期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Enhancing Fire Detection with YOLO Models:A Bayesian Hyperparameter Tuning Approach
1
作者 Van-Ha Hoang Jong Weon Lee Chun-Su Park 《Computers, Materials & Continua》 2025年第6期4097-4116,共20页
Fire can cause significant damage to the environment,economy,and human lives.If fire can be detected early,the damage can be minimized.Advances in technology,particularly in computer vision powered by deep learning,ha... Fire can cause significant damage to the environment,economy,and human lives.If fire can be detected early,the damage can be minimized.Advances in technology,particularly in computer vision powered by deep learning,have enabled automated fire detection in images and videos.Several deep learning models have been developed for object detection,including applications in fire and smoke detection.This study focuses on optimizing the training hyperparameters of YOLOv8 andYOLOv10models usingBayesianTuning(BT).Experimental results on the large-scale D-Fire dataset demonstrate that this approach enhances detection performance.Specifically,the proposed approach improves the mean average precision at an Intersection over Union(IoU)threshold of 0.5(mAP50)of the YOLOv8s,YOLOv10s,YOLOv8l,and YOLOv10lmodels by 0.26,0.21,0.84,and 0.63,respectively,compared tomodels trainedwith the default hyperparameters.The performance gains are more pronounced in larger models,YOLOv8l and YOLOv10l,than in their smaller counterparts,YOLOv8s and YOLOv10s.Furthermore,YOLOv8 models consistently outperform YOLOv10,with mAP50 improvements of 0.26 for YOLOv8s over YOLOv10s and 0.65 for YOLOv8l over YOLOv10l when trained with BT.These results establish YOLOv8 as the preferred model for fire detection applications where detection performance is prioritized. 展开更多
关键词 fire detection smoke detection deep learning YOLO Bayesian hyperparameter tuning hyperparameter optimization Optuna
在线阅读 下载PDF
YOLO-LFD: A Lightweight and Fast Model for Forest Fire Detection
2
作者 Honglin Wang Yangyang Zhang Cheng Zhu 《Computers, Materials & Continua》 2025年第2期3399-3417,共19页
Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Light... Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Lightweight Fire Detector (YOLO-LFD), to address the limitations of traditional sensor-based fire detection methods in terms of real-time performance and accuracy. The proposed model is designed to enhance inference speed while maintaining high detection accuracy on resource-constrained devices such as drones and embedded systems. Firstly, we introduce Depthwise Separable Convolutions (DSConv) to reduce the complexity of the feature extraction network. Secondly, we design and implement the Lightweight Faster Implementation of Cross Stage Partial (CSP) Bottleneck with 2 Convolutions (C2f-Light) and the CSP Structure with 3 Compact Inverted Blocks (C3CIB) modules to replace the traditional C3 modules. This optimization enhances deep feature extraction and semantic information processing, thereby significantly increasing inference speed. To enhance the detection capability for small fires, the model employs a Normalized Wasserstein Distance (NWD) loss function, which effectively reduces the missed detection rate and improves the accuracy of detecting small fire sources. Experimental results demonstrate that compared to the baseline YOLOv5s model, the YOLO-LFD model not only increases inference speed by 19.3% but also significantly improves the detection accuracy for small fire targets, with only a 1.6% reduction in overall mean average precision (mAP)@0.5. Through these innovative improvements to YOLOv5s, the YOLO-LFD model achieves a balance between speed and accuracy, making it particularly suitable for real-time detection tasks on mobile and embedded devices. 展开更多
关键词 Forest fire detection YOLOv5 LIGHTWEIGHT small object detection
在线阅读 下载PDF
Fire Detection Model Based on Improved RT-DETR 被引量:1
3
作者 WU Xiao-ning SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期107-114,共8页
Fire detection has a great impact on people’s life safety.Fire Detection-DETR(FD-DETR)is a fire detection model based on RT-DETR for early fire identification in complex fire scenes.In this study,Adown sub-sampling m... Fire detection has a great impact on people’s life safety.Fire Detection-DETR(FD-DETR)is a fire detection model based on RT-DETR for early fire identification in complex fire scenes.In this study,Adown sub-sampling module was selected to improve the original convolution module,which improved the detection accuracy and reduced the number of parameter values.Using LSKA attention module on the backbone network further improved the detection accuracy.The experimental results showed that compared with the original RT-DETR model,the precision and mAP of FD-DETR flame detection are increased by 0.8%and 0.1%,respectively,which proves that the improved method proposed in this study effectively improves the feature extraction and feature fusion capabilities of the network.In the complex scene fire detection task,the performance of the improved RT-DETR algorithm is better than the original RT-DETR algorithm. 展开更多
