期刊文献+
共找到110,370篇文章
< 1 2 250 >
每页显示 20 50 100
A Programming Method for Mean Behavior of Fourier Coefficients of Modular Forms on Sparse Sequences
1
作者 HU Yuanrui YAO Weili 《数学进展》 北大核心 2025年第4期709-724,共16页
Let f be a primitive holomorphic cusp form with even integral weight k≥2 for the full modular groupΓ=SL(2,Z)andλ_(sym^(j)f)(n)be the n-th coefficient of Dirichlet series of j-th symmetric L-function L(s,sym^(j)f)at... Let f be a primitive holomorphic cusp form with even integral weight k≥2 for the full modular groupΓ=SL(2,Z)andλ_(sym^(j)f)(n)be the n-th coefficient of Dirichlet series of j-th symmetric L-function L(s,sym^(j)f)attached to f.In this paper,we study the mean value distribution over a specific sparse sequence of positive integers of the following sum∑(a^(2)+b^(2)+c^(2)+d^(2)≤x(a,b,c,d)∈Z^(4))λ_(sym^(j))^(i)f(a^(2)+b^(2)+c^(2)+d^(2))where j≥2 is a given positive integer,i=2,3,4 andαis sufficiently large.We utilize Python programming to design algorithms for higher power conditions,combining Perron's formula,latest results of representations of natural integers as sums of squares,as well as analytic properties and subconvexity and convexity bounds of automorphic L-functions,to ensure the accuracy and verifiability of asymptotic formulas.The conclusion we obtained improves previous results and extends them to a more general settings. 展开更多
关键词 automorphic L-function holomorphic cusp form Fourier coefficient
原文传递
Field system-level calibration method for accelerometer considering nonlinear coefficients
2
作者 WU Haotian YU Ruihang +2 位作者 CAO Juliang MA Caixia YANG Bainan 《Journal of Systems Engineering and Electronics》 2025年第3期814-824,共11页
In order to get rid of the dependence on high-precision centrifuges in accelerometer nonlinear coefficients calibration,this paper proposes a system-level calibration method for field condition.Firstly,a 42-dimension ... In order to get rid of the dependence on high-precision centrifuges in accelerometer nonlinear coefficients calibration,this paper proposes a system-level calibration method for field condition.Firstly,a 42-dimension Kalman filter is constructed to reduce impact brought by turntable.Then,a biaxial rotation path is designed based on the accelerometer output model,including orthogonal 22 positions and tilt 12 positions,which enhances gravity excitation on nonlinear coefficients of accelerometer.Finally,sampling is carried out for calibration and further experiments.The results of static inertial navigation experiments lasting 4000 s show that compared with the traditional method,the proposed method reduces the position error by about 390 m. 展开更多
关键词 ACCELEROMETER nonlinear coefficient system-level calibration rotation path
在线阅读 下载PDF
Calculating Sound Absorption Coefficients of Sound-Absorbing Materials Using Flow Resistivity
3
作者 ZHU Congyun SHAO Zhenya DING Guofang 《Journal of Donghua University(English Edition)》 2025年第2期197-203,共7页
To minimize the calculation errors in the sound absorption coefficient resulting from inaccurate measurements of flow resistivity,a simple method for determining the sound absorption coefficient of soundabsorbing mate... To minimize the calculation errors in the sound absorption coefficient resulting from inaccurate measurements of flow resistivity,a simple method for determining the sound absorption coefficient of soundabsorbing materials is proposed.Firstly,the sound absorption coefficients of a fibrous sound-absorbing material are measured at two different frequencies using the impedance tube method.Secondly,utilizing the empirical formulas for the wavenumber and acoustic impedance in the fibrous material,the flow resistivity and porosity of the sound-absorbing materials are calculated using the MATLAB cycle program.Thirdly,based on the values obtained through reverse calculations,the sound absorption coefficient,the real and the imaginary parts of the acoustic impedance of the sound-absorbing material at different frequencies are theoretically computed.Finally,the accuracy of these theoretical calculations is verified through experiments.The experimental results indicate that the calculated values are basically consistent with the measured values,demonstrating the feasibility and reliability of this method. 展开更多
关键词 sound-absorbing material sound absorption coefficient flow resistivity acoustic impedance
