期刊文献+
共找到11,204篇文章
< 1 2 250 >
每页显示 20 50 100
An Optimal Spatial Finite-Difference Operator which ReducesTruncation Error to a Minimum 被引量:1
1
作者 王 元 伍荣生 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第3期468-486,共19页
Highly accurate spatial discretization is essentially required to perform numerical climate and weather prediction. The difference between the differential and the finite-difference operator is however a primitive err... Highly accurate spatial discretization is essentially required to perform numerical climate and weather prediction. The difference between the differential and the finite-difference operator is however a primitive error source in the numerics. This paper presents an optimization of centered finite-difference operator based on the principle of constrained cost function, which can reduce the truncation error to minimum. In the optimization point of view, such optimal operator is in fact an attempt to minimize spatial truncation er-rors in atmospheric modeling, in a simple way and indeed a quite innovative way to implement Variational Continuous Assimilation (VCA) technique. Furthermore, the optimizing difference operator is consciously designed to be meshing-independent, so that it can be used for most Arakawa-mesh configurations, such as un-staggered (Arakawa-A) or com-monly staggered (Arakawa-B, Arakawa-C, Arakawa-D) mesh. But for the calibration purpose, the pro-posed operator is implemented on an un-staggered mesh in which the truncation oscillation is mostly ex-cited, and it thus makes a severe and indeed a benchmark test for the proposed optimal scheme. Both theo-retical investigation and practical modeling indicate that the aforementioned numerical noise can be significantly eliminated. 展开更多
关键词 finite—difference operator Truncation error OPTIMIZATION
在线阅读 下载PDF
Source wavefield reconstruction based on an implicit staggered-grid finite-difference operator for seismic imaging 被引量:2
2
作者 Zhi-Ming Ren Xue Dai Qian-Zong Bao 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2095-2106,共12页
Reverse time migration and full waveform inversion involve the crosscorrelation of two wavefields,propagated in the forward-and reverse-time directions,respectively.As a result,the forward-propagated wavefield needs t... Reverse time migration and full waveform inversion involve the crosscorrelation of two wavefields,propagated in the forward-and reverse-time directions,respectively.As a result,the forward-propagated wavefield needs to be stored,and then accessed to compute the correlation with the backward-propagated wavefield.Boundary-value methods reconstruct the source wavefield using saved boundary wavefields and can significantly reduce the storage requirements.However,the existing boundary-value methods are based on the explicit finite-difference(FD)approximations of the spatial derivatives.Implicit FD methods exhibit greater accuracy and thus allow for a smaller operator length.We develop two(an accuracy-preserving and a memory-efficient)wavefield reconstruction schemes based on an implicit staggered-grid FD(SFD)operator.The former uses boundary wavefields at M layers of grid points and the spatial derivatives of wavefields at one layer of grid points to reconstruct the source wavefield for a(2M+2)th-order implicit SFD operator.The latter applies boundary wavefields at N layers of grid points,a linear combination of wavefields at M–N layers of grid points,and the spatial derivatives of wavefields at one layer of grid points to reconstruct the source wavefield(0≤N<M).The required memory of accuracy-preserving and memory-efficient schemes is(M+1)/M and(N+2)/M times,respectively,that of the explicit reconstruction scheme.Numerical results reveal that the accuracy-preserving scheme can achieve accurate reconstruction at the cost of storage.The memory-efficient scheme with N=2 can obtain plausible reconstructed wavefields and images,and the storage amount is 4/(M+1)of the accuracy-preserving scheme. 展开更多
关键词 finite difference Reverse time migration Source wavefield reconstruction IMPLICIT Staggered grid
原文传递
Optimization of the seismic processing phase-shift plus finite-difference migration operator based on a hybrid genetic and simulated annealing algorithm 被引量:2
3
作者 Luo Renze Huang Yuanyi +2 位作者 Liang Xianghao Luo Jun Cao Ying 《Petroleum Science》 SCIE CAS CSCD 2013年第2期190-194,共5页
Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome... Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation. 展开更多
关键词 Migration operator phase-shift plus finite-difference hybrid algorithm genetic andsimulated annealing algorithm optimization coefficient
原文传递
THE UPWIND OPERATOR SPLITTING FINITE DIFFERENCE METHOD FOR COMPRESSIBLE TWO-PHASE DISPLACEMENT PROBLEM AND ANALYSIS
4
作者 袁益让 《Acta Mathematica Scientia》 SCIE CSCD 2002年第4期489-499,共11页