关键词 fire detection RT-DETR Attention mechanism
在线阅读 下载PDF
A theoretical framework for improved fire suppression by linking management models with smart early fire detection and suppression technologies
4
作者 Li Meng Jim O’Hehir +2 位作者 Jing Gao Stefan Peters Anthony Hay 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期1-13,共13页
Bushfires are devastating to forest managers,owners,residents,and the natural environment.Recent tech-nological advances indicate a potential for faster response times in terms of detecting and suppressing fires.Howev... Bushfires are devastating to forest managers,owners,residents,and the natural environment.Recent tech-nological advances indicate a potential for faster response times in terms of detecting and suppressing fires.However,to date,all these technologies have been applied in isola-tion.This paper introduces the latest fire detection and sup-pression technologies from ground to space.An operations research method was used to assemble these technologies into a theoretical framework for fire detection and suppres-sion.The framework harnesses the advantages of satellite-based,drone,sensor,and human reporting technologies as well as image processing and artificial intelligence machine learning.The study concludes that,if a system is designed to maximise the use of available technologies and carefully adopts them through complementary arrangements,a fire detection and resource suppression system can achieve the ultimate aim:to reduce the risk of fire hazards and the dam-age they may cause. 展开更多
关键词 Forest fire Resource suppression Smart fire detection and suppression system Forest fire management Holistic system
在线阅读 下载PDF
Enhancing Fire Detection Performance Based on Fine-Tuned YOLOv10
5
作者 Trong Thua Huynh Hoang Thanh Nguyen Du Thang Phu 《Computers, Materials & Continua》 SCIE EI 2024年第11期2281-2298,共18页
In recent years,early detection and warning of fires have posed a significant challenge to environmental protection and human safety.Deep learning models such as Faster R-CNN(Faster Region based Convolutional Neural N... In recent years,early detection and warning of fires have posed a significant challenge to environmental protection and human safety.Deep learning models such as Faster R-CNN(Faster Region based Convolutional Neural Network),YOLO(You Only Look Once),and their variants have demonstrated superiority in quickly detecting objects from images and videos,creating new opportunities to enhance automatic and efficient fire detection.The YOLO model,especially newer versions like YOLOv10,stands out for its fast processing capability,making it suitable for low-latency applications.However,when applied to real-world datasets,the accuracy of fire prediction is still not high.This study improves the accuracy of YOLOv10 for real-time applications through model fine-tuning techniques and data augmentation.The core work of the research involves creating a diverse fire image dataset specifically suited for fire detection applications in buildings and factories,freezing the initial layers of the model to retain general features learned from the dataset by applying the Squeeze and Excitation attention mechanism and employing the Stochastic Gradient Descent(SGD)with a momentum optimization algorithm to enhance accuracy while ensuring real-time fire detection.Experimental results demonstrate the effectiveness of the proposed fire prediction approach,where the YOLOv10 small model exhibits the best balance compared to other YOLO family models such as nano,medium,and balanced.Additionally,the study provides an experimental evaluation to highlight the effectiveness of model fine-tuning compared to the YOLOv10 baseline,YOLOv8 and Faster R-CNN based on two criteria:accuracy and prediction time. 展开更多
关键词 fire detection ACCURACY prediction time fine-tuning real-time YOLOv10 Faster R-CNN
在线阅读 下载PDF
Performance Analysis of Support Vector Machine (SVM) on Challenging Datasets for Forest Fire Detection
6
作者 Ankan Kar Nirjhar Nath +1 位作者 Utpalraj Kemprai   Aman 《International Journal of Communications, Network and System Sciences》 2024年第2期11-29,共19页
