期刊文献+
共找到1,181篇文章
< 1 2 60 >
每页显示 20 50 100
Effect of Ti Additions on Mechanical and Thermodynamic Properties of W-Ti Alloys: A First-principles Study
1
作者 ZHANG Jian NIE Wei +5 位作者 HUANG Jin ZHU Ke LIU Ruxia ZHANG Ruizhi LUO Guoqiang SHEN Qiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期246-257,共12页
The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory.... The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory.The results indicate that W-Ti alloys except W_(8)Ti_(8) are thermodynamically stable.The modulus and hardness of W-Ti alloys are smaller than those of pure tungsten and gradually decrease with increasing Ti concentration.However,their B/G ratios and Poisson's ratios exceed those of pure tungsten,suggesting that the introduction of Ti decreases the mechanical strength while enhancing the ductility of W-Ti alloys.The thermal expansion coefficients for W-Ti alloys all surpass those of pure tungsten,indicating that the introduction of titanium exacerbates the thermal expansion behavior of W-Ti alloys.Nevertheless,elevated pressure has the capacity to suppress the thermal expansion tendencies in titanium-doped tungsten alloys.This study offers theoretical insights for the design of nuclear materials by exploring the mechanical and thermodynamic properties of W-Ti alloys. 展开更多
关键词 first-principles mechanical properties thermodynamic properties tungsten-titanium alloys
原文传递
First-principles analysis of effects of cerium doping on electrochemical corrosion behaviors of steel
2
作者 Xiangjun Liu Zhongqiao Ma +4 位作者 Changqiao Yang Xiang Li Jichun Yang Huiping Ren Hui Ma 《Journal of Rare Earths》 2025年第8期1758-1768,I0006,共12页
Based on first-principles calculation framework,the surface model,anodic dissolution,cathodic oxygen absorption reaction,and other related electrochemical corrosion models of Fe-Ce system were constructed,and the infl... Based on first-principles calculation framework,the surface model,anodic dissolution,cathodic oxygen absorption reaction,and other related electrochemical corrosion models of Fe-Ce system were constructed,and the influencing mechanism Ce doping on the corrosion resistance of Fe-Ce system in the Cl medium environment was analyzed.The results show that Ce doping on the first surface and subsurface inhibits the ionization of Fe atoms and greatly promotes the repassivation process of Fe matrix.Ce doping on the first layer is conducive to preventing the detachment of surface Fe atoms from Fe matrix and delaying the occurrence of corrosion.Ce atoms in the subsurface effectively increase the difficulty of Fe atoms detaching from the matrix at high Cl concentrations.When O diffusion is the controlling link of oxygen absorption reaction,Ce doping has no effects on the reaction rate of cathodic oxygen absorption.Ce doping enhances the electrochemical stability of Fe(100)1and reduces the anodic dissolution rate of Fe matrix,thereby improving its corrosion resistance. 展开更多
关键词 first-principles calculations STEEL Corrosion modeling Rare earths CHLORINE
原文传递
Microstructure and mechanical properties of 6061 aluminum alloy/galvanized steel laser-arc hybrid fusion-brazed welded joint: experiment and first-principles calculation
3
作者 Hanxuan Zhang Yuchen Dong +2 位作者 Nan Li Jie Cui Liming Liu 《China Welding》 2025年第3期192-206,共15页
In this study,6061 aluminum alloy and galvanized steel fusion-brazed lap joints were obtained using a laser-arc hybrid heat source,and the effects of laser power variation on the microstructure,mechanical properties,a... In this study,6061 aluminum alloy and galvanized steel fusion-brazed lap joints were obtained using a laser-arc hybrid heat source,and the effects of laser power variation on the microstructure,mechanical properties,and fracture mechanism of the joints were ana-lyzed.The results showed that the tensile shear load initially increased with rising laser power,followed by a decrease.At a laser power of 240 W,the maximum tensile shear load was 2479.8 N/cm and the weak section of joint was in the Al-Fe reaction layer con-sisting of Fe(Al,Si)_(3),Fe_(2)(Al,Si)_(5),and Fe(Al,Si)intermetallic compounds(IMCs).Computational results showed that the inherently high brittleness and hardness of Fe(Al,Si)_(3) and the high mismatch rates of Fe(Al,Si)_(3)/Al interfaces were the key factor leading to the failure of the joints at lower heat input. 展开更多