For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation r... For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L 2 norm are derived to determine the error, in the approximate solution. 展开更多
关键词 two-phase displacement two-dimensional compressibility upwind operator splitting finite difference schemes convergence analysis
在线阅读 下载PDF
Finite Difference-Peridynamic Differential Operator for Solving Transient Heat Conduction Problems
5
作者 Chunlei Ruan Cengceng Dong +2 位作者 Zeyue Zhang Boyu Chen Zhijun Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2707-2728,共22页
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t... Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions. 展开更多
关键词 Peridynamic differential operator finite difference method STABILITY transient heat conduction problem
在线阅读 下载PDF
Spectrum of a Class of Difference Operators with Indefinite Weights
6
作者 Congmin Yang Yunlan Gao Kang Sun 《Journal of Applied Mathematics and Physics》 2020年第4期727-736,共10页
In this study, we use analytical methods and Sylvester inertia theorem to research a class of second order difference operators with indefinite weights and coupled boundary conditions. The eigenvalue problem with sign... In this study, we use analytical methods and Sylvester inertia theorem to research a class of second order difference operators with indefinite weights and coupled boundary conditions. The eigenvalue problem with sign-changing weight has lasted a long time. The number of eigenvalues and the number of sign changes of the corresponding eigenfunctions of discrete equations under different boundary conditions are mainly studied. For the discrete Sturm-Liouville problems, similar conclusions about the properties of eigenvalues and the number of sign changes of the corresponding eigenfunctions are obtained under different boundary conditions, such as periodic boundary conditions, antiperiodic boundary conditions and separated boundary conditions etc. The purpose of this paper is to extend the similar conclusion to the coupled boundary conditions, which is of great significance to the perfection of the theory of the discrete Sturm-Liouville problems. We came to the following conclusions: first, the eigenvalues of the problem are real and single, the number of the positive eigenvalues is equal to the number of positive elements in the weight function, and the number of negative eigenvalues is equal to the number of negative elements in the weight function. Second, under some conditions, we obtain the sign change of the eigenfunction corresponding to the j-th positive/negative eigenvalue. 展开更多
关键词 SPECTRUM difference operator Coupled BOUNDARY Conditions INDEfinite WEIGHT
在线阅读 下载PDF
A Fast Algorithm for Solving the Poisson Equations Based on the Discrete Cosine/Sine Transforms in the Finite Difference Method
7
作者 LI Congcong WANG Danxia +1 位作者 JIA Hongen ZHANG Chenhui 《应用数学》 北大核心 2025年第3期651-669,共19页
To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical c... To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%. 展开更多
关键词 Phase-field model finite difference method Fast Poisson solver(DC-T/DST) Explicit invariant energy quadratization Unconditional energy stability
在线阅读 下载PDF
Effect of joint coalescence coefficient on rock bridge formation of slope based on finite difference method
8
作者 Su LI Yi TANG Hang LIN 《Transactions of Nonferrous Metals Society of China》 2025年第10期3455-3467,共13页
A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficien... A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficients(k)are constructed based on FDM.The rock bridge area was divided through k-means algorithm and the optimal number of clusters was determined by sum of squared errors(SSE)and elbow method.The influence of maximum principal stress and stress change rate as clustering indexes on the clustering results of rock bridges was compared by using Euclidean distance.The results show that using stress change rate as clustering index is more effective.When the joint coalescence coefficient is less than 0.6,there is no significant stress concentration in the middle area of adjacent joints,that is,no generation of rock bridge.In addition,the range of rock bridge is affected by the coalescence coefficient(k),the relative position of joints and the parameters of weak interlayer. 展开更多
关键词 SLOPE rock bridge finite difference method k-means algorithm
在线阅读 下载PDF
ASYMPTOTICS OF LARGE DEVIATIONS OF FINITE DIFFERENCE METHOD FOR STOCHASTIC CAHN-HILLIARD EQUATION
9
作者 Diancong JIN Derui SHENG 《Acta Mathematica Scientia》 2025年第3期1078-1106,共29页