This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to... This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to ecosystems and human settlements, the need for rapid and accurate detection systems is of utmost importance. SVMs, renowned for their strong classification capabilities, exhibit proficiency in recognizing patterns associated with fire within images. By training on labeled data, SVMs acquire the ability to identify distinctive attributes associated with fire, such as flames, smoke, or alterations in the visual characteristics of the forest area. The document thoroughly examines the use of SVMs, covering crucial elements like data preprocessing, feature extraction, and model training. It rigorously evaluates parameters such as accuracy, efficiency, and practical applicability. The knowledge gained from this study aids in the development of efficient forest fire detection systems, enabling prompt responses and improving disaster management. Moreover, the correlation between SVM accuracy and the difficulties presented by high-dimensional datasets is carefully investigated, demonstrated through a revealing case study. The relationship between accuracy scores and the different resolutions used for resizing the training datasets has also been discussed in this article. These comprehensive studies result in a definitive overview of the difficulties faced and the potential sectors requiring further improvement and focus. 展开更多
关键词 Support Vector Machine Challenging Datasets Forest fire detection CLASSIFICATION
在线阅读 下载PDF
Fire Detection Method Based on Depthwise Separable Convolution and YOLOv3 被引量:6
7
作者 Yue-Yan Qin Jiang-Tao Cao Xiao-Fei Ji 《International Journal of Automation and computing》 EI CSCD 2021年第2期300-310,共11页
Recently,video-based fire detection technology has become an important research topic in the field of machine vision.This paper proposes a method of combining the classification model and target detection model in dee... Recently,video-based fire detection technology has become an important research topic in the field of machine vision.This paper proposes a method of combining the classification model and target detection model in deep learning for fire detection.Firstly,the depthwise separable convolution is used to classify fire images,which saves a lot of detection time under the premise of ensuring detection accuracy.Secondly,You Only Look Once version 3(YOLOv3)target regression function is used to output the fire position information for the images whose classification result is fire,which avoids the problem that the accuracy of detection cannot be guaranteed by using YOLOv3 for target classification and position regression.At the same time,the detection time of target regression for images without fire is greatly reduced saved.The experiments were tested using a network public database.The detection accuracy reached 98%and the detection rate reached 38fps.This method not only saves the workload of manually extracting flame characteristics,reduces the calculation cost,and reduces the amount of parameters,but also improves the detection accuracy and detection rate. 展开更多
关键词 fire detection depthwise separable convolution fire classification You Only Look Once version 3(YOLOv3) target regression
原文传递
A New Fire Detection Method Using a Multi-Expert System Based on Color Dispersion, Similarity and Centroid Motion in Indoor Environment 被引量:10
8
作者 Teng Wang Leping Bu +2 位作者 Zhikai Yang Peng Yuan Jineng Ouyang 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期263-275,共13页
In this paper, a video fire detection method is proposed, which demonstrated good performance in indoor environment. Three main novel ideas have been introduced. Firstly, a flame color model in RGB and HIS color space... In this paper, a video fire detection method is proposed, which demonstrated good performance in indoor environment. Three main novel ideas have been introduced. Firstly, a flame color model in RGB and HIS color space is used to extract pre-detected regions instead of traditional motion differential method, as it’s more suitable for fire detection in indoor environment. Secondly, according to the flicker characteristic of the flame, similarity and two main values of centroid motion are proposed. At the same time, a simple but effective method for tracking the same regions in consecutive frames is established. Thirdly,a multi-expert system consisting of color component dispersion,similarity and centroid motion is established to identify flames.The proposed method has been tested on a very large dataset of fire videos acquired both in real indoor environment tests and from the Internet. The experimental results show that the proposed approach achieved a balance between the false positive rate and the false negative rate, and demonstrated a better performance in terms of overall accuracy and F standard with respect to other similar fire detection methods in indoor environment. 展开更多
关键词 Color dispersion centroid motion expert system RGB-HIS color model SIMILARITY video fire detection
在线阅读 下载PDF