关键词 Aluminum alloy Galvanized steel Intermetallic compounds Fracture mechanism first-principles calculation
在线阅读 下载PDF
Effect of solute elements(B,C,N,O)onγ-FeΣ5(210)[001]grain boundary:a first-principles study
4
作者 Ying Xu Ya-nan Xu +3 位作者 Wei-gang Cao Xin Meng Fu-cheng Zhang Xiao-mei Lv 《Journal of Iron and Steel Research International》 2025年第6期1716-1724,共9页
Second period elements(B,C,N,and O)usually appear at the grain boundary(GB)and strongly affect the mechanical performance in austenitic stainless steels.Therefore,it is significant to investigate the effect of solute ... Second period elements(B,C,N,and O)usually appear at the grain boundary(GB)and strongly affect the mechanical performance in austenitic stainless steels.Therefore,it is significant to investigate the effect of solute elements(B,C,N,and O)on the GB.The first-principles calculation based on the density function theory was applied to explore the effect of B,C,N,and O onγ-FeΣ5(210)[001]GB.The GB energy,the segregation energy,the Voronoi volume,and the theoretical tensile test were calculated to investigate the segregation behavior and the strengthening effect.The structural change and electronic evolution were also investigated by bond change,charge density distribution,and density of states.The results show that B is favored to segregate at the capped trigonal prism(CTP)position with a large void and has a strengthening effect on the GB strength,while O and N are preferred to locate at the octahedral(OCT)site and have an embrittling effect on GB cohesion.C can segregate at both the CTP site and the OCT location with little energy difference.As C segregates at the OCT site,it is beneficial for GB strength.However,it is detrimental at the CTP position.It can be seen that the influence of solutes is closely related to the element type and segregated position. 展开更多
关键词 first-principles calculation Grain boundary Solute effect γ-Fe Electronic evolution
原文传递
Effect of trace Nb on corrosion resistance of corrosion layer of high-strength anti-seismic rebar by first-principles and experimental methods
5
作者 Ze-yun Zeng Shang-jun Gu +5 位作者 Jie Wang Fu-long Wei Xiang Xie Zhi-ying Li Hui Yang Chang-rong Li 《Journal of Iron and Steel Research International》 2025年第5期1427-1453,共27页
The influence mechanism of trace Nb on the corrosion resistance of surface corrosion products of high-strength anti-seismic rebar in the simulated marine environment was studied by combining first-principles calculati... The influence mechanism of trace Nb on the corrosion resistance of surface corrosion products of high-strength anti-seismic rebar in the simulated marine environment was studied by combining first-principles calculations with corrosion mass loss method,surface analysis,cross-sectional analysis,quantitative analysis,and electrochemical test.The results demonstrated that the addition of trace Nb effectively improved the compactness and stability of surface corrosion layer of rebar,and the corrosion resistance of corrosion layer increased with the increase in Nb content.The beneficial effect of Nb content on the corrosion layer summarized two important key points.Firstly,the addition of Nb was beneficial to promoting the improvement in the structural stability of α-FeOOH,and α-FeOOH structure of solid solution Nb atoms was beneficial to strengthening the fixation of Cl atoms,thus increasing α/(β+γ)ratio,total impedance value,and corrosion potential.Secondly,the formation of Nb oxides can not only repair the corrosion layer,but also play a role in the fixation Cl atoms,resulting in the improvement in corrosion resistance of corrosion layer. 展开更多
关键词 High-strength anti-seismic rebar Nb content Corrosion layer Corrosion resistance first-principles calculation
原文传递
Uncovering the oxidation mechanism of sphalerite(ZnS)in the absence and presence of water:A first-principles investigation
6
