期刊文献+
共找到989篇文章
< 1 2 50 >
每页显示 20 50 100
Optimizing Bucket Elevator Performance through a Blend of Discrete Element Method, Response Surface Methodology, and Firefly Algorithm Approaches
1
作者 Pirapat Arunyanart Nithitorn Kongkaew Supattarachai Sudsawat 《Computers, Materials & Continua》 SCIE EI 2024年第8期3379-3403,共25页
This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a... This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications. 展开更多
关键词 Discrete element method(DEM) design of experiments(DOE) firefly algorithm(fa) response surface methodology(RSM)
在线阅读 下载PDF
An Adaptive Firefly Algorithm for Dependent Task Scheduling in IoT-Fog Computing
2
作者 Adil Yousif 《Computer Modeling in Engineering & Sciences》 2025年第3期2869-2892,共24页
The Internet of Things(IoT)has emerged as an important future technology.IoT-Fog is a new computing paradigm that processes IoT data on servers close to the source of the data.In IoT-Fog computing,resource allocation ... The Internet of Things(IoT)has emerged as an important future technology.IoT-Fog is a new computing paradigm that processes IoT data on servers close to the source of the data.In IoT-Fog computing,resource allocation and independent task scheduling aim to deliver short response time services demanded by the IoT devices and performed by fog servers.The heterogeneity of the IoT-Fog resources and the huge amount of data that needs to be processed by the IoT-Fog tasks make scheduling fog computing tasks a challenging problem.This study proposes an Adaptive Firefly Algorithm(AFA)for dependent task scheduling in IoT-Fog computing.The proposed AFA is a modified version of the standard Firefly Algorithm(FA),considering the execution times of the submitted tasks,the impact of synchronization requirements,and the communication time between dependent tasks.As IoT-Fog computing depends mainly on distributed fog node servers that receive tasks in a dynamic manner,tackling the communications and synchronization issues between dependent tasks is becoming a challenging problem.The proposed AFA aims to address the dynamic nature of IoT-Fog computing environments.The proposed AFA mechanism considers a dynamic light absorption coefficient to control the decrease in attractiveness over iterations.The proposed AFA mechanism performance was benchmarked against the standard Firefly Algorithm(FA),Puma Optimizer(PO),Genetic Algorithm(GA),and Ant Colony Optimization(ACO)through simulations under light,typical,and heavy workload scenarios.In heavy workloads,the proposed AFA mechanism obtained the shortest average execution time,968.98 ms compared to 970.96,1352.87,1247.28,and 1773.62 of FA,PO,GA,and ACO,respectively.The simulation results demonstrate the proposed AFA’s ability to rapidly converge to optimal solutions,emphasizing its adaptability and efficiency in typical and heavy workloads. 展开更多
关键词 Fog computing SCHEDULING resource management firefly algorithm genetic algorithm ant colony optimization
在线阅读 下载PDF
Firefly Algorithm in Determining Maximum Load Utilization Point and Its Enhancement through Optimal Placement of FACTS Device
3
作者 S. Rajasekaran Dr. S. Muralidharan 《Circuits and Systems》 2016年第10期3081-3094,共15页