Fire Detection Method Based on Improved Fruit Fly Optimization-Based SVM 被引量:5
9
作者 Fangming Bi Xuanyi Fu +3 位作者 Wei Chen Weidong Fang Xuzhi Miao Biruk Assefa 《Computers, Materials & Continua》 SCIE EI 2020年第1期199-216,共18页
Aiming at the defects of the traditional fire detection methods,which are caused by false positives and false negatives in large space buildings,a fire identification detection method based on video images is proposed... Aiming at the defects of the traditional fire detection methods,which are caused by false positives and false negatives in large space buildings,a fire identification detection method based on video images is proposed.The algorithm first uses the hybrid Gaussian background modeling method and the RGB color model to perform fire prejudgment on the video image,which can eliminate most non-fire interferences.Secondly,the traditional regional growth algorithm is improved and the fire image segmentation effect is effectively improved.Then,based on the segmented image,the dynamic and static features of the fire flame are further analyzed and extracted in the area of the suspected fire flame.Finally,the dynamic features of the extracted fire flame images were fused and classified by improved fruit fly optimization support vector machine,and the recognition results were obtained.The video-based fire detection method proposed in this paper greatly improves the accuracy of fire detection and is suitable for fire detection and identification in large space scenarios. 展开更多
关键词 fire detection image segmentation feature extraction fruit fly optimization support vector machine
在线阅读 下载PDF
Efficient Deep Learning Framework for Fire Detection in Complex Surveillance Environment 被引量:2
10
作者 Naqqash Dilshad Taimoor Khan JaeSeung Song 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期749-764,共16页
To prevent economic,social,and ecological damage,fire detection and management at an early stage are significant yet challenging.Although computationally complex networks have been developed,attention has been largely... To prevent economic,social,and ecological damage,fire detection and management at an early stage are significant yet challenging.Although computationally complex networks have been developed,attention has been largely focused on improving accuracy,rather than focusing on real-time fire detection.Hence,in this study,the authors present an efficient fire detection framework termed E-FireNet for real-time detection in a complex surveillance environment.The proposed model architecture is inspired by the VGG16 network,with significant modifications including the entire removal of Block-5 and tweaking of the convolutional layers of Block-4.This results in higher performance with a reduced number of parameters and inference time.Moreover,smaller convolutional kernels are utilized,which are particularly designed to obtain the optimal details from input images,with numerous channels to assist in feature discrimination.In E-FireNet,three steps are involved:preprocessing of collected data,detection of fires using the proposed technique,and,if there is a fire,alarms are generated and transmitted to law enforcement,healthcare,and management departments.Moreover,E-FireNet achieves 0.98 accuracy,1 precision,0.99 recall,and 0.99 F1-score.A comprehensive investigation of various Convolutional Neural Network(CNN)models is conducted using the newly created Fire Surveillance SV-Fire dataset.The empirical results and comparison of numerous parameters establish that the proposed model shows convincing performance in terms of accuracy,model size,and execution time. 展开更多
关键词 Deep learning DRONE embedded vision emergency monitoring fire classification fire detection IOT search and rescue
在线阅读 下载PDF
Sequential Pattern Technology for Visual Fire Detection 被引量:2
11
作者 Yu-Chiang Li Wei-Cheng Wu 《Journal of Electronic Science and Technology》 CAS 2012年第3期276-280,共5页
Visual fire detection technologies can detect fire and alarm warnings earlier than conventional fire detectors. This study proposes an effective visual fire detection method that combines the statistical fire color mo... Visual fire detection technologies can detect fire and alarm warnings earlier than conventional fire detectors. This study proposes an effective visual fire detection method that combines the statistical fire color model and sequential pattern mining technology to detect fire in an image. Furthermore, the proposed method also supports real-time fire detection by integrating adaptive background subtraction technologies. Experimental results show that the proposed method can effectively detect fire in test images and videos. The detection accuracy of the proposed hybrid method is better than that of Celik's method. 展开更多
关键词 Sequential pattern statistical colormodel visual fire detection.