在线阅读 下载PDF
Blow-Up Solutions in a Parabolic Equation with Variable Coefficients and Memory Boundary Flux
4
作者 ZHANG An-lei LIU Bing-chen 《Chinese Quarterly Journal of Mathematics》 2025年第1期74-81,共8页
This paper deals with a semilinear parabolic problem involving variable coefficients and nonlinear memory boundary conditions.We give the blow-up criteria for all nonnegative nontrivial solutions,which rely on the beh... This paper deals with a semilinear parabolic problem involving variable coefficients and nonlinear memory boundary conditions.We give the blow-up criteria for all nonnegative nontrivial solutions,which rely on the behavior of the coefficients when time variable tends to positive infinity.Moreover,the global existence of solutions are discussed for non-positive exponents. 展开更多
关键词 Semilinear parabolic equation Nonlinear memory boundary flux Variable coefficient BLOW-UP
在线阅读 下载PDF
Tuning the Coefficients of Thermal Expansion of the Crystallized Cordierite Glasses by Thermal Treatment Protocols
5
作者 DUAN Qiang KE Xuefei +1 位作者 QIAO Ang TAO Haizheng 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1239-1243,共5页
Focusing on the ultralow expansion functionality of the crystalized glass containing the cordierite crystal phase with the molar composition 20.7MgO·20.7Al_(2)O_(3)·51.6SiO_(2)·7.0TiO_(2),we systematica... Focusing on the ultralow expansion functionality of the crystalized glass containing the cordierite crystal phase with the molar composition 20.7MgO·20.7Al_(2)O_(3)·51.6SiO_(2)·7.0TiO_(2),we systematically investigated impacts of thermal treatment protocols on T dependence of coefficients of thermal expansion(CTE).Except for the phase compositions,morphology is identified as another important factor to control the T dependence of CTE.By using X-ray diffraction and scanning electron microscope,various modes of T dependence of CTE for crystallized glasses are ascribed to their different phase compositions and microstructure with finely dispersed nanoparticles.These understanding contributes to the further modification of CTE of the crystalized glass by altering their thermal treatment scenarios. 展开更多
关键词 coefficients of thermal expansion crystalized glass CORDIERITE thermal treatment protocols
原文传递
Peak Wind Force Coefficients of Porous Panels Mounted on the Roofs of High-Rise Buildings
6
作者 Tomoko Aihara Yasushi Uematsu 《Journal of Civil Engineering and Architecture》 2025年第6期266-278,共13页
Wind tunnel experiment and CFD(computational fluid dynamics)simulation with LES(large eddy simulation)have been conducted to investigate the characteristics of peak wind force coefficients of porous panels mounted on ... Wind tunnel experiment and CFD(computational fluid dynamics)simulation with LES(large eddy simulation)have been conducted to investigate the characteristics of peak wind force coefficients of porous panels mounted on the roofs of high-rise buildings.First,aerodynamic modelling of porous panels was discussed.The relation between pressure loss coefficient and porosity was obtained.Then,a wind tunnel experiment was conducted to measure the wind forces(net wind pressures)acting on solid and porous panels mounted on the roof of a high-rise building.Because it was difficult to measure the pressures on both sides of thin,porous panel at the same location simultaneously,we proposed to use the roof edge pressures near the panel for the panel’s inside-surface pressures.This experimental method was validated by a CFD simulation reproducing the wind tunnel experiment.The characteristics of peak wind force coefficients of porous panels mounted on the roofs of high-rise buildings were made clear.Finally,positive and negative peak wind force coefficients for designing the rooftop porous panels were proposed. 展开更多
关键词 Rooftop panel POROSITY peak wind force coefficient wind tunnel experiment CFD LES
在线阅读 下载PDF
2D Laplace–Fourier domain acoustic wave equation modeling with an optimal finite-difference method
7
作者 Wang Jing-Yu Fan Na +4 位作者 Chen Xue-Fei Zhong Shou-Rui Li Bo-Yu Li Dan Zhao Gang 《Applied Geophysics》 2025年第1期119-131,234,共14页