作者 Yuanjia Luo Wei Sun +2 位作者 Haisheng Han Jian Peng Feng Jiang 《International Journal of Mining Science and Technology》 2025年第1期149-157,共9页
Herein,a first-principles investigation was innovatively conducted to research the surface oxidation of ZnS-like sphalerite in the absence and presence of H_(2)O .The findings showed that single O_(2) was preferred to... Herein,a first-principles investigation was innovatively conducted to research the surface oxidation of ZnS-like sphalerite in the absence and presence of H_(2)O .The findings showed that single O_(2) was preferred to be dissociated adsorption on sphalerite surface by generating SAO and Zn AO bonds,and the S atom on the surface was the most energy-supported site for O_(2) adsorption,on which a≡Zn-O-S-O-Zn≡structure will be formed.However,dissociated adsorption of single H_(2)O will not happen.It was preferred to be adsorbed on the top Zn atom on sphalerite surface in molecular form through Zn-O bond.Besides,sphalerite oxidation can occur as if O_(2) was present regardless of the presence of H_(2)O ,and when H_(2)O and O_(2) coexisted,the formation of sulfur oxide(SO_(2) )needed a lower energy barrier and it was easier to form on sphalerite surface than that only O_(2) existed.In the absence of H_(2)O ,when SO_(2) was generated,further oxidation of which would form neutral zinc sulfate.In the presence of H_(2)O ,the formation of SO_(2) on sphalerite surface was easier and the rate of further oxidation to form sulfate was also greater.Consequently,the occurrence of sphalerite oxidation was accelerated. 展开更多
关键词 first-principles Oxidation SPHALERITE H_(2)O Lower energy barrier
在线阅读 下载PDF
First-principles study on the electrochemical properties of Na-ion-intercalatable heterostructures formed by transitional metal dichalcogenides and blue phosphorus
7
作者 Qiangqiang Zhou Lili Sun +5 位作者 Yu-Jie Guo Bo Zhou Chunfang Zhang Sen Xin Le Yu Gaohong Zhai 《Chinese Chemical Letters》 2025年第7期648-654,共7页
Extensive first-principles calculations have been performed to examine the electrochemical properties of Na-ion-intercalatable heterostructures formed by transitional metal dichalcogenides(MS_(2),where M=Ti,V,Nb and M... Extensive first-principles calculations have been performed to examine the electrochemical properties of Na-ion-intercalatable heterostructures formed by transitional metal dichalcogenides(MS_(2),where M=Ti,V,Nb and Mo)and blue phosphorus(BlueP),which have been reported as potential anode materials for rechargeable sodium-ion batteries.Upon formation of heterostructures,much improved structural stabilities have observed compared with the pristine MS_(2) and BlueP.Metallic T-TiS_(2),T-MoS_(2),H(T)-VS_(2) and H(T)-NbS_(2) would retain the conductive character after formation of heterostructures with BlueP,however,HTiS_(2)/BlueP and H-MoS_(2)/BlueP would undergo a semiconductor to metallic transition accompanied by Na intercalation.Moreover,the presence of relatively low diffusion barriers ranging from 0.04 eV to 0.08 eV,coupled with the suitable average open-circuit voltage spanning from 0.12 eV to 0.89 eV,guarantee exceptional charge-discharge rates and ensure the safety of battery performance.Among these heterostructures,H(T)-NbS_(2)/BlueP and T-TiS_(2)/BlueP exhibit best Na adsorption ability of up to 4 layers,corresponding to theoretical capacities of 570.2 and 746.7 mAh/g,respectively.These encouraging properties indicate that T-TiS_(2)/BlueP and H(T)-NbS_(2)/BlueP could serve as suitable anode materials for high-performance sodiumion batteries. 展开更多
关键词 2D heterostructure Blue phosphorus Transitional metal dichalcogenides Sodium storage first-principles calculations
原文传递
Mechanism analysis of effect of MgO on reduction swelling behaviour of iron pellets in CO/H_(2)atmosphere based on first-principles calculations
8
作者 Hong-ming Long Jing-shu An +3 位作者 Xing-wang Li Ting Wu Sheng-ping He Jie Lei 《Journal of Iron and Steel Research International》 2025年第1期73-84,共12页
