
关键词 Aluminum alloy Galvanized steel Intermetallic compounds Fracture mechanism first-principles calculation
在线阅读 下载PDF
Effect of solute elements(B,C,N,O)onγ-FeΣ5(210)[001]grain boundary:a first-principles study
14
作者 Ying Xu Ya-nan Xu +3 位作者 Wei-gang Cao Xin Meng Fu-cheng Zhang Xiao-mei Lv 《Journal of Iron and Steel Research International》 2025年第6期1716-1724,共9页
Second period elements(B,C,N,and O)usually appear at the grain boundary(GB)and strongly affect the mechanical performance in austenitic stainless steels.Therefore,it is significant to investigate the effect of solute ... Second period elements(B,C,N,and O)usually appear at the grain boundary(GB)and strongly affect the mechanical performance in austenitic stainless steels.Therefore,it is significant to investigate the effect of solute elements(B,C,N,and O)on the GB.The first-principles calculation based on the density function theory was applied to explore the effect of B,C,N,and O onγ-FeΣ5(210)[001]GB.The GB energy,the segregation energy,the Voronoi volume,and the theoretical tensile test were calculated to investigate the segregation behavior and the strengthening effect.The structural change and electronic evolution were also investigated by bond change,charge density distribution,and density of states.The results show that B is favored to segregate at the capped trigonal prism(CTP)position with a large void and has a strengthening effect on the GB strength,while O and N are preferred to locate at the octahedral(OCT)site and have an embrittling effect on GB cohesion.C can segregate at both the CTP site and the OCT location with little energy difference.As C segregates at the OCT site,it is beneficial for GB strength.However,it is detrimental at the CTP position.It can be seen that the influence of solutes is closely related to the element type and segregated position. 展开更多
关键词 first-principles calculation Grain boundary Solute effect γ-Fe Electronic evolution
原文传递
Structure and properties of MgO melt at high pressure:A first-principles study
15
作者 Min Wu Zhongsen Sun 《Chinese Physics B》 2025年第8期255-258,共4页
MgO is one of the most abundant minerals in the Earth’s interior,and its structure and properties at high temperature and pressure are important for us to understand the composition and behavior in the deep Earth.In ... MgO is one of the most abundant minerals in the Earth’s interior,and its structure and properties at high temperature and pressure are important for us to understand the composition and behavior in the deep Earth.In the present work,firstprinciples molecular dynamics calculations were performed to investigate the pressure-induced structural evolution of the MgO melts at 4000 K and 5000 K.The results predicted the liquid-solid phase boundaries,and the calculated viscosities of the melts may help us to understand the transport behavior under the corresponding Earth conditions. 展开更多
关键词 first-principleS molecular dynamics MgO melt high temperature and high pressure
原文传递
Effect of trace Nb on corrosion resistance of corrosion layer of high-strength anti-seismic rebar by first-principles and experimental methods
16
作者 Ze-yun Zeng Shang-jun Gu +5 位作者 Jie Wang Fu-long Wei Xiang Xie Zhi-ying Li Hui Yang Chang-rong Li 《Journal of Iron and Steel Research International》 2025年第5期1427-1453,共27页
The influence mechanism of trace Nb on the corrosion resistance of surface corrosion products of high-strength anti-seismic rebar in the simulated marine environment was studied by combining first-principles calculati... The influence mechanism of trace Nb on the corrosion resistance of surface corrosion products of high-strength anti-seismic rebar in the simulated marine environment was studied by combining first-principles calculations with corrosion mass loss method,surface analysis,cross-sectional analysis,quantitative analysis,and electrochemical test.The results demonstrated that the addition of trace Nb effectively improved the compactness and stability of surface corrosion layer of rebar,and the corrosion resistance of corrosion layer increased with the increase in Nb content.The beneficial effect of Nb content on the corrosion layer summarized two important key points.Firstly,the addition of Nb was beneficial to promoting the improvement in the structural stability of α-FeOOH,and α-FeOOH structure of solid solution Nb atoms was beneficial to strengthening the fixation of Cl atoms,thus increasing α/(β+γ)ratio,total impedance value,and corrosion potential.Secondly,the formation of Nb oxides can not only repair the corrosion layer,but also play a role in the fixation Cl atoms,resulting in the improvement in corrosion resistance of corrosion layer. 展开更多
关键词 High-strength anti-seismic rebar Nb content Corrosion layer Corrosion resistance first-principles calculation
原文传递
Uncovering the oxidation mechanism of sphalerite(ZnS)in the absence and presence of water:A first-principles investigation
17
作者 Yuanjia Luo Wei Sun +2 位作者 Haisheng Han Jian Peng Feng Jiang 《International Journal of Mining Science and Technology》 2025年第1期149-157,共9页
