期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effects of scanning speed on microstructure in laser surface-melted single crystal superalloy and theoretical analysis 被引量:6
1
作者 Guowei Wang Jingjing Liang +4 位作者 Yanhong Yang Yu Shi Yizhou Zhou Tao Jin Xiaofeng Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第8期1315-1324,共10页
Scanning speed is a critical parameter for laser process, which can play a key role in the microstruc- ture evolution of laser melting. In the laser melting of single crystal superalloy, the effects of scanning speed ... Scanning speed is a critical parameter for laser process, which can play a key role in the microstruc- ture evolution of laser melting. In the laser melting of single crystal superalloy, the effects of scanning speed were investigated by experimental analysis and computational simulation. The laser was scanning along [710] direction on (001) surface in different speeds. Solidification microstructures of dendrites growth direction and the primary dendritic spacing were analyzed by metallograph. Besides, a planar interface during solidification was taken into attention, Experiment results indicated that the primary dendritic spacing and thickness of planar interface decrease with the increase of speed. Through simu- lation, distribution of dendrites growth velocity and thermal gradient along dendrite growth direction were calculated, and the simulation of dendrites growth direction agreed with the experiment results. Additionally, a constant value was acquired which can be used to predict the primary dendritic spacing. Moreover, according to curve-fitting method and inequality relation, a model was proposed to predict the thickness of planar interface. 展开更多
关键词 Scanning speed Laser remelting Single crystal superalloy first dendrites spacing Planar interface
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部