In a Power System, load is the most uncertain and extremely time varying unit. Hence it is important to determine the system’s supreme acceptable loadability limit called maximum loadability point to accommodate... In a Power System, load is the most uncertain and extremely time varying unit. Hence it is important to determine the system’s supreme acceptable loadability limit called maximum loadability point to accommodate the sudden variation of load demand. Nowadays the enhancement of the maximum loadability point is essential to meet the rapid growth of load demand by improvising the system’s load utilization capacity. Flexible AC Transmission system devices (FACTS) with their speed and flexibility will play a key role in enhancing the controllability and power transfer capability of the system. Considering the theme of FACTS devices in the loadability limit enhancement, in this paper maximum loadability limit determination and its enhancement are prepared with the help of swarm intelligence based meta-heuristic Firefly Algorithm(FFA) by finding the optimal loading factor for each load and optimally placing the SVC (Shunt Compensation) and TCSC (Series Compensation) FACTS devices in the system. To illuminate the effectiveness of FACTS devices in the loadability enhancement, the line contingency scenario is also concerned in the study. The study of FACTS based maximum system load utilization acceptability point determination is demonstrated with the help of modified IEEE 30 bus, IEEE 57 Bus and IEEE 118 Bus test systems. The results of FACTS devices involvement in determining the maximum loading point enhance the load utilization point in normal state and also help to overcome the system violation in transmissionline contingency state. Also the firefly algorithm in determining the maximum loadability point provides better search capability with faster convergence rate compared to that of Particle swarm optimization (PSO) and Differential evolution algorithm. 展开更多
关键词 faCTS Maximum Loadability firefly algorithm (Ffa)
在线阅读 下载PDF
Defect image segmentation using multilevel thresholding based on firefly algorithm with opposition-learning 被引量:3
4
作者 陈恺 戴敏 +2 位作者 张志胜 陈平 史金飞 《Journal of Southeast University(English Edition)》 EI CAS 2014年第4期434-438,共5页
To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is ex... To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods. 展开更多
关键词 quad flat non-lead QFN surface defects opposition-learning firefly algorithm multilevel Otsu thresholding algorithm
在线阅读 下载PDF
Rayleigh wave nonlinear inversion based on the Firefly algorithm 被引量:1
5
作者 周腾飞 彭更新 +3 位作者 胡天跃 段文胜 姚逢昌 刘依谋 《Applied Geophysics》 SCIE CSCD 2014年第2期167-178,253,共13页
Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity pro... Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity profile and stratigraphic information from Rayleigh waves. We choose the Firefly algorithm for inversion of surface waves. The Firefly algorithm, a new type of particle swarm optimization, has the advantages of being robust, highly effective, and allows global searching. This algorithm is feasible and has advantages for use in Rayleigh wave inversion with both synthetic models and field data. The results show that the Firefly algorithm, which is a robust and practical method, can achieve nonlinear inversion of surface waves with high resolution. 展开更多
关键词 Rayleigh wave NEAR-SURfaCE firefly algorithm shear velocity
在线阅读 下载PDF
Path planning in uncertain environment by using firefly algorithm 被引量:17
6
作者 B.K.Patle Anish Pandey +1 位作者 A.Jagadeesh D.R.Parhi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第6期691-701,共11页
Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mo... Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mobile robot. The paper presents application and implementation of Firefly Algorithm(FA)for Mobile Robot Navigation(MRN) in uncertain environment. The uncertainty is defined over the changing environmental condition from static to dynamic. The attraction of one firefly towards the other firefly due to variation of their brightness is the key concept of the proposed study. The proposed controller efficiently explores the environment and improves the global search in less number of iterations and hence it can be easily implemented for real time obstacle avoidance especially for dynamic environment. It solves the challenges of navigation, minimizes the computational calculations, and avoids random moving of fireflies. The performance of proposed controller is better in terms of path optimality when compared to other intelligent navigational approaches. 展开更多
关键词 Mobile robot NAVIGATION firefly algorithm PATH planning OBSTACLE AVOIDANCE
在线阅读 下载PDF
Design of a Proportional-Integral-Derivative Controller for an Automatic Generation Control of Multi-area Power Thermal Systems Using Firefly Algorithm 被引量:8
7
作者 K.Jagatheesan B.Anand +3 位作者 Sourav Samanta Nilanjan Dey Amira S.Ashour Valentina E.Balas 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期503-515,共13页
Essentially, it is significant to supply the consumer with reliable and sufficient power. Since, power quality is measured by the consistency in frequency and power flow between control areas. Thus, in a power system ... Essentially, it is significant to supply the consumer with reliable and sufficient power. Since, power quality is measured by the consistency in frequency and power flow between control areas. Thus, in a power system operation and control,automatic generation control(AGC) plays a crucial role. In this paper, multi-area(Five areas: area 1, area 2, area 3, area 4 and area 5) reheat thermal power systems are considered with proportional-integral-derivative(PID) controller as a supplementary controller. Each area in the investigated power system is equipped with appropriate governor unit, turbine with reheater unit, generator and speed regulator unit. The PID controller parameters are optimized by considering nature bio-inspired firefly algorithm(FFA). The experimental results demonstrated the comparison of the proposed system performance(FFA-PID)with optimized PID controller based genetic algorithm(GAPID) and particle swarm optimization(PSO) technique(PSOPID) for the same investigated power system. The results proved the efficiency of employing the integral time absolute error(ITAE) cost function with one percent step load perturbation(1 % SLP) in area 1. The proposed system based FFA achieved the least settling time compared to using the GA or the PSO algorithms, while, it attained good results with respect to the peak overshoot/undershoot. In addition, the FFA performance is improved with the increased number of iterations which outperformed the other optimization algorithms based controller. 展开更多
关键词 Automatic generation control(AGC) firefly algorithm GENETIC algorithm(GA) particle SWARM optimization(PSO) proportional-integral-derivative(PID) controller
在线阅读 下载PDF
基于FA-SVM优化LUR模型的汾渭平原PM_(2.5)时空格局模拟
8
作者 张平 张凤倩 +2 位作者 朱慧敏 李明垚 黄翰林 《西安工程大学学报》 2025年第3期89-101,共13页
为了准确捕捉PM_(2.5)与预测因子之间的复杂关联,以更高的分辨率和预测精度获取空间上连续的PM_(2.5)污染分布,构建区域PM_(2.5)污染预警机制。采用萤火虫算法-支持向量机(FA-SVM)对土地利用回归(LUR)模型进行优化,以1 km的空间分辨率估... 为了准确捕捉PM_(2.5)与预测因子之间的复杂关联,以更高的分辨率和预测精度获取空间上连续的PM_(2.5)污染分布,构建区域PM_(2.5)污染预警机制。采用萤火虫算法-支持向量机(FA-SVM)对土地利用回归(LUR)模型进行优化,以1 km的空间分辨率估算2019年汾渭平原的PM_(2.5)质量浓度。结果表明,与常规的LUR和SVM模型相比,FA-SVM具备更出色的预测性能。FA-SVM的十折交叉验证的决定系数高达0.90,均方根误差和平均绝对误差分别为12.29μg/m^(3)和8.99μg/m^(3)。而LUR和SVM的验证决定系数分别为0.75和0.85,均方根误差分别为19.57μg/m^(3)和14.37μg/m^(3),平均绝对误差分别为14.84μg/m^(3)和9.62μg/m^(3)。2019年汾渭平原的PM_(2.5)污染呈显著的时空异质性。在时间上,冬季PM_(2.5)污染最为严重,春、秋、夏季污染依次减弱;在空间上,经济水平相对较高的地区PM_(2.5)质量浓度较高,形成高值聚集区,而秦岭山脉地区则为低值聚集区,PM_(2.5)质量浓度呈中部高、周边低的空间格局。 展开更多