Herein,a first-principles investigation was innovatively conducted to research the surface oxidation of ZnS-like sphalerite in the absence and presence of H_(2)O .The findings showed that single O_(2) was preferred to... Herein,a first-principles investigation was innovatively conducted to research the surface oxidation of ZnS-like sphalerite in the absence and presence of H_(2)O .The findings showed that single O_(2) was preferred to be dissociated adsorption on sphalerite surface by generating SAO and Zn AO bonds,and the S atom on the surface was the most energy-supported site for O_(2) adsorption,on which a≡Zn-O-S-O-Zn≡structure will be formed.However,dissociated adsorption of single H_(2)O will not happen.It was preferred to be adsorbed on the top Zn atom on sphalerite surface in molecular form through Zn-O bond.Besides,sphalerite oxidation can occur as if O_(2) was present regardless of the presence of H_(2)O ,and when H_(2)O and O_(2) coexisted,the formation of sulfur oxide(SO_(2) )needed a lower energy barrier and it was easier to form on sphalerite surface than that only O_(2) existed.In the absence of H_(2)O ,when SO_(2) was generated,further oxidation of which would form neutral zinc sulfate.In the presence of H_(2)O ,the formation of SO_(2) on sphalerite surface was easier and the rate of further oxidation to form sulfate was also greater.Consequently,the occurrence of sphalerite oxidation was accelerated. 展开更多
关键词 first-principleS Oxidation SPHALERITE H_(2)O Lower energy barrier
在线阅读 下载PDF
First-principles study on the electrochemical properties of Na-ion-intercalatable heterostructures formed by transitional metal dichalcogenides and blue phosphorus
18
作者 Qiangqiang Zhou Lili Sun +5 位作者 Yu-Jie Guo Bo Zhou Chunfang Zhang Sen Xin Le Yu Gaohong Zhai 《Chinese Chemical Letters》 2025年第7期648-654,共7页
Extensive first-principles calculations have been performed to examine the electrochemical properties of Na-ion-intercalatable heterostructures formed by transitional metal dichalcogenides(MS_(2),where M=Ti,V,Nb and M... Extensive first-principles calculations have been performed to examine the electrochemical properties of Na-ion-intercalatable heterostructures formed by transitional metal dichalcogenides(MS_(2),where M=Ti,V,Nb and Mo)and blue phosphorus(BlueP),which have been reported as potential anode materials for rechargeable sodium-ion batteries.Upon formation of heterostructures,much improved structural stabilities have observed compared with the pristine MS_(2) and BlueP.Metallic T-TiS_(2),T-MoS_(2),H(T)-VS_(2) and H(T)-NbS_(2) would retain the conductive character after formation of heterostructures with BlueP,however,HTiS_(2)/BlueP and H-MoS_(2)/BlueP would undergo a semiconductor to metallic transition accompanied by Na intercalation.Moreover,the presence of relatively low diffusion barriers ranging from 0.04 eV to 0.08 eV,coupled with the suitable average open-circuit voltage spanning from 0.12 eV to 0.89 eV,guarantee exceptional charge-discharge rates and ensure the safety of battery performance.Among these heterostructures,H(T)-NbS_(2)/BlueP and T-TiS_(2)/BlueP exhibit best Na adsorption ability of up to 4 layers,corresponding to theoretical capacities of 570.2 and 746.7 mAh/g,respectively.These encouraging properties indicate that T-TiS_(2)/BlueP and H(T)-NbS_(2)/BlueP could serve as suitable anode materials for high-performance sodiumion batteries. 展开更多
关键词 2D heterostructure Blue phosphorus Transitional metal dichalcogenides Sodium storage first-principles calculations
原文传递
First-principles study of the lattice thermal conductivity of MgSiO_(3) akimotoite in the mantle transition zone
19
作者 Li Zhang Zheng Hong +2 位作者 QiLi Chen Cheng Lu KaiHua He 《Earth and Planetary Physics》 2025年第4期853-860,共8页
The lattice thermal conductivity(κ_(latt))of mantle minerals plays a crucial role in the heat flow and temperature distribution within the Earth.MgSiO_(3)akimotoite is stable at the bottom of the mantle transition zo... The lattice thermal conductivity(κ_(latt))of mantle minerals plays a crucial role in the heat flow and temperature distribution within the Earth.MgSiO_(3)akimotoite is stable at the bottom of the mantle transition zone;it transitions to MgSiO_(3)perovskite(MgPv).Inκ_(latt)this work,we carry out a study of the of MgSiO_(3)akimotoite for pressures up to 25 GPa and temperatures up to 2500 K,based onκ_(latt)first-principles calculations combined with lattice dynamics theory.At 300 K and 25 GPa,the of MgSiO_(3)akimotoite is 37.66 W m^(-1)K^(-1),κ_(latt)larger than that of MgPv(13.46 W m^(-1)K^(-1)),which implies that the phase transition explains the reduction in.At 300 K,the pressureκ_(latt)κ_(latt)dependence of is 0.68 W m^(-1)K^(-1)GPa-1,stronger than that of MgPv(0.48 W m^(-1)K^(-1)GPa-1).The azimuthal anisotropy in of MgSiO_(3)akimotoite decreases from 45.5%at 0 GPa to 28.94%at 25 GPa,while the variation trend is opposite to that of MgPv.In MgSiO_(3)κ_(latt)akimotoite,Fe incorporating in the mineral leads to a decrease in and an increase in azimuthal anisotropy.Along the geotherm,theκ_(latt)of MgSiO_(3)akimotoite is lower than that of ringwoodite,which would suggest that MgSiO_(3)akimotoite slows down heat conduction at the bottom of mantle transition zone.These findings are useful for determining the thermal structure of,and understanding heat transfer in,the interior of the Earth. 展开更多
关键词 MgSiO_(3)akimotoite thermal conductivity phase transition ANISOTROPY first-principles calculations
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部