In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving th... In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving the convergence of the one-point large deviations rate function (LDRF) of the spatial FDM, which is about the asymptotical limit of a parametric variational problem. The main idea for proving the convergence of the LDRF of the spatial FDM is via the Γ-convergence of objective functions. This relies on the qualitative analysis of skeleton equations of the original equation and the numerical method. In order to overcome the difficulty that the drift coefficient is not one-sided Lipschitz continuous, we derive the equivalent characterization of the skeleton equation of the spatial FDM and the discrete interpolation inequality to obtain the uniform boundedness of the solution to the underlying skeleton equation. These play important roles in deriving the T-convergence of objective functions. 展开更多
关键词 large deviations rate function finite difference method convergence analysis F-convergence stochastic Cahn-Hilliard equation
在线阅读 下载PDF
Unravelling Temperature Profile through Bifacial PV Modules via Finite Difference Method:Effects of Heat Internal Generation Due to Spectral Absorption
10
作者 Khadija Ibaararen Mhammed Zaimi +1 位作者 Khadija El Ainaoui El Mahdi Assaid 《Energy Engineering》 2025年第9期3487-3505,共19页
This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal h... This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal heat generation resulting from optical absorption,grounded in the physical equations governing light-matter interactions within the module’smultilayer structure.The model accounts for reflection and transmission at each interface between adjacent layers,as well as absorption within individual layers,using the wavelength-dependent dielectric properties of constituent materials.These properties are used to calculate the spectral reflectance,transmittance,and absorption coefficients,enabling precise quantification of internal heat sources from irradiance incidents on both the front and rear surfaces of the module.The study further examines the influence of irradiance reflection on thermal behavior,evaluates the thermal impact of various supporting materials placed beneath the module,and analyzes the role of albedo in modifying heat distribution.By incorporating spectrally resolved heat generation across each layer often simplified or omitted in conventional models,the proposed approach enhances physical accuracy.The transient heat equation is solved using a one-dimensional finite difference(FD)method to produce detailed temperature profiles under multiple operating scenarios,including Standard Test Conditions(STC),Bifacial Standard Test Conditions(BSTC),Normal Operating Cell Temperature(NOCT),and Bifacial NOCT(BNOCT).The results offer valuable insights into the interplay between optical and thermal phenomena in bifacial systems,informing the design and optimization of more efficient photovoltaic technologies. 展开更多
关键词 Bifacial photovoltaic(bPV) solarmodule heat transfer optical absorption temperature profile ALBEDO finite difference method
在线阅读 下载PDF
2D Laplace–Fourier domain acoustic wave equation modeling with an optimal finite-difference method
11
作者 Wang Jing-Yu Fan Na +4 位作者 Chen Xue-Fei Zhong Shou-Rui Li Bo-Yu Li Dan Zhao Gang 《Applied Geophysics》 2025年第1期119-131,234,共14页
Laplace–Fourier(L-F)domain finite-difference(FD)forward modeling is an important foundation for L-F domain full-waveform inversion(FWI).An optimal modeling method can improve the efficiency and accuracy of FWI.A fl e... Laplace–Fourier(L-F)domain finite-difference(FD)forward modeling is an important foundation for L-F domain full-waveform inversion(FWI).An optimal modeling method can improve the efficiency and accuracy of FWI.A fl exible FD stencil,which requires pairing and centrosymmetricity of the involved gridpoints,is used on the basis of the 2D L-F domain acoustic wave equation.The L-F domain numerical dispersion analysis is then performed by minimizing the phase error of the normalized numerical phase and attenuation propagation velocities to obtain the optimization coefficients.An optimal FD forward modeling method is finally developed for the L-F domain acoustic wave equation and applied to the traditional standard 9-point scheme and 7-and 9-point schemes,where the latter two schemes are used in discontinuous-grid FD modeling.Numerical experiments show that the optimal L-F domain FD modeling method not only has high accuracy but can also be applied to equal and unequal directional sampling intervals and discontinuous-grid FD modeling to reduce computational cost. 展开更多
关键词 Laplace-Fourier domain 2D acoustic wave equation finite difference and optimization coefficients
在线阅读 下载PDF
FINITE ELEMENT APPROXIMATION OF AN INTEGRO-DIFFERENTIAL OPERATOR 被引量:3
12
作者 丁夏畦 罗佩珠 《Acta Mathematica Scientia》 SCIE CSCD 2009年第6期1767-1776,共10页
This paper deals with the finite element approximation of an integro-differential equation related with Riemann zeta-function.