关键词 土地利用回归 萤火虫算法-支持向量机 PM_(2.5)时空特征 模型优化 汾渭平原
在线阅读 下载PDF
Opposition-Based Firefly Algorithm for Earth Slope Stability Evaluation 被引量:5
9
作者 Mohammad KHAJEHZADEH Mohd Raihan TAHA Mahdiyeh ESLAMI 《China Ocean Engineering》 SCIE EI CSCD 2014年第5期713-724,共12页
This paper introduces a new approach of firefly algorithm based on opposition-based learning (OBFA) to enhance the global search ability of the original algorithm. The new algorithm employs opposition based learning... This paper introduces a new approach of firefly algorithm based on opposition-based learning (OBFA) to enhance the global search ability of the original algorithm. The new algorithm employs opposition based learning concept to generate initial population and also updating agents’ positions. The proposed OBFA is applied for minimization of the factor of safety and search for critical failure surface in slope stability analysis. The numerical experiments demonstrate the effectiveness and robustness of the new algorithm. 展开更多
关键词 firefly algorithm opposition based learning safety factor slope stability
在线阅读 下载PDF
Enhancing Firefly Algorithm with Best Neighbor Guided Search Strategy 被引量:2
10
作者 WU Shuangke WU Zhijian PENG Hu 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2019年第6期524-536,共13页
Firefly algorithm(FA)is a recently-proposed swarm intelligence technique.It has shown good performance in solving various optimization problems.According to the standard firefly algorithm and most of its variants,a fi... Firefly algorithm(FA)is a recently-proposed swarm intelligence technique.It has shown good performance in solving various optimization problems.According to the standard firefly algorithm and most of its variants,a firefly migrates to every other brighter firefly in each iteration.However,this method leads to defects of oscillations of positions,which hampers the convergence to the optimum.To address these problems and enhance the performance of FA,we propose a new firefly algorithm,which is called the Best Neighbor Firefly Algorithm(BNFA).It employs the best neighbor guided strategy,where each firefly is attracted to the best firefly among some randomly chosen neighbors,thus reducing the firefly oscillations in every attraction-induced migration stage,while increasing the probability of the guidance a new better direction.Moreover,it selects neighbors randomly to prevent the firefly form being trapped into a local optimum.Extensive experiments are conducted to find out the optimal parameter settings.To verify the performance of BNFA,13 classical benchmark functions are tested.Results show that BNFA outperforms the standard FA and other recently proposed modified FAs. 展开更多
关键词 firefly algorithm(fa) global optimization RANDOM neighbour exploration and EXPLOITATION
原文传递
A Global Best-guided Firefly Algorithm for Engineering Problems 被引量:6
11
作者 Mohsen Zare Mojtaba Ghasemi +4 位作者 Amir Zahedi Keyvan Golalipour Soleiman Kadkhoda Mohammadi Seyedali Mirjalili Laith Abualigah 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2359-2388,共30页