在线阅读 下载PDF
Convolutional Neural Network Model for Fire Detection in Real-Time Environment 被引量:1
12
作者 Abdul Rehman Dongsun Kim Anand Paul 《Computers, Materials & Continua》 SCIE EI 2023年第11期2289-2307,共19页
Disasters such as conflagration,toxic smoke,harmful gas or chemical leakage,and many other catastrophes in the industrial environment caused by hazardous distance from the peril are frequent.The calamities are causing... Disasters such as conflagration,toxic smoke,harmful gas or chemical leakage,and many other catastrophes in the industrial environment caused by hazardous distance from the peril are frequent.The calamities are causing massive fiscal and human life casualties.However,Wireless Sensors Network-based adroit monitoring and early warning of these dangerous incidents will hamper fiscal and social fiasco.The authors have proposed an early fire detection system uses machine and/or deep learning algorithms.The article presents an Intelligent Industrial Monitoring System(IIMS)and introduces an Industrial Smart Social Agent(ISSA)in the Industrial SIoT(ISIoT)paradigm.The proffered ISSA empowers smart surveillance objects to communicate autonomously with other devices.Every Industrial IoT(IIoT)entity gets authorization from the ISSA to interact and work together to improve surveillance in any industrial context.The ISSA uses machine and deep learning algorithms for fire-related incident detection in the industrial environment.The authors have modeled a Convolutional Neural Network(CNN)and compared it with the four existing models named,FireNet,Deep FireNet,Deep FireNet V2,and Efficient Net for identifying the fire.To train our model,we used fire images and smoke sensor datasets.The image dataset contains fire,smoke,and no fire images.For evaluation,the proposed and existing models have been tested on the same.According to the comparative analysis,our CNN model outperforms other state-of-the-art models significantly. 展开更多
关键词 fire detection industrial surveillance system smart devices smart social agent(SSA) machine learning algorithms CNN
在线阅读 下载PDF
Forest Fire Detection Using Artificial Neural Network Algorithm Implemented in Wireless Sensor Networks 被引量:1
13
作者 Yongsheng Liu Yansong Yang +1 位作者 Chang Liu Yu Gu 《ZTE Communications》 2015年第2期12-16,共5页
A forest fire is a severe threat to forest resources and human life, In this paper, we propose a forest-fire detection system that has an artificial neural network algorithm implemented in a wireless sensor network (... A forest fire is a severe threat to forest resources and human life, In this paper, we propose a forest-fire detection system that has an artificial neural network algorithm implemented in a wireless sensor network (WSN). The proposed detection system mitigates the threat of forest fires by provide accurate fire alarm with low maintenance cost. The accuracy is increased by the novel multi- criteria detection, referred to as an alarm decision depends on multiple attributes of a forest fire. The multi-criteria detection is implemented by the artificial neural network algorithm. Meanwhile, we have developed a prototype of the proposed system consisting of the solar batter module, the fire detection module and the user interface module. 展开更多
关键词 forest fire detection artificial neural network wireless sensor network
在线阅读 下载PDF
Fusion-Based Deep Learning Model for Automated Forest Fire Detection
14
作者 Mesfer Al Duhayyim Majdy M.Eltahir +5 位作者 Ola Abdelgney Omer Ali Amani Abdulrahman Albraikan Fahd N.Al-Wesabi Anwer Mustafa Hilal Manar Ahmed Hamza Mohammed Rizwanullah 《Computers, Materials & Continua》 SCIE EI 2023年第10期1355-1371,共17页
Earth resource and environmental monitoring are essential areas that can be used to investigate the environmental conditions and natural resources supporting sustainable policy development,regulatory measures,and thei... Earth resource and environmental monitoring are essential areas that can be used to investigate the environmental conditions and natural resources supporting sustainable policy development,regulatory measures,and their implementation elevating the environment.Large-scale forest fire is considered a major harmful hazard that affects climate change and life over the globe.Therefore,the early identification of forest fires using automated tools is essential to avoid the spread of fire to a large extent.Therefore,this paper focuses on the design of automated forest fire detection using a fusion-based deep learning(AFFD-FDL)model for environmental monitoring.The AFFDFDL technique involves the design of an entropy-based fusion model for feature extraction.The combination of the handcrafted features using histogram of gradients(HOG)with deep features using SqueezeNet and Inception v3 models.Besides,an optimal extreme learning machine(ELM)based classifier is used to identify the existence of fire or not.In order to properly tune the parameters of the ELM model,the oppositional glowworm swarm optimization(OGSO)algorithm is employed and thereby improves the forest fire detection performance.A wide range of simulation analyses takes place on a benchmark dataset and the results are inspected under several aspects.The experimental results highlighted the betterment of the AFFD-FDL technique over the recent state of art techniques. 展开更多