Laplace–Fourier(L-F)domain finite-difference(FD)forward modeling is an important foundation for L-F domain full-waveform inversion(FWI).An optimal modeling method can improve the efficiency and accuracy of FWI.A fl e... Laplace–Fourier(L-F)domain finite-difference(FD)forward modeling is an important foundation for L-F domain full-waveform inversion(FWI).An optimal modeling method can improve the efficiency and accuracy of FWI.A fl exible FD stencil,which requires pairing and centrosymmetricity of the involved gridpoints,is used on the basis of the 2D L-F domain acoustic wave equation.The L-F domain numerical dispersion analysis is then performed by minimizing the phase error of the normalized numerical phase and attenuation propagation velocities to obtain the optimization coefficients.An optimal FD forward modeling method is finally developed for the L-F domain acoustic wave equation and applied to the traditional standard 9-point scheme and 7-and 9-point schemes,where the latter two schemes are used in discontinuous-grid FD modeling.Numerical experiments show that the optimal L-F domain FD modeling method not only has high accuracy but can also be applied to equal and unequal directional sampling intervals and discontinuous-grid FD modeling to reduce computational cost. 展开更多
关键词 Laplace-Fourier domain 2D acoustic wave equation finite difference and optimization coefficients
在线阅读 下载PDF
GLOBAL WELL-POSEDNESS FOR THE 3D INCOMPRESSIBLE HEAT-CONDUCTING MAGNETOHYDRODYNAMIC FLOWS WITH TEMPERATURE-DEPENDENT COEFFICIENTS
8
作者 Qingyan LI Zhenhua GUO 《Acta Mathematica Scientia》 2025年第3期951-981,共31页
In this paper,we consider an initial boundary value problem for the nonhomo-geneous heat-conducting magnetohydrodynamic fuids when the viscosityμ,magnetic dif-fusivity v and heat conductivity k depend on the temperat... In this paper,we consider an initial boundary value problem for the nonhomo-geneous heat-conducting magnetohydrodynamic fuids when the viscosityμ,magnetic dif-fusivity v and heat conductivity k depend on the temperature according to μ(0)=°,k(0)=08,v(0)=07,withα,>0,β≥0.We prove the global existence of a unique strong solution provided that ■ is suitably small.In addition,we also get some results of the large-time behavior and exponential decay estimates. 展开更多
关键词 incompressible heat-conducting magnetohydrodynamic equations temperature-dependent coefficients strong solutions global existence exponential decay
在线阅读 下载PDF
Exact P-wave reflection and transmission coefficients for horizontal transversely isotropic media at an imperfectly welded contact interface under in-situ horizontal stress
9
作者 Xin-Peng Pan Cheng-Xu Lu +1 位作者 Hao-Wen Xu Da-Zhou Zhang 《Petroleum Science》 2025年第4期1497-1512,共16页
A comprehensive understanding of exact seismic P-wave reflection and transmission(R/T)coefficients at imperfectly welded or non-welded contact interfaces holds paramount importance in the realm of seismic exploration.... A comprehensive understanding of exact seismic P-wave reflection and transmission(R/T)coefficients at imperfectly welded or non-welded contact interfaces holds paramount importance in the realm of seismic exploration.Nonetheless,scant attention has been devoted in previous literature to the investigation of stress-dependent exact R/T coefficients in horizontal transversely isotropic(HTI)media,characterized by a horizontal symmetry axis,at such interfaces.Addressing this scholarly gap,we present exact R/T coefficient formulations specifically tailored to an imperfectly welded contact interface separating two HTI media under the influence of in-situ horizontal stress.We begin by deriving the equation of motion for a stressed HTI medium,utilizing the theoretical framework of acoustoelasticity to examine the impact of in-situ horizontal stress on the overarching elastic properties of HTI media.Precise boundary conditions are then established at the imperfectly welded contact interface by applying generalized stress-strain relationships and linear-slip theory,with the influence of in-situ horizontal stress on the interface further explored through the linear-slip model.By integrating these elements with the seismic wave displacement equation,we derive exact R/T coefficient formulations applicable to an imperfectly welded contact interface between two HTI media.Numerical analyses are conducted to elucidate the effects of in-situ horizontal stress on critical parameters such as rock density,seismic wave velocity,Thomsen-type anisotropy parameters,R/T coefficients,and seismic reflection responses at the imperfectly welded contact interface.Furthermore,the proposed formulations are frequency-dependent,with the imperfectly welded contact interface acting as a frequency-selective filter for both reflected and transmitted waves.Notably,under conditions of sufficiently large incident angles,the sensitivity of R/T coefficients to key influencing factors increases significantly.The derived R/T coefficient formulations and the accompanying numerical results offer valuable insights for fracture characterization,stress-dependent parameter inversion,and in-situ stress detection. 展开更多
