A forest fire is a severe threat to forest resources and human life, In this paper, we propose a forest-fire detection system that has an artificial neural network algorithm implemented in a wireless sensor network (...A forest fire is a severe threat to forest resources and human life, In this paper, we propose a forest-fire detection system that has an artificial neural network algorithm implemented in a wireless sensor network (WSN). The proposed detection system mitigates the threat of forest fires by provide accurate fire alarm with low maintenance cost. The accuracy is increased by the novel multi- criteria detection, referred to as an alarm decision depends on multiple attributes of a forest fire. The multi-criteria detection is implemented by the artificial neural network algorithm. Meanwhile, we have developed a prototype of the proposed system consisting of the solar batter module, the fire detection module and the user interface module.展开更多
Ultraviolet (UV) fire detector is used to detect fire according to the ultraviolet radiation of the flame. High detecting sensitivity of the sensor requires high ultraviolet transmission property of the detecting wi...Ultraviolet (UV) fire detector is used to detect fire according to the ultraviolet radiation of the flame. High detecting sensitivity of the sensor requires high ultraviolet transmission property of the detecting window. In this paper, high performance JGS-1 (type name of glass) ultraviolet quartz glass is used as the sensor detecting window material and the ultraviolet transmission characteristics of the glass is studied. A new method with the smart fire detecting module to test the ultraviolet transmission parameter of quartz glass is demonstrated. The comparison results of UV spectrometer and this new method manifest that JGS-1 quartz glass has good ultraviolet transmission character and the new test method with fire detecting module is direct and feasible.展开更多
In this work a review of existing fire-detector types has been carried out along with the development of a low cost, portable, and reliable microcontroller based automated fire alarm system for remotely alerting any f...In this work a review of existing fire-detector types has been carried out along with the development of a low cost, portable, and reliable microcontroller based automated fire alarm system for remotely alerting any fire incidents in household or industrial premises. The aim of the system designed is to alert the distant property-owner efficiently and quickly by sending short message (SMS) via GSM network. A Linear integrated temperature sensor detects temperature beyond preset value whereas semiconductor type sensor detects presence of smoke or gas from fire hazards. The sensor units are connected via common data line to ATMega8L AVR microcontroller. A SIM300CZ GSM kit based network module, capable of operating in standard GSM bands, has been used to send alert messages. The system is implemented on printed circuit board (PCB) and tested under different experimental conditions to evaluate its performances.展开更多
This report presents the results of experiments to evaluate a prototype fiber optic methane monitor exposed to smoke using a smoke chamber to simulate atmospheric conditions in an underground coal mine after a fire or...This report presents the results of experiments to evaluate a prototype fiber optic methane monitor exposed to smoke using a smoke chamber to simulate atmospheric conditions in an underground coal mine after a fire or explosion. The experiments were conducted using test fires of different combustible sources commonly found in mines —douglas-fir wood, SBR belt, and Pittsburgh seam coal. The experiments were designed to assess the response of the fiber optic methane sensor to different contaminants,different contaminant levels and different contaminant durations produced from the test fires. Since the prototype methane monitor detects methane by measuring absorption at a specific wavelength, optical power at the absorption wavelength(1650 nm) was measured as a function of smoke concentration and duration. The other sensor response parameter-methane response times-were measured between smoke tests to assess the impact of soot accumulation on the sensor. Results indicate that the sensor screen effectively prevented smoke from obscuring the optical beam within the sensor head, with minimal impact on the system optical power budget. Methane response times increased with smoke exposure duration, attributed to soot loading on the protective screen.展开更多
Considering the environmental protection, forest fire becomes a more and more serious problem and requires more concerns. This paper provides an efficient method for fire monitoring and detection in forests using wire...Considering the environmental protection, forest fire becomes a more and more serious problem and requires more concerns. This paper provides an efficient method for fire monitoring and detection in forests using wireless sensor network technology. The proposed technique estimates the location of a sensor node based on the current set of hop-count values, which are collected through the anchor nodes’ broadcast. Our algorithm incorporates two salient features;grid-based output and event-triggering mechanism, to improve the accuracy while reducing the power consumption. Through the computer simulation, the output region obtained from our algorithm can always cover the target node. In addition, the algorithm was implemented and tested with a set of Crossbow sensors. Experimental results demonstrated the high feasibility and worked well in real environment.展开更多
文摘A forest fire is a severe threat to forest resources and human life, In this paper, we propose a forest-fire detection system that has an artificial neural network algorithm implemented in a wireless sensor network (WSN). The proposed detection system mitigates the threat of forest fires by provide accurate fire alarm with low maintenance cost. The accuracy is increased by the novel multi- criteria detection, referred to as an alarm decision depends on multiple attributes of a forest fire. The multi-criteria detection is implemented by the artificial neural network algorithm. Meanwhile, we have developed a prototype of the proposed system consisting of the solar batter module, the fire detection module and the user interface module.