关键词 finite element integro-differential operator Riemann zeta-function
在线阅读 下载PDF
Post-stack reverse-time migration using a finite difference method based on triangular grids 被引量:4
13
作者 郭书娟 李振春 +3 位作者 孙小东 叶月明 滕厚华 李芳 《Applied Geophysics》 SCIE CSCD 2008年第2期115-120,共6页
Compared with other migration methods, reverse-time migration is based on a precise wave equation, not an approximation, and performs extrapolation in the depth domain rather than the time domain. It is highly accurat... Compared with other migration methods, reverse-time migration is based on a precise wave equation, not an approximation, and performs extrapolation in the depth domain rather than the time domain. It is highly accurate and not affected by strong subsurface structure complexity and horizontal velocity variations. The difference method based on triangular grids maintains the simplicity of the difference method and the precision of the finite element method. It can be used directly for forward modeling on models with complex top surfaces and migration without statics preprocessing. We apply a finite difference method based on triangular grids for post-stack reverse-time migration for the first time. Tests on model data verify that the combination of the two methods can achieve near-perfect results in application. 展开更多
关键词 reverse-time migration structural complexity triangular grids finite difference
在线阅读 下载PDF
Finite Dimensional Approximation of the Monodromy Operator of a Periodic Delay Differential Equation with Piecewise Constant Orthonormal Functions
14
作者 Eli A. Vazquez Joaquin Collado 《Applied Mathematics》 2018年第11期1315-1337,共23页
Using piecewise constant orthonormal functions, an approximation of the monodromy operator of a Linear Periodic Delay Differential Equation (PDDE) is obtained by approximating the integral equation corresponding to th... Using piecewise constant orthonormal functions, an approximation of the monodromy operator of a Linear Periodic Delay Differential Equation (PDDE) is obtained by approximating the integral equation corresponding to the PDDE as a linear operator over the space of initial conditions. This approximation allows us to consider the state space as finite dimensional resulting in a finite matrix approximation whose spectrum converges to the spectrum of the monodromy operator. 展开更多
关键词 MONODROMY operator PERIODIC Delay differential Equations WALSH FUNCTIONS Block Pulse FUNCTIONS finite Rank Approximation
在线阅读 下载PDF
Solution of Helmholtz Equation Using Finite Differences Method in Wires Have Different Properties along X-Axis
15
作者 Ayse Nihan Basmaci Filiz 《Journal of Electrical Engineering》 2018年第4期206-211,共6页
In this paper, frequencies of electromagnetic wave in a conductive wire are investigated theoretically. The conductive wire has specific variable material properties along the length of itself. Furthermore, material p... In this paper, frequencies of electromagnetic wave in a conductive wire are investigated theoretically. The conductive wire has specific variable material properties along the length of itself. Furthermore, material properties varying along the length of the wire are determined according to a specific mathematical function. In addition, the central finite difference method is applied to the Maxwell equations. The accuracy of the mode 1 frequency parameter is obtained to be 0.06%. This result can be obtained by assuming the number of conductive wire nodes 20. The obtained results show a very good agreement with the exact solution results. 展开更多
关键词 finite differences method Helmholtz equation Electromagnetic wave.