关键词 Exact R/T coefficients Acoustoelasticity theory Linear-slip theory Stress-dependent parameters Frequency-dependent formulations`
原文传递
Estimation of Peak Wind Force Coefficients Acting on Domed Free Roofs Based on the Quasi-Steady Theory
10
作者 Yasushi Uematsu Wei Ding 《Journal of Civil Engineering and Architecture》 2025年第4期157-166,共10页
The present paper investigates the methods for estimating the maximum(positive)and the minimum(negative)peak wind force coefficients on domed free roofs based on the quasi-steady theory and the peak factor method,in w... The present paper investigates the methods for estimating the maximum(positive)and the minimum(negative)peak wind force coefficients on domed free roofs based on the quasi-steady theory and the peak factor method,in which the experimental results obtained from our previous studies(2019,2025)are used.Focus is on the distributions of the peak wind force coefficients along the centerline parallel to the wind direction considering that domed free roof is an axisymmetric body.Empirical formulas are provided to the distributions of mean wind force coefficient,RMS(root mean square)fluctuating wind force coefficient and peak factors as a function of the rise/span ratio of the roof and the turbulence intensity of the approach flow in the along-wind direction at the mean roof height.The proposed methods are validated by the experimental results for the peak wind force coefficients.The methods would provide useful information to structural engineers when estimating the design wind loads on cladding/components of domed free roofs. 展开更多
关键词 Domed free roof peak wind force coefficient quasi-steady theory peak factor wind tunnel experiment
在线阅读 下载PDF
Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas
11
作者 Muhammad Asif Shakoori Misbah Khan +3 位作者 Haipeng Li Aamir Shahzad Maogang He Syed Ali Raza 《Chinese Physics B》 2025年第4期457-466,共10页
We employ the Green–Kubo(G-K)and Einstein relations to estimate the self-diffusion coefficients(denoted as D_(G)and D_(E),respectively)in two-dimensional(2D)strongly coupled dusty plasmas(SC-DPs)via equilibrium molec... We employ the Green–Kubo(G-K)and Einstein relations to estimate the self-diffusion coefficients(denoted as D_(G)and D_(E),respectively)in two-dimensional(2D)strongly coupled dusty plasmas(SC-DPs)via equilibrium molecular dynamics(EMD)simulations.D_(G)and D_(E)are computed for a broad domain of screening length(κ)and coupling parameters(Γ)along with different system sizes.It is observed that both D_(G)and D_(E)decrease linearly with increasing Г in warm liquid states and increase with increasingκ.In cold liquid states,the Einstein relation accurately predicts D_(E)in 2D SC-DPs because diffusion motion is close to normal diffusion,but the G-K relation provides overestimations of D_(G),because VACF indicates anomalous diffusion;thus,D_(G)is not accurate.Our new simulation outcomes reveal that D_(G)and D_(E)remain independent of system sizes.Furthermore,our investigations demonstrate that at higher temperatures,D_(G)and D_(E)converge,suggesting diffusion motion close to normal diffusion,while at lower temperatures,these two values diverge.We find reasonable agreement by comparing current and existing numerical,theoretical and experimental data.Moreover,when normalizing diffusion coefficients by the Einstein frequency and testing against the universal temperature scaling law,D_(G)deviates from theoretical curves at low temperatures and κ,whereas D_(E)only disagrees with theory at very smallκ(■0.10).These findings provide valuable insight into diagnosing dust component parameters within 2D DP systems and contribute to the broader understanding of diffusion processes in DP environments. 展开更多