基金Supported by the National Nature Science Foundation of China (No. 60572007) and the Ministry of Education Program of China (No.20040614004)
文摘Ultraviolet (UV) fire detector is used to detect fire according to the ultraviolet radiation of the flame. High detecting sensitivity of the sensor requires high ultraviolet transmission property of the detecting window. In this paper, high performance JGS-1 (type name of glass) ultraviolet quartz glass is used as the sensor detecting window material and the ultraviolet transmission characteristics of the glass is studied. A new method with the smart fire detecting module to test the ultraviolet transmission parameter of quartz glass is demonstrated. The comparison results of UV spectrometer and this new method manifest that JGS-1 quartz glass has good ultraviolet transmission character and the new test method with fire detecting module is direct and feasible.
文摘In this work a review of existing fire-detector types has been carried out along with the development of a low cost, portable, and reliable microcontroller based automated fire alarm system for remotely alerting any fire incidents in household or industrial premises. The aim of the system designed is to alert the distant property-owner efficiently and quickly by sending short message (SMS) via GSM network. A Linear integrated temperature sensor detects temperature beyond preset value whereas semiconductor type sensor detects presence of smoke or gas from fire hazards. The sensor units are connected via common data line to ATMega8L AVR microcontroller. A SIM300CZ GSM kit based network module, capable of operating in standard GSM bands, has been used to send alert messages. The system is implemented on printed circuit board (PCB) and tested under different experimental conditions to evaluate its performances.
文摘This report presents the results of experiments to evaluate a prototype fiber optic methane monitor exposed to smoke using a smoke chamber to simulate atmospheric conditions in an underground coal mine after a fire or explosion. The experiments were conducted using test fires of different combustible sources commonly found in mines —douglas-fir wood, SBR belt, and Pittsburgh seam coal. The experiments were designed to assess the response of the fiber optic methane sensor to different contaminants,different contaminant levels and different contaminant durations produced from the test fires. Since the prototype methane monitor detects methane by measuring absorption at a specific wavelength, optical power at the absorption wavelength(1650 nm) was measured as a function of smoke concentration and duration. The other sensor response parameter-methane response times-were measured between smoke tests to assess the impact of soot accumulation on the sensor. Results indicate that the sensor screen effectively prevented smoke from obscuring the optical beam within the sensor head, with minimal impact on the system optical power budget. Methane response times increased with smoke exposure duration, attributed to soot loading on the protective screen.
文摘Considering the environmental protection, forest fire becomes a more and more serious problem and requires more concerns. This paper provides an efficient method for fire monitoring and detection in forests using wireless sensor network technology. The proposed technique estimates the location of a sensor node based on the current set of hop-count values, which are collected through the anchor nodes’ broadcast. Our algorithm incorporates two salient features;grid-based output and event-triggering mechanism, to improve the accuracy while reducing the power consumption. Through the computer simulation, the output region obtained from our algorithm can always cover the target node. In addition, the algorithm was implemented and tested with a set of Crossbow sensors. Experimental results demonstrated the high feasibility and worked well in real environment.