The Firefly Algorithm(FA)is a highly efficient population-based optimization technique developed by mimicking the flashing behavior of fireflies when mating.This article proposes a method based on Differential Evoluti... The Firefly Algorithm(FA)is a highly efficient population-based optimization technique developed by mimicking the flashing behavior of fireflies when mating.This article proposes a method based on Differential Evolution(DE)/current-to-best/1 for enhancing the FA's movement process.The proposed modification increases the global search ability and the convergence rates while maintaining a balance between exploration and exploitation by deploying the global best solution.However,employing the best solution can lead to premature algorithm convergence,but this study handles this issue using a loop adjacent to the algorithm's main loop.Additionally,the suggested algorithm’s sensitivity to the alpha parameter is reduced compared to the original FA.The GbFA surpasses both the original and five-version of enhanced FAs in finding the optimal solution to 30 CEC2014 real parameter benchmark problems with all selected alpha values.Additionally,the CEC 2017 benchmark functions and the eight engineering optimization challenges are also utilized to evaluate GbFA’s efficacy and robustness on real-world problems against several enhanced algorithms.In all cases,GbFA provides the optimal result compared to other methods.Note that the source code of the GbFA algorithm is publicly available at https://www.optim-app.com/projects/gbfa. 展开更多
关键词 firefly algorithm New movement vector Global best-guided firefly algorithm Global optimization Engineering design
在线阅读 下载PDF
基于FA及BPNN的新能源汽车电池壳结构优化方法
12
作者 雷蕾 王文晨 《佳木斯大学学报(自然科学版)》 2025年第6期127-130,155,共5页
为了提高电动汽车的安全性,研究提出了一种基于改进的萤火虫算法和反向传播神经网络的电池壳结构优化方法。该方法通过改进萤火虫算法对神经网络参数进行优化,并结合反向传播神经网络的非线性映射能力,实现了电池壳的3D拓扑优化。实验... 为了提高电动汽车的安全性,研究提出了一种基于改进的萤火虫算法和反向传播神经网络的电池壳结构优化方法。该方法通过改进萤火虫算法对神经网络参数进行优化,并结合反向传播神经网络的非线性映射能力,实现了电池壳的3D拓扑优化。实验结果表明,改进萤火虫算法-反向传播神经网络的残差平方和与平均绝对百分比误差分别为0.03和0.45%,显著低于其他算法。优化仿真结果显示,预测与仿真结果的相对误差均在可接受的误差范围内(<±3%)。上述结果表明,研究提出的基于改进的萤火虫算法和反向传播神经网络的新能源汽车电池壳结构优化方法能实现电池壳结构的可靠优化,提高电动汽车的安全性。 展开更多
关键词 新能源汽车 电池壳结构 萤火虫算法 BPNN
在线阅读 下载PDF
融合Logistic映射的BFA算法光伏阵列重构技术
13
作者 曹雪 冯吉昊 《吉林大学学报(信息科学版)》 2025年第6期1278-1288,共11页
为减轻光伏阵列在局部阴影下的功率失配损失,提高光伏阵列的发电效率,针对全交叉连接(TCT:Total-Cross-Tied)的光伏阵列,提出了一种融合Logistic混沌映射的二进制萤火虫算法(BFA:Binary Firefly Algorithm),用于局部阴影下TCT光伏阵列... 为减轻光伏阵列在局部阴影下的功率失配损失,提高光伏阵列的发电效率,针对全交叉连接(TCT:Total-Cross-Tied)的光伏阵列,提出了一种融合Logistic混沌映射的二进制萤火虫算法(BFA:Binary Firefly Algorithm),用于局部阴影下TCT光伏阵列的动态重构。该方法仅通过调整光伏组件间的电气连接方式,使光伏阵列各行之间的辐照度达到均衡,从而减轻局部阴影对光伏阵列输出功率的影响。在Matlab/Simulink软件中搭建光伏阵列模型,将所提方法与现有静态重构方法中数独(SuDoKu)方法和动态重构中的哈里斯鹰算法(HHO:Harris Hawks Optimization)分别在短宽型(SW:Short Wide)阴影、长宽型(LW:Long Wide)阴影和随机型3种阴影模式下进行仿真分析。结果表明,BFA算法较未重构的TCT光伏阵列输出功率分别提高34.6%、26.0%和9.36%,证明所提算法在光伏阵列优化重构方面具有较强能力,并对不同阴影模式适应性较强。 展开更多
关键词 功率失配 光伏阵列 混沌映射 萤火虫算法 动态重构
在线阅读 下载PDF
Repulsive firefly algorithm-based optimal switching device placement in power distribution systems 被引量:3
14
作者 Yuanpeng Tan Hai Chen +4 位作者 Wei Liu Mingze Zhang Yinong Li Xincong Li Hanyang Lin 《Global Energy Interconnection》 2019年第6期490-496,共7页
To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of te... To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control. 展开更多
关键词 Power distribution systems Switching device Repulsive firefly algorithm Optimal placement RELIABILITY
在线阅读 下载PDF
A Hybrid Firefly Algorithm for Optimizing Fractional Proportional-Integral-Derivative Controller in Ship Steering 被引量:1
15
作者 薛晗 邵哲平 +2 位作者 潘家财 赵强 马峰 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第4期419-423,共5页