To explain the influence mechanism of MgO on the consolidation and reduction characteristics of roasted iron pellets,the properties and structure of pellets were investigated from multi-dimensions.It indicated that th... To explain the influence mechanism of MgO on the consolidation and reduction characteristics of roasted iron pellets,the properties and structure of pellets were investigated from multi-dimensions.It indicated that the MgO addition decreased the reduction swelling index(RSI)and reduction degree of pellets in both CO and H_(2)atmospheres.During the stepwise reduction process of Fe2O3→Fe3O4→FeO,the reduction behaviour of pellets in CO and H_(2)was similar,while the reduction rate of pellets in H_(2)atmosphere was almost twice as high as that in CO atmosphere.During the stepwise reduction process of FeO→Fe,the RSI of pellets showed a logarithmic increase in CO atmosphere and a linear decrease in H_(2)atmosphere.As investigated by first-principles calculations,C and Fe mainly formed chemical bonds,and the CO reduction process released energy,promoting the formation of iron whiskers.However,H and Fe produced weak physical adsorption,and the H_(2)reduction process was endothermic,inhibiting the generation of iron whiskers.With Mg2+doping in FexO,the nucleation region of iron whiskers expanded in CO reduction process,and the morphology of iron whiskers transformed from“slender”to“stocky,”reducing RSI of the pellets. 展开更多
关键词 MGO CO atmosphere H_(2)atmosphere Reduction degree Reduction swelling index first-principles calculation
原文传递
First-principles study of the lattice thermal conductivity of MgSiO_(3) akimotoite in the mantle transition zone
9
作者 Li Zhang Zheng Hong +2 位作者 QiLi Chen Cheng Lu KaiHua He 《Earth and Planetary Physics》 2025年第4期853-860,共8页
The lattice thermal conductivity(κ_(latt))of mantle minerals plays a crucial role in the heat flow and temperature distribution within the Earth.MgSiO_(3)akimotoite is stable at the bottom of the mantle transition zo... The lattice thermal conductivity(κ_(latt))of mantle minerals plays a crucial role in the heat flow and temperature distribution within the Earth.MgSiO_(3)akimotoite is stable at the bottom of the mantle transition zone;it transitions to MgSiO_(3)perovskite(MgPv).Inκ_(latt)this work,we carry out a study of the of MgSiO_(3)akimotoite for pressures up to 25 GPa and temperatures up to 2500 K,based onκ_(latt)first-principles calculations combined with lattice dynamics theory.At 300 K and 25 GPa,the of MgSiO_(3)akimotoite is 37.66 W m^(-1)K^(-1),κ_(latt)larger than that of MgPv(13.46 W m^(-1)K^(-1)),which implies that the phase transition explains the reduction in.At 300 K,the pressureκ_(latt)κ_(latt)dependence of is 0.68 W m^(-1)K^(-1)GPa-1,stronger than that of MgPv(0.48 W m^(-1)K^(-1)GPa-1).The azimuthal anisotropy in of MgSiO_(3)akimotoite decreases from 45.5%at 0 GPa to 28.94%at 25 GPa,while the variation trend is opposite to that of MgPv.In MgSiO_(3)κ_(latt)akimotoite,Fe incorporating in the mineral leads to a decrease in and an increase in azimuthal anisotropy.Along the geotherm,theκ_(latt)of MgSiO_(3)akimotoite is lower than that of ringwoodite,which would suggest that MgSiO_(3)akimotoite slows down heat conduction at the bottom of mantle transition zone.These findings are useful for determining the thermal structure of,and understanding heat transfer in,the interior of the Earth. 展开更多
关键词 MgSiO_(3)akimotoite thermal conductivity phase transition ANISOTROPY first-principles calculations
在线阅读 下载PDF
First-Principles Study on Adsorption of Magnesium Porphyrin on Sodium Chloride Covered Au(111)Surfaces
10
作者 Wenjing Zhao Jiyin Xiao +1 位作者 Liang Ma Guangjun Tian 《Chinese Journal of Chemical Physics》 2025年第4期494-502,I0060-I0084,I0105,I0106,共36页