关键词 Environment monitoring remote sensing forest fire detection deep learning machine learning fusion model
在线阅读 下载PDF
An Energy-Efficient Wireless Power Transmission-Based Forest Fire Detection System
15
作者 Arwa A.Mashat Niayesh Gharaei Aliaa M.Alabdali 《Computers, Materials & Continua》 SCIE EI 2022年第7期441-459,共19页
Compared with the traditional techniques of forest fires detection,wireless sensor network(WSN)is a very promising green technology in detecting efficiently the wildfires.However,the power constraint of sensor nodes i... Compared with the traditional techniques of forest fires detection,wireless sensor network(WSN)is a very promising green technology in detecting efficiently the wildfires.However,the power constraint of sensor nodes is one of the main design limitations of WSNs,which leads to limited operation time of nodes and late fire detection.In the past years,wireless power transfer(WPT)technology has been known as a proper solution to prolong the operation time of sensor nodes.In WPT-based mechanisms,wireless mobile chargers(WMC)are utilized to recharge the batteries of sensor nodes wirelessly.Likewise,the energy of WMC is provided using energy-harvesting or energy-scavenging techniques with employing huge,and expensive devices.However,the high price of energy-harvesting devices hinders the use of this technology in large and dense networks,as such networks require multiple WMCs to improve the quality of service to the sensor nodes.To solve this problem,multiple power banks can be employed instead of utilizing WMCs.Furthermore,the long waiting time of critical sensor nodes located outside the charging range of the energy transmitters is another limitation of the previous works.However,the sensor nodes are equipped with radio frequency(RF)technology,which allows them to exchange energy wirelessly.Consequently,critical sensor nodes located outside the charging range of the WMC can easily receive energy from neighboring nodes.Therefore,in this paper,an energy-efficient and cost-effective wireless power transmission(ECWPT)scheme is presented to improve the network lifetime and performance in forest fire detection-based systems.Simulation results exhibit that ECWPT scheme achieves improved network performance in terms of computational time(12.6%);network throughput(60.7%);data delivery ratio(20.9%);and network overhead(35%)as compared to previous related schemes.In conclusion,the proposed scheme significantly improves network energy efficiency for WSN. 展开更多
关键词 Forest fire detection rechargeable wireless sensor networks wireless mobile charger power constraint sustainable network lifetime
在线阅读 下载PDF
A Review on Mine Fire Disasters and Assessment of Fire Detection Using a Dual-Cab Suppression System
16
作者 Idongesit Bassey Utip Yulong Zhang +2 位作者 Li Ren Appiah Augustine Junfeng Wang 《Journal of Geoscience and Environment Protection》 2022年第12期29-44,共16页
The health and productivity of mining operations are negatively impacted by coal mine fires, making them dangerous. It happened everywhere, in both working and abandoned coal mines. This study seeks to review and prov... The health and productivity of mining operations are negatively impacted by coal mine fires, making them dangerous. It happened everywhere, in both working and abandoned coal mines. This study seeks to review and provide technical analytics of potential mine fires and fire detection in a Dual-Cab suppression system. Analysis was done on potential mine fires like spontaneous combustion, flammable gas explosions, and cab vehicle fires. Additionally, a review of the NIOSH experiment was conducted to assess the performance of smoke and flame detectors in a dual-cab suppression system. This study guides both open-pit and underground mining operations. Additionally, a few ideas and suggestions are presented to assist with on-the-job safety analysis, ensuing creative alterations, and technology advancement for the mining industry’s overall safety. 展开更多
关键词 Coal Spontaneous Combustion Mine fire fire detection Suppression System Dual-Cab
在线阅读 下载PDF
YOLO-SIFD:YOLO with Sliced Inference and Fractal Dimension Analysis for Improved Fire and Smoke Detection
17
作者 Mariam Ishtiaq Jong-Un Won 《Computers, Materials & Continua》 2025年第3期5343-5361,共19页