在线阅读 下载PDF
Viscoacoustic prestack reverse time migration based onthe optimal time-space domain high-order finite-difference method 被引量:6
16
作者 赵岩 刘洋 任志明 《Applied Geophysics》 SCIE CSCD 2014年第1期50-62,116,共14页
Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of t... Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of the steps of RTM is solving thewave equation and extrapolating the wave field forward and backward; therefore, solvingaccurately and efficiently the wave equation affects the imaging results and the efficiencyof RTM. In this study, we use the optimal time-space domain dispersion high-order finite-difference (FD) method to solve the viscoacoustic wave equation. Dispersion analysis andnumerical simulations show that the optimal time-space domain FD method is more accurateand suppresses the numerical dispersion. We use hybrid absorbing boundary conditions tohandle the boundary reflection. We also use source-normalized cross-correlation imagingconditions for migration and apply Laplace filtering to remove the low-frequency noise.Numerical modeling suggests that the viscoacoustic wave equation RTM has higher imagingresolution than the acoustic wave equation RTM when the viscosity of the subsurface isconsidered. In addition, for the wave field extrapolation, we use the adaptive variable-lengthFD operator to calculate the spatial derivatives and improve the computational efficiencywithout compromising the accuracy of the numerical solution. 展开更多
关键词 REVERSE time migration Viscoacoustic Optimization Adaptive Time-spacedomain finite-difference
在线阅读 下载PDF
Finite-difference calculation of traveltimes based on rectangular grid 被引量:12
17
作者 李振春 刘玉莲 +2 位作者 张建磊 马在田 王华忠 《地震学报》 CSCD 北大核心 2004年第6期644-650,共7页
To the most of velocity fields, the traveltimes of the first break that seismic waves propagate along rays can be computed on a 2-D or 3-D numerical grid by finite-difference extrapolation. Under ensuring accuracy, to... To the most of velocity fields, the traveltimes of the first break that seismic waves propagate along rays can be computed on a 2-D or 3-D numerical grid by finite-difference extrapolation. Under ensuring accuracy, to improve calculating efficiency and adaptability, the calculation method of first-arrival traveltime of finite-difference is de- rived based on any rectangular grid and a local plane wavefront approximation. In addition, head waves and scat- tering waves are properly treated and shadow and caustic zones cannot be encountered, which appear in traditional ray-tracing. The testes of two simple models and the complex Marmousi model show that the method has higher accuracy and adaptability to complex structure with strong vertical and lateral velocity variation, and Kirchhoff prestack depth migration based on this method can basically achieve the position imaging effects of wave equation prestack depth migration in major structures and targets. Because of not taking account of the later arrivals energy, the effect of its amplitude preservation is worse than that by wave equation method, but its computing efficiency is higher than that by total Green′s function method and wave equation method. 展开更多
关键词 有限差分 程函方程 初至走时 矩形网格 Kirchhoff法叠前深度偏移 MARMOUSI模型
在线阅读 下载PDF
Full-Wave Analysis of Slotline Using Time-Domain Finite-Difference Method
18
作者 李媛 罗贺琴 言华 《Transactions of Tianjin University》 EI CAS 2002年第1期43-47,共5页
The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduct... The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduction in computer memory requirements and computational time. The computational domain is greatly reduced to enable performance in personal computer. At the same time because edges of a boundary and summits are treated well, the computational results is more accurate and more collector. 展开更多
关键词 time domain finite difference SLOTLINE modified dispersive boundary condition
在线阅读 下载PDF
Stability of Difference Systems with Finite Delay
19
作者 吴述金 张书年 《Chinese Quarterly Journal of Mathematics》 CSCD 2001年第4期1-6,共6页
In this paper, the authors establish some theorems that can ascertain the zero solutions of systemsx(n+1)=f(n,x n)(1)are uniformly stable,asymptotically stable or uniformly asymptotically stable. In the obtained theo... In this paper, the authors establish some theorems that can ascertain the zero solutions of systemsx(n+1)=f(n,x n)(1)are uniformly stable,asymptotically stable or uniformly asymptotically stable. In the obtained theorems, ΔV is not required to be always negative, where ΔV(n,x n)≡V(n+1,x(n+1)) -V(n,x(n))=V(n+1,f(n,x n))-V(n,x(n)), especially, in Theorem 1, ΔV may be even positive, which greatly improve the known results and are more convenient to use. 展开更多
关键词 difference systems with finite delay uniform stability asymptotic stability uniformly asymptotic stability
在线阅读 下载PDF
Dynamic Analysis of Contact Bounce of Aerospace Relay Based on Finite Difference Method 被引量:4
20
作者 熊军 何俊佳 臧春艳 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第3期262-267,共6页
Contact bounce of relay, which is the main cause of electric abrasion and material erosion, is inevitable. By using the mode expansion form, the dynamic behavior of two different reed systems for aerospace relays is a... Contact bounce of relay, which is the main cause of electric abrasion and material erosion, is inevitable. By using the mode expansion form, the dynamic behavior of two different reed systems for aerospace relays is analyzed. The dynamic model uses Euler-Bernoulli beam theory for cantilever beam, in which the driving force (or driving moment) of the electromagnetic system is taken into account, and the contact force between moving contact and stationary contact is simulated by the Kelvin-Voigt vis-coelastic... 展开更多
关键词 aerospace relay dynamic analysis finite difference method contact bounce reed system
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部