关键词 dusty(complex)plasmas self-diffusion coefficients molecular dynamics simulation Green-Kubo and Einstein relations
原文传递
Numerical Simulation and Experimental Study of the Rotor-Stator Interaction of a Turbine Under Variable Flow Coefficients
12
作者 Ran Ren Qiang Du +3 位作者 Guang Liu Zengyan Lian Lei Xie Yifu Luo 《哈尔滨工程大学学报(英文版)》 2025年第3期518-531,共14页
Clarifying the gas ingestion mechanism in the turbine disc cavity of marine gas turbines is crucial for ensuring the normal operation of turbines.However, the ingestion is influenced by factors such as the rotational ... Clarifying the gas ingestion mechanism in the turbine disc cavity of marine gas turbines is crucial for ensuring the normal operation of turbines.However, the ingestion is influenced by factors such as the rotational pumping effect, mainstream pressure asymmetry, rotor–stator interaction,and unsteady flow structures, complicating the flow. To investigate the impact of rotor–stator interaction on ingestion, this paper decouples the model to include only the mainstream. This research employs experiments and numerical simulations to examine the effects of varying the flow coefficient through changes in rotational speed and mainstream flow rate. The main objective is to understand the influence of different rotor–stator interactions on the mainstream pressure field, accompanied by mechanistic explanations. The findings reveal inconsistent effects of the two methods for changing the flow coefficient on the mainstream pressure field. Particularly, the pressure distribution on the vane side primarily depends on the mainstream flow rate, while the pressure on the blade side is influenced by the mainstream flow rate and the attack angle represented by the flow coefficient. A larger angle of attack angle can increase pressure on the blade side, even surpassing the pressure on the vane side. Assessing the degree of mainstream pressure unevenness solely based on the pressure difference on the vane side is insufficient. This research provides a basis for subsequent studies on the influence of coupled real turbine rotor–stator interaction on gas ingestion. 展开更多
关键词 Rotor–stator interaction Pressure field Flow coefficients Unsteady Reynolds-averaged Navier-Stokes modeling(URANS) Attack angle
在线阅读 下载PDF
Design of Ocean Floating Structures:Prediction of Hydrodynamic Coefficients 被引量:1
13
作者 LI Wei FAN Shaotao +1 位作者 WANG Jinxi LIU Tianhui 《南方能源建设》 2024年第6期18-32,共15页
[Introduction] Accurate calculation of the hydrodynamic coefficients for floating structures and the investigation of the flow field distribution around floating bodies on the marine free surface are essential for imp... [Introduction] Accurate calculation of the hydrodynamic coefficients for floating structures and the investigation of the flow field distribution around floating bodies on the marine free surface are essential for improving the engineering design and application of marine structures.[Method] This study utilized the computational fluid dynamics(CFD) approach and the Reynolds Averaged NavierStokes(RANS) method and considered the effects of viscosity and free surface interactions on the hydrodynamic behavior of floating structures.By employing the dynamic mesh technique,this study simulated the periodic movements of simplified three-dimensional(3D)shapes:spheres,cylinders,and cubes,which were representative of complex marine structures.The volume of fluid(VOF) method was leveraged to accurately track the nonlinear behavior of the free surface.In this analysis,the added mass and damping coefficients for the fundamental modes of motion(surge,heave,and roll) were calculated across a spectrum of frequencies,facilitating the fast determination of hydrodynamic forces and moments exerted on floating structures.[Result] The results of this study are not only consistent with the results of the 3D potential flow theory but also further reflect the role of viscosity.This method can be used for precise calculation of the hydrodynamic coefficients of floating structures and for describing the flow field of such structures in motion on a free surface.[Conclusion] The methodology presented goes beyond the traditional potential flow approach. 展开更多
关键词 Computational fluid dynamics ocean floating structures hydrodynamic coefficients fluid-structure interaction