Fire detection has held stringent importance in computer vision for over half a century.The development of early fire detection strategies is pivotal to the realization of safe and smart cities,inhabitable in the futu... Fire detection has held stringent importance in computer vision for over half a century.The development of early fire detection strategies is pivotal to the realization of safe and smart cities,inhabitable in the future.However,the development of optimal fire and smoke detection models is hindered by limitations like publicly available datasets,lack of diversity,and class imbalance.In this work,we explore the possible ways forward to overcome these challenges posed by available datasets.We study the impact of a class-balanced dataset to improve the fire detection capability of state-of-the-art(SOTA)vision-based models and propose the use of generative models for data augmentation,as a future work direction.First,a comparative analysis of two prominent object detection architectures,You Only Look Once version 7(YOLOv7)and YOLOv8 has been carried out using a balanced dataset,where both models have been evaluated across various evaluation metrics including precision,recall,and mean Average Precision(mAP).The results are compared to other recent fire detection models,highlighting the superior performance and efficiency of the proposed YOLOv8 architecture as trained on our balanced dataset.Next,a fractal dimension analysis gives a deeper insight into the repetition of patterns in fire,and the effectiveness of the results has been demonstrated by a windowing-based inference approach.The proposed Slicing-Aided Hyper Inference(SAHI)improves the fire and smoke detection capability of YOLOv8 for real-life applications with a significantly improved mAP performance over a strict confidence threshold.YOLOv8 with SAHI inference gives a mAP:50-95 improvement of more than 25%compared to the base YOLOv8 model.The study also provides insights into future work direction by exploring the potential of generative models like deep convolutional generative adversarial network(DCGAN)and diffusion models like stable diffusion,for data augmentation. 展开更多
关键词 fire detection smoke detection class-balanced dataset you only look once(YOLO) slicing-aided hyper inference(SAHI) fractal dimension generative adversarial network(GAN) diffusion models
在线阅读 下载PDF
Integration of YOLOv11 and Histogram Equalization for Fire and Smoke-Based Detection of Forest and Land Fires
18
作者 Christine Dewi Melati Viaeritas Vitrieco Santoso +3 位作者 Hanna Prillysca Chernovita Evangs Mailoa Stephen Abednego Philemon Abbott Po Shun Chen 《Computers, Materials & Continua》 2025年第9期5361-5379,共19页
Early detection of Forest and Land Fires(FLF)is essential to prevent the rapid spread of fire as well as minimize environmental damage.However,accurate detection under real-world conditions,such as low light,haze,and ... Early detection of Forest and Land Fires(FLF)is essential to prevent the rapid spread of fire as well as minimize environmental damage.However,accurate detection under real-world conditions,such as low light,haze,and complex backgrounds,remains a challenge for computer vision systems.This study evaluates the impact of three image enhancement techniques—Histogram Equalization(HE),Contrast Limited Adaptive Histogram Equalization(CLAHE),and a hybrid method called DBST-LCM CLAHE—on the performance of the YOLOv11 object detection model in identifying fires and smoke.The D-Fire dataset,consisting of 21,527 annotated images captured under diverse environmental scenarios and illumination levels,was used to train and evaluate the model.Each enhancement method was applied to the dataset before training.Model performance was assessed using multiple metrics,including Precision,Recall,mean Average Precision at 50%IoU(mAP50),F1-score,and visual inspection through bounding box results.Experimental results show that all three enhancement techniques improved detection performance.HE yielded the highest mAP50 score of 0.771,along with a balanced precision of 0.784 and recall of 0.703,demonstrating strong generalization across different conditions.DBST-LCM CLAHE achieved the highest Precision score of 79%,effectively reducing false positives,particularly in scenes with dispersed smoke or complex textures.CLAHE,with slightly lower overall metrics,contributed to improved local feature detection.Each technique showed distinct advantages:HE enhanced global contrast;CLAHE improved local structure visibility;and DBST-LCM CLAHE provided an optimal balance through dynamic block sizing and local contrast preservation.These results underline the importance of selecting preprocessing methods according to detection priorities,such as minimizing false alarms or maximizing completeness.This research does not propose a new model architecture but rather benchmarks a recent lightweight detector,YOLOv11,combined with image enhancement strategies for practical deployment in FLF monitoring.The findings support the integration of preprocessing techniques to improve detection accuracy,offering a foundation for real-time FLF detection systems on edge devices or drones,particularly in regions like Indonesia. 展开更多