The adsorption properties of a magnesium porphyrin(MgP)molecule on Au(111)surface covered with up to three lay-ers of sodium chloride(NaCl)were investigated by means of first-principles calculations.The most stable ad... The adsorption properties of a magnesium porphyrin(MgP)molecule on Au(111)surface covered with up to three lay-ers of sodium chloride(NaCl)were investigated by means of first-principles calculations.The most stable adsorption configuration of MgP on the NaCl/Au(111)heterosurfaces was found to be at the Cl-top site with a 20°angle between the[110]lattice direction of NaCl and the Mg–N bond of the molecule.Compared with MgP molecule adsorbed on bare Au(111),the inclusion of NaCl lay-ers can lead to a significant decrease in the adsorption energy of the MgP molecule.The exis-tence of NaCl layers also reduced the charge transfer between the molecule and the surface.For heterosurfaces with two or three monolayers of NaCl,the charge transfer was almost com-pletely suppressed.The obtained partial density of states(PDOS)showed that hybridization between the electronic structures of the adsorbed MgP molecule and the metal surface can be significantly suppressed when NaCl layers were added.For the heterosurface with three lay-ers of NaCl,the PDOS around the Fermi level was almost identical with that of the free molecule,suggesting the electronic structure of the MgP molecule was nicely preserved.Influ-ence of the NaCl layers on the electronic structure of the MgP molecule was mainly found for molecular orbitals(MOs)away from the Fermi level as a result of the large band gap of the NaCl layers. 展开更多
关键词 Surface adsorption first-principles calculation PORPHYRIN Sodium chloride
在线阅读 下载PDF
Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
11
作者 Tianxu Zhang Kun Zhou +5 位作者 Yingjian Li Chenhao Yi Muhammad Faizan Yuhao Fu Xinjiang Wang Lijun Zhang 《Chinese Physics B》 2025年第4期212-219,共8页
Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance.However,it is the continuous advancements in first-principles c... Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance.However,it is the continuous advancements in first-principles calculations that have enabled researchers to understand the microscopic origins of thermal expansion.In this study,we propose a coefficient of thermal expansion(CTE)calculation scheme based on self-consistent phonon theory,incorporating the fourth-order anharmonicity.We selected four structures(Si,CaZrF_(6),SrTiO_(3),NaBr)to investigate high-order anharmonicity’s impact on their CTEs,based on bonding types.The results indicate that our method goes beyond the second-order quasi-harmonic approximation and the third-order perturbation theory,aligning closely with experimental data.Furthermore,we observed that an increase in the ionicity of the structures leads to a more pronounced influence of high-order anharmonicity on CTE,with this effect primarily manifesting in variations of the Grüneisen parameter.Our research provides a theoretical foundation for accurately predicting and regulating the thermal expansion behavior of materials. 展开更多
关键词 high-order anharmonicity Grüneisen parameter thermal expansion first-principles calculations
原文传递
Structure and properties of MgO melt at high pressure:A first-principles study
12
作者 Min Wu Zhongsen Sun 《Chinese Physics B》 2025年第8期255-258,共4页
MgO is one of the most abundant minerals in the Earth’s interior,and its structure and properties at high temperature and pressure are important for us to understand the composition and behavior in the deep Earth.In ... MgO is one of the most abundant minerals in the Earth’s interior,and its structure and properties at high temperature and pressure are important for us to understand the composition and behavior in the deep Earth.In the present work,firstprinciples molecular dynamics calculations were performed to investigate the pressure-induced structural evolution of the MgO melts at 4000 K and 5000 K.The results predicted the liquid-solid phase boundaries,and the calculated viscosities of the melts may help us to understand the transport behavior under the corresponding Earth conditions. 展开更多
关键词 first-principles molecular dynamics MgO melt high temperature and high pressure
原文传递
First-principles study of physical properties of L1_(2)-Al_(3)Xstructural phases for heat-resistant aluminum conductors
13
作者 Yao-jie KONG Hong-ying LI +1 位作者 Hui-jin TAO Wen-jian LIU 《Transactions of Nonferrous Metals Society of China》 2025年第2期377-391,共15页