In this paper, a new algorithm which integrates the powerful firefly Mgorithm (FA) and the ant colony optimization (ACO) has been used in tracking control of ship steering for optimization of fractional-order prop... In this paper, a new algorithm which integrates the powerful firefly Mgorithm (FA) and the ant colony optimization (ACO) has been used in tracking control of ship steering for optimization of fractional-order proportional-integral-derivative (FOPID) controller gains. Particle swarm optimization (PSO) algorithm is also used to optimize FOPID controllers, and their performances are compared. It is found that FA optimized FOPID controller gives better performance than others. Sensitivity analysis has been carried out to see the robustness of optimum FOPID gains obtained at nominal conditions to wide changes in system parameters, and the optimum FOPID gains need not be reset for wide changes in system parameters. 展开更多
关键词 firefly algorithm fa fractional-order proportional-integral-derivative (FOPID) ant colony optimization (ACO) tracking control ship steering
原文传递
Optimizing Software Effort Estimation Models Using Firefly Algorithm 被引量:2
16
作者 Nazeeh Ghatasheh Hossam Faris +1 位作者 Ibrahim Aljarah Rizik M. H. Al-Sayyed 《Journal of Software Engineering and Applications》 2015年第3期133-142,共10页
Software development effort estimation is considered a fundamental task for software development life cycle as well as for managing project cost, time and quality. Therefore, accurate estimation is a substantial facto... Software development effort estimation is considered a fundamental task for software development life cycle as well as for managing project cost, time and quality. Therefore, accurate estimation is a substantial factor in projects success and reducing the risks. In recent years, software effort estimation has received a considerable amount of attention from researchers?and became a challenge for software industry. In the last two decades, many researchers and practitioners proposed statistical and machine learning-based models for software effort estimation. In this work, Firefly Algorithm is proposed as a metaheuristic optimization method for optimizing the parameters of three COCOMO-based models. These models include the basic COCOMO model and other two models proposed in the literature as extensions of the basic COCOMO model. The developed estimation models are evaluated using different evaluation metrics. Experimental results show high accuracy and significant error minimization of Firefly Algorithm over other metaheuristic optimization algorithms including Genetic Algorithms and Particle Swarm Optimization. 展开更多
关键词 SOFTWARE QUALITY EFFORT Estimation METAHEURISTIC Optimization firefly algorithm
在线阅读 下载PDF
A Novel Binary Firefly Algorithm for the Minimum Labeling Spanning Tree Problem 被引量:1
17
作者 Mugang Lin Fangju Liu +1 位作者 Huihuang Zhao Jianzhen Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期197-214,共18页
Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatoria... Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatorial optimization problem,which is widely applied in communication networks,multimodal transportation networks,and data compression.Some approximation algorithms and heuristics algorithms have been proposed for the problem.Firefly algorithm is a new meta-heuristic algorithm.Because of its simplicity and easy implementation,it has been successfully applied in various fields.However,the basic firefly algorithm is not suitable for discrete problems.To this end,a novel discrete firefly algorithm for the MLST problem is proposed in this paper.A binary operation method to update firefly positions and a local feasible handling method are introduced,which correct unfeasible solutions,eliminate redundant labels,and make the algorithm more suitable for discrete problems.Computational results show that the algorithm has good performance.The algorithm can be extended to solve other discrete optimization problems. 展开更多