关键词 Histogram equalization YOLO forest and land fire detection deep learning
在线阅读 下载PDF
An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning
19
作者 Kemahyanto Exaudi Deris Stiawan +4 位作者 Bhakti Yudho Suprapto Hanif Fakhrurroja MohdYazid Idris Tami AAlghamdi Rahmat Budiarto 《Computers, Materials & Continua》 2026年第1期2062-2085,共24页
Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstruc... Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstructions,and substantial computational demands,especially in complex forest terrains.To address these challenges,this study proposes a novel forest fire detection model utilizing audio classification and machine learning.We developed an audio-based pipeline using real-world environmental sound recordings.Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network(CNN),enabling the capture of distinctive fire acoustic signatures(e.g.,crackling,roaring)that are minimally impacted by visual or weather conditions.Internet of Things(IoT)sound sensors were crucial for generating complex environmental parameters to optimize feature extraction.The CNN model achieved high performance in stratified 5-fold cross-validation(92.4%±1.6 accuracy,91.2%±1.8 F1-score)and on test data(94.93%accuracy,93.04%F1-score),with 98.44%precision and 88.32%recall,demonstrating reliability across environmental conditions.These results indicate that the audio-based approach not only improves detection reliability but also markedly reduces computational overhead compared to traditional image-based methods.The findings suggest that acoustic sensing integrated with machine learning offers a powerful,low-cost,and efficient solution for real-time forest fire monitoring in complex,dynamic environments. 展开更多
关键词 Audio classification convolutional neural network(CNN) environmental science forest fire detection machine learning spectrogram analysis IoT
在线阅读 下载PDF
Enhanced Fire Detection System for Blind and Visually Challenged People Using Artificial Intelligence with Deep Convolutional Neural Networks
20
作者 Fahd N.Al-Wesabi Hamad Almansour +1 位作者 Huda G.Iskandar Ishfaq Yaseen 《Computers, Materials & Continua》 2025年第12期5765-5787,共23页
Earlier notification and fire detection methods provide safety information and fire prevention to blind and visually impaired(BVI)individuals in a limited timeframe in the event of emergencies,particularly in enclosed... Earlier notification and fire detection methods provide safety information and fire prevention to blind and visually impaired(BVI)individuals in a limited timeframe in the event of emergencies,particularly in enclosed areas.Fire detection becomes crucial as it directly impacts human safety and the environment.While modern technology requires precise techniques for early detection to prevent damage and loss,few research has focused on artificial intelligence(AI)-based early fire alert systems for BVI individuals in indoor settings.To prevent such fire incidents,it is crucial to identify fires accurately and promptly,and alert BVI personnel using a combination of smart glasses,deep learning(DL),and computer vision(CV).The most recent technologies require effective methods to identify fires quickly,preventing damage and physical loss.In this manuscript,an Enhanced Fire Detection System for Blind and Visually Challenged People using Artificial Intelligence with Deep Convolutional Neural Networks(EFDBVC-AIDCNN)model is presented.The EFDBVC-AIDCNN model presents an advanced fire detection system that utilizes AI to detect and classify fire hazards for BVI people effectively.Initially,image pre-processing is performed using the Gabor filter(GF)model to improve texture details and patterns specific to flames and smoke.For the feature extractor,the Swin transformer(ST)model captures fine details across multiple scales to represent fire patterns accurately.Furthermore,the Elman neural network(ENN)technique is implemented to detect fire.The improved whale optimization algorithm(IWOA)is used to efficiently tune ENN parameters,improving accuracy and robustness across varying lighting and environmental conditions to optimize performance.An extensive experimental study of the EFDBVC-AIDCNN technique is accomplished under the fire detection dataset.A short comparative analysis of the EFDBVC-AIDCNN approach portrayed a superior accuracy value of 96.60%over existing models. 展开更多
关键词 fire detection swin transformer visually challenged people artificial intelligence computer vision image pre-processing
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部