在线阅读 下载PDF
A stable staggered-grid finite-difference scheme for acoustic modeling beyond conventional stability limit
14
作者 Jing-Yi Xu Yang Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期182-194,共13页
Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these met... Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these methods are inevitably limited by the maximum Courant-Friedrichs-Lewy(CFL)numbers,making them unstable when modeling with large time sampling intervals or small grid spacings.To solve this problem,we extend a stable SGFD scheme by controlling SGFD dispersion relations and maximizing the maximum CFL numbers.First,to improve modeling stability,we minimize the error between the FD dispersion relation and the exact relation in the given wave-number region,and make the FD dispersion approach a given function outside the given wave-number area,thus breaking the conventional limits of the maximum CFL number.Second,to obtain high modeling accuracy,we use the SGFD scheme based on the Remez algorithm to compute the FD coefficients.In addition,the hybrid absorbing boundary condition is adopted to suppress boundary reflections and we find a suitable weighting coefficient for the proposed scheme.Theoretical derivation and numerical modeling demonstrate that the proposed scheme can maintain high accuracy in the modeling process and the value of the maximum CFL number of the proposed scheme can exceed that of the conventional SGFD scheme when adopting a small maximum effective wavenumber,indicating that the proposed scheme improves stability during the modeling. 展开更多
关键词 Acoustic wave Staggered-grid finite-difference(SGFD) modeling Courant-friedrichs-lewy(CFL)number Stability
原文传递
An adaptive finite-difference method for seismic traveltime modeling based on 3D eikonal equation
15
作者 Bao-Ping Qiao Qing-Qing Li +2 位作者 Wei-Guang He Dan Zhao Qu-Bo Wu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期195-205,共11页
3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic m... 3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications. 展开更多
关键词 3D eikonal equation Accurate traveltimes Global fast sweeping 3D inhomogeneous media Adaptive finite-difference method
原文传递
ELLIPTIC EQUATIONS IN DIVERGENCE FORM WITH DISCONTINUOUS COEFFICIENTS IN DOMAINS WITH CORNERS
16
作者 Jun CHEN Xuemei DENG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1903-1915,共13页
We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across th... We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across the discontinuity surfaces and provide an example to illustrate the issue regarding the regularity at the corners. 展开更多
关键词 elliptic equations divergence form discontinuous coefficients corner regularity
在线阅读 下载PDF
Comparison of transport coefficients before and after density pump-out induced by resonant magnetic perturbation using a BOUT++ six-field model on the EAST tokamak
17
作者 邓成成 刘子奚 +22 位作者 夏天阳 刘彦君 厉鹏程 龙飞飞 高翔 王守信 李国强 刘海庆 臧庆 李玖瑛 杨康宁 吴茗甫 尹晓宇 李弘 谢锦林 兰涛 毛文哲 刘阿娣 周楚 丁卫星 庄革 刘万东 the EAST Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期111-119,共9页
Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modula... Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modulation experiment, the particle transport coefficients were calculated using the experimental data, and the result shows that the particle transport coefficients increase with RMP. In this study, the six-field two-fluid model in BOUT++ is used to simulate the transport before and after density pump-out induced by RMP,respectively referred as the case without RMP and the case with RMP. In the linear simulations,the instabilities generally decreases for cases with RMP. In the nonlinear simulation, ELM only appears in the case without RMP. Additionally, the particle transport coefficient was analyzed,and the result shows that the particle transport coefficient becomes larger for the case with RMP,which is consistent with the experimental conclusion. Moreover, its magnitude is comparable to the results calculated from experimental data. 展开更多
关键词 BOUT++ resonant magnetic perturbation(RMP) transport coefficients
在线阅读 下载PDF
Molecular Dynamics, Diffusion Coefficients and Activation Energy of the Electrolyte (Anode) in Lithium (Li and Li+), Sodium (Na and Na+) and Potassium (K and K+)
18