The mechanical,thermodynamic properties and electrical conductivities of L1_(2)-Al_(3)X(X=Zr,Sc,Er,Yb,Hf)structural phases in aluminum conductors were investigated through a first-principles study.The results demonstr... The mechanical,thermodynamic properties and electrical conductivities of L1_(2)-Al_(3)X(X=Zr,Sc,Er,Yb,Hf)structural phases in aluminum conductors were investigated through a first-principles study.The results demonstrate that all structural phases have good alloy-forming ability and structural stability,where Al_(3)Zr is the most superior.Al_(3)Zr,Al_(3)Hf and Al_(3)Sc have enhanced shear and deformation resistance in comparison to other phases.Within the temperature range of 200−600 K,Al_(3)Er and Al_(3)Yb possess the greatest thermodynamic stability,followed by Al_(3)Hf,Al_(3)Zr and Al_(3)Sc.Al_(3)Er and Al_(3)Yb have higher thermodynamic stability than Al_(3)Hf,Al_(3)Zr and Al_(3)Sc.All structural phases exhibit substantial metallic properties,indicating their good electrical conductivity.The electrical conductivities of Al_(3)Hf and Al_(3)Zr are higher than those of Al_(3)Er,Al_(3)Yb and Al_(3)Sc.The covalent bond properties in Al_(3)Sc,Al_(3)Er and Al_(3)Yb enhance the hardness,brittleness and thermodynamic stability of the structural phase.The thermodynamic stability of Al_(3)Sc is significantly reduced by ionic bonds. 展开更多
关键词 aluminum conductor L1_(2)-Al_(3)X structural phase first-principles mechanical properties thermodynamic properties electrical conductivity valence bonds
在线阅读 下载PDF
First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
14
作者 Zi-Kai Zhou Jun Kang 《Chinese Physics B》 2025年第8期413-417,共5页
Control of hyperfine interaction strength of shallow donors in Si is one of the central issues in realizing Kane quantum computers.First-principles calculations on the hyperfine Stark shift of shallow donors are chall... Control of hyperfine interaction strength of shallow donors in Si is one of the central issues in realizing Kane quantum computers.First-principles calculations on the hyperfine Stark shift of shallow donors are challenging since large supercells are needed to accommodate the delocalized donor wave functions.In this work,we investigated the hyperfine Stark shift and its strain tunability for shallow donors P and As in Si using the potential patching method based on first-principles density functional theory calculations.The good agreement between our calculations and experimental results confirms that the potential patching method is a feasible and accurate first-principles approach for studying wave-function-related properties of shallow impurities,such as the Stark shift parameter.It is further shown that the application of strain expands the range of hyperfine Stark shift and helps improve the response of shallow donor based qubit gates.The results could be useful for developing quantum computing architectures based on shallow donors in Si. 展开更多
关键词 shallow donors first-principles calculations hyperfine interaction
原文传递
Prediction of the Ultraviolet Luminescence Potential of Bi_(2)SeO_(5): First-Principles Insights
15
作者 Yining Zhou Jiamin Li +3 位作者 Yutong Feng Yichen Bian Longlinsen He Chen-Min Dai 《Journal of Electronic Research and Application》 2025年第4期224-228,共5页
As a new layered semiconductor material,Bi_(2)SeO_(5) has shown potential in the field of ultraviolet electronic devices in recent years because of its unique crystal structure and wide band gap.In this paper,the crys... As a new layered semiconductor material,Bi_(2)SeO_(5) has shown potential in the field of ultraviolet electronic devices in recent years because of its unique crystal structure and wide band gap.In this paper,the crystal structure,electronic structure,and thermodynamic stability of Bi_(2)SeO_(5) are studied based on first-principles calculations.The ultraviolet luminescence property of BiSe defect is predicated from defect property,which provides theoretical basis for experimental design of high-performance Bi2SeO5 photoelectric devices. 展开更多
关键词 first-principles calculation Bi_(2)SeO_(5) Ultraviolet luminescence property
在线阅读 下载PDF
First-principles study on the electronic structure of Pb_(10−x)Cu_(x)(PO_(4))_(6)O(x=0,1) 被引量:2
16
作者 Junwen Lai Jiangxu Li +2 位作者 Peitao Liu Yan Sun Xing-Qiu Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第4期66-70,共5页