关键词 Minimum labeling spanning tree problem binary firefly algorithm META-HEURISTICS discrete optimization
在线阅读 下载PDF
基于FA-EW-IPM的事故停泵水锤防护多目标研究 被引量:1
18
作者 周泊 梁兴 +2 位作者 李佳 易雨晨 胡楷淳 《水电能源科学》 北大核心 2025年第4期182-186,共5页
针对事故停泵水锤防护多目标优化问题,以无量纲最大水锤压力值、泵最小转速、单向调压塔水体积作为控制目标,以调压塔直径、初始水深、安装位置等为决策变量,建立水锤防护的多目标优化数学模型,并采用萤火虫算法(FA)求得Pareto解集,进... 针对事故停泵水锤防护多目标优化问题,以无量纲最大水锤压力值、泵最小转速、单向调压塔水体积作为控制目标,以调压塔直径、初始水深、安装位置等为决策变量,建立水锤防护的多目标优化数学模型,并采用萤火虫算法(FA)求得Pareto解集,进而利用熵权-理想点法(EW-IPM)计算获得最优防护方案。结果表明,单向调压塔宜布置于局部高点的后缘,在管道局部高点附近增设空气阀后可有效减小单向调压塔体积;单向调压塔径高比、管径比分别宜在0.23~0.29、0.10~0.14之间取值;基于EW-IPM法计算获得Pareto解中的最优方案,采用该方案进行水锤防护,不仅经济成本较低,且能较好地满足水锤防护效果,为事故停泵水锤多目标研究提供了理论支持。 展开更多
关键词 萤火虫算法 单向调压塔 多目标寻优 水锤
原文传递
基于G-FA优化的电动汽车轨迹跟踪及稳定性控制
19
作者 郑威 贺伊琳 +2 位作者 张凯 张纪纬 杜可传 《汽车技术》 北大核心 2025年第11期23-31,共9页
为了提高独立驱动智能电动汽车轨迹跟踪的精度与稳定性,提出了一种基于遗传萤火虫算法(G-FA)优化的轨迹跟踪与直接横摆力矩协同控制方法。通过构建车辆动力学模型和跟踪误差模型,采用线性二次型调节器(LQR)设计轨迹跟踪控制器,建立模糊... 为了提高独立驱动智能电动汽车轨迹跟踪的精度与稳定性,提出了一种基于遗传萤火虫算法(G-FA)优化的轨迹跟踪与直接横摆力矩协同控制方法。通过构建车辆动力学模型和跟踪误差模型,采用线性二次型调节器(LQR)设计轨迹跟踪控制器,建立模糊PID直接横摆力矩稳定性控制器;引入前馈控制并使用遗传萤火虫算法(G-FA)优化LQR控制器的关键参数,同时消除稳态误差。CarSim/Simulink联合仿真验证结果表明:相较于原始LQR控制器,该协同控制器在双移线工况与S型弯道工况下的横向误差分别下降32.14%、60.28%,航向误差分别下降26.30%、7.39%,质心侧偏角分别减小25.61%、10.34%,横摆角速度分别减小7.51%、9.49%,提高了车辆在极限工况下的跟踪精度与稳定性。 展开更多
关键词 智能汽车 轨迹跟踪 稳定性 遗传萤火虫算法 直接横摆力矩控制
在线阅读 下载PDF
Shape and Size Optimization of Truss Structures under Frequency Constraints Based on Hybrid Sine Cosine Firefly Algorithm
20
作者 Ran Tao Xiaomeng Yang +1 位作者 Huanlin Zhou Zeng Meng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期405-428,共24页
Shape and size optimization with frequency constraints is a highly nonlinear problem withmixed design variables,non-convex search space,and multiple local optima.Therefore,a hybrid sine cosine firefly algorithm(HSCFA)... Shape and size optimization with frequency constraints is a highly nonlinear problem withmixed design variables,non-convex search space,and multiple local optima.Therefore,a hybrid sine cosine firefly algorithm(HSCFA)is proposed to acquire more accurate solutions with less finite element analysis.The full attraction model of firefly algorithm(FA)is analyzed,and the factors that affect its computational efficiency and accuracy are revealed.A modified FA with simplified attraction model and adaptive parameter of sine cosine algorithm(SCA)is proposed to reduce the computational complexity and enhance the convergence rate.Then,the population is classified,and different populations are updated by modified FA and SCA respectively.Besides,the random search strategy based on Lévy flight is adopted to update the stagnant or infeasible solutions to enhance the population diversity.Elitist selection technique is applied to save the promising solutions and further improve the convergence rate.Moreover,the adaptive penalty function is employed to deal with the constraints.Finally,the performance of HSCFA is demonstrated through the numerical examples with nonstructural masses and frequency constraints.The results show that HSCFA is an efficient and competitive tool for shape and size optimization problems with frequency constraints. 展开更多
关键词 firefly algorithm sine cosine algorithm frequency constraints structural optimization
在线阅读 下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部