作者 Alain Second Dzabana Honguelet Timothée Nsongo +1 位作者 Bitho Rodongo Earvin Loumbandzila 《Modeling and Numerical Simulation of Material Science》 2024年第1期39-57,共19页
This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studi... This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied;with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship D<sub>Li</sub> > D<sub>Na</sub> > D<sub>k</sub> for the multiplicity 6*6*6, while for the activation energy the order is reversed. 展开更多
关键词 Molecular Dynamics Diffusion coefficients Activation Energy LITHIUM Alkali Metals MEAM Potential
在线阅读 下载PDF
Structured Laser Illumination Planar Imaging (SLIPI): Separating the Absorption and Scattering Coefficients Using Kubelka-Munk Relationship
19
作者 Serge Martial Adepo Jocelyne Mamaket Bosson +4 位作者 Guy-Oscar Regnima Sylvere Bienvenue Dion Thomas Koffi Michel Kouacou Abaka Thouakesseh Jérémie Zoueu 《Open Journal of Applied Sciences》 2024年第12期3441-3459,共19页
Determining the optical properties of media remains an important part of scientific research. Knowledge of these optical properties, particularly absorption and diffusion coefficients, has direct applications in biome... Determining the optical properties of media remains an important part of scientific research. Knowledge of these optical properties, particularly absorption and diffusion coefficients, has direct applications in biomedical therapeutic diagnostics. The determination of these coefficients was previously reserved for optically dilute media. Recently, a technique called Structured Laser Illumination Planar Imaging (SLIPI) has been developed for measuring extinction coefficients in dense media. For such a medium and technique, no study has reported the determination of absorption and scattering coefficients. In this study, we have developed a simple calculation method based on the combination of Kubelka-Munk relations and extinction, both functions of the medium’s absorption and diffusion coefficients. The equations thus developed enable absorption and diffusion coefficients to be easily calculated from extinction coefficient measurements alone, using the SLIPI technique. The analysis method thus developed was applied to ten (10) milk solutions of different concentrations considered to be predominantly diffusive, and to ten (10) coffee solutions of different concentrations considered to be predominantly absorbent. The coefficient values obtained have been analysed and compared to the literature ones and they would be satisfactory. 展开更多
关键词 Structured Illumination Extinction coefficient Absorption coefficient SCATTERING coefficiENT Kubelka-Munk coefficients
在线阅读 下载PDF
Establishment of Constraint Relation of Robot Dynamics Equation Based on Kinematic Influence Coefficients Method
20
作者 徐亚茹 李克鸿 +3 位作者 商新娜 金晓明 刘荣 张建成 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期450-456,共7页
Due to the diversity of work requirements and environment,the number of degrees of freedom(DOFs)and the complexity of structure of industrial robots are constantly increasing.It is difficult to establish the accurate ... Due to the diversity of work requirements and environment,the number of degrees of freedom(DOFs)and the complexity of structure of industrial robots are constantly increasing.It is difficult to establish the accurate dynamical model of industrial robots,which greatly hinders the realization of a stable,fast and accurate trajectory tracking control.Therefore,the general expression of the constraint relation in the explicit dynamic equation of the multi-DOF industrial robot is derived on the basis of solving the Jacobian matrix and Hessian matrix by using the kinematic influence coefficients method.Moreover,an explicit dynamic equation with general constraint relation expression is established based on the Udwadia-Kalaba theory.The problem of increasing the time of establishing constraint relationship when the multi-DOF industrial robots complete complex task constraints is solved.With the SCARA robot as the research object,the simulation results show that the proposed method can provide a new idea for industrial robot system modeling with complex constraints. 展开更多
关键词 industrial robot constraint relationship kinematic influence coefficients method Jacobian matrix Hessian matrix
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部