Recently,Lee et al.claimed the experimental discovery of room-temperature ambient-pressure super-conductivity in a Cu-doped lead-apatite(LK-99)(arXiv:2307.12008,arXiv:2307.12037).Remarkably,the claimed superconductivi... Recently,Lee et al.claimed the experimental discovery of room-temperature ambient-pressure super-conductivity in a Cu-doped lead-apatite(LK-99)(arXiv:2307.12008,arXiv:2307.12037).Remarkably,the claimed superconductivity can persist up to 400 K at ambient pressure.Despite the experimental im-plication,the electronic structure of LK-99 has not yet been studied.Here,we investigate the electronic structures of LK-99 and its parent compound using first-principles calculations,aiming to elucidate the doping effects of Cu.Our results reveal that the parent compound Pb_(10)(PO_(4))_(6)O is an insulator,while Cu doping induces an insulator-metal transition and thus volume contraction.The band structures of LK-99 around the Fermi level are featured by a half-filled flat band and a fully-occupied flat band.These two very flat bands arise from both the 2p orbitals of 1/4-occupied O atoms and the hybridization of the 3d orbitals of Cu with the 2p orbitals of its nearest-neighboring O atoms.Interestingly,we observe four van Hove singularities on these two flat bands.Furthermore,we show that the flat band structures can be tuned by including electronic correlation effects or by doping different elements.We find that among the considered doping elements(Ni,Cu,Zn,Ag,and Au),both Ni and Zn doping result in the gap opening,whereas Au exhibits doping effects more similar to Cu than Ag.Our work establishes a foundation for fu-ture studies to investigate the role of unique electronic structures of LK-99 in its claimed superconducting properties. 展开更多
关键词 first-principles calculations Density functional theory Electronic structur e Superconductivity Flat bands Strongly correlated electrons
原文传递
Interface structure of α-Mg/14H-LPSO:First-principles prediction and experimental study 被引量:1
17
作者 Yuan Shi Xiaohua Zhang +1 位作者 Hongyan Yue Chao Li 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第9期1792-1799,I0006,共9页
The interfacial structure of the α-Mg/14H-LPSO phase in rare earth-including magnesium alloy was investigated via high-angle annular dark-field scanning transmission electron microscopy(HAADFSTEM) imaging and first-p... The interfacial structure of the α-Mg/14H-LPSO phase in rare earth-including magnesium alloy was investigated via high-angle annular dark-field scanning transmission electron microscopy(HAADFSTEM) imaging and first-principles calculations of density-functional theory.Eleven possible interfacial models were constructed according to the different terminations of the LPSO phase,and the corresponding interfacial energies were calculated,from which the four most stable structures(Terl-MgY-hollow,Ter2-Zn-hollow,Ter3-MgYII-hollow and Ter4-Mg-bridge) were obtained.The interfacial phase diagrams related to the Y chemical potentials were obtained from the calculations,and the most stable interfacial structure was evaluated.Terl-MgY-hollow and Ter2-Zn-hollow have the lowest interfacial energies in the range of-0.7 eV <Δμγ<-0.6 eV,where fluctuating change of state is the minimized and the interface is the most stable.The separation work of the two models was calculated to predict the bonding strength of the structures at both ends of the interface.The calculation results show that the maximum interfacial separation work is 1.45 J/m^(2) for the interface model of α-Mg and 14H-LPSO phase structure with Ter2-Zn-hollow termination. 展开更多
关键词 Rare earths Magnesium alloy HAADF-STEM LPSO first-principles INTERFACE
原文传递
Unraveling magnetic properties and martensitic transformation in Mn-rich Ni-Mn-Sn alloys:first-principles calculations and experiments 被引量:1
18
作者 Yu Zhang Jing Bai +8 位作者 Ke-Liang Guo Jia-Xin Xu Jiang-Long Gu Nicola Morley Qui-Zhi Gao Yu-Dong Zhang Claude Esling Xiang Zhao Liang Zuo 《Rare Metals》 SCIE EI CAS CSCD 2024年第4期1769-1785,共17页
We have investigated the phase stability,magnetic properties,and martensitic transformation thermodynamics/kinetics of the Ni_(24-x)Mn_(18+x+y)Sn_(6-y)(x,y=0,1,2)system by combining the first-principles calculations a... We have investigated the phase stability,magnetic properties,and martensitic transformation thermodynamics/kinetics of the Ni_(24-x)Mn_(18+x+y)Sn_(6-y)(x,y=0,1,2)system by combining the first-principles calculations and experiments.The calculation results show that the optimized lattice parameters are consistent with the experimental data.Respectively,we obtain the relation equation for the austenite formation energy(E_(form-A))and Mn content(X_(Mn)):E_(form-A)=507.358X_(Mn)-274.126,as well as for the six-layer modulated(6M)martensite formation energy(E_(form-6M))and Ni content(X_(Ni)):E_(form-6M)=-728.484X_(Ni)+264.374.The ternary phase diagram of the total magnetic moment was established.The excess Mn will reduce the total magnetic moment of 6M(Mag6M)and non-modulated(NM)(MagNM)martensites,with the following equations relating the total magnetic moment and Mn content:Mag_(6M)=-15.905X_(Mn)+7.902and Mag_(NM)=-14.781X_(Mn)+7.411,while the effect on austenite is complex.The variation of total magnetic moment is mainly dominated by the Mn atomic magnetic moment.The 3d electrons of Mn_(Sn)(Mn at Sn sublattice)play an important role in magnetic properties from the perspective of the electronic density of states.Based on the thermodynamics of martensitic transformation,the alloys will likely undergo austenite?6M?NM transformation sequence.Combining the thermodynamic and kinetic results,the martensitic transformation temperature decreases with x increasing and increases with y increasing.These results are expected to provide reference for predicting the phase stability and magnetic properties of NiMn-Sn alloys. 展开更多
关键词 Ni-Mn-Sn first-principles calculations Martensitic transformation Magnetic property KINETICS
原文传递
The growth ofβphase in Mg-Gd-Y-Ni alloy by experimental and first-principles study 被引量:1
19
作者 Yiqiang Hao Lei Zhou +2 位作者 Zhiqing Chen Zhixian Zhao Bin Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期506-515,共10页
The paper reports on the atomic investigation aboutβphase in Mg_(96)Gd_(2)Y_(1)Ni_(1) alloy by using the first-principles study and the high-angle annular dark-field scanning transmission electron microscope(HAADF-ST... The paper reports on the atomic investigation aboutβphase in Mg_(96)Gd_(2)Y_(1)Ni_(1) alloy by using the first-principles study and the high-angle annular dark-field scanning transmission electron microscope(HAADF-STEM)corrected by atomic Cs.By using HAADF-STEM,the rectangularβphases were observed in the underage and peak aging stages in Mg_(96)Gd_(2)Y_(1)Ni_(1) alloy.Theβphase could be precipitated from the previously precipitatedβphase,and theβphase grew in steps when it was precipitated.A special transition structure of three atomic layer thicknesses was first observed at the edge of theβphase and the structure of this interface is probably as theβ/Mg_(1) interface for the analysis of thermodynamic characterization and electronic characterization.Theβ'phase and theβ_(H) structure were precipitated only at the edge of the length directions of theβphase.Theβ'phase continues to grow into aβphase directly without the formation ofβ_(1) phase,resulting in an increase in the length of theβphase,which is discovered for the first time. 展开更多
关键词 HAADF-STEM first-principles study Mg-Gd-Y-Ni alloy βphase GROWTH INTERFACE
在线阅读 下载PDF
Transformation of long-period stacking ordered structures in Mg-Gd-Y-Zn alloys upon synergistic characterization of first-principles calculation and experiment and its effects on mechanical properties 被引量:1
20
作者 Mingyu Li Guangzong Zhang +4 位作者 Siqi Yin Changfeng Wang Ying Fu Chenyang Gu Renguo Guan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1867-1879,共13页
Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process... Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed. 展开更多
关键词 Mg-Gd-Y-Zn alloys Long-period stacking ordered first-principles calculations ENTHALPIES Mechanical properties
在线阅读 下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部