期刊文献+
共找到11,140篇文章
< 1 2 250 >
每页显示 20 50 100
Finite Difference-Peridynamic Differential Operator for Solving Transient Heat Conduction Problems
1
作者 Chunlei Ruan Cengceng Dong +2 位作者 Zeyue Zhang Boyu Chen Zhijun Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2707-2728,共22页
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t... Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions. 展开更多
关键词 Peridynamic differential operator finite difference method STABILITY transient heat conduction problem
在线阅读 下载PDF
A Fast Algorithm for Solving the Poisson Equations Based on the Discrete Cosine/Sine Transforms in the Finite Difference Method
2
作者 LI Congcong WANG Danxia +1 位作者 JIA Hongen ZHANG Chenhui 《应用数学》 北大核心 2025年第3期651-669,共19页
To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical c... To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%. 展开更多
关键词 Phase-field model finite difference method Fast Poisson solver(DC-T/DST) Explicit invariant energy quadratization Unconditional energy stability
在线阅读 下载PDF
Effect of joint coalescence coefficient on rock bridge formation of slope based on finite difference method
3
作者 Su LI Yi TANG Hang LIN 《Transactions of Nonferrous Metals Society of China》 2025年第10期3455-3467,共13页
A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficien... A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficients(k)are constructed based on FDM.The rock bridge area was divided through k-means algorithm and the optimal number of clusters was determined by sum of squared errors(SSE)and elbow method.The influence of maximum principal stress and stress change rate as clustering indexes on the clustering results of rock bridges was compared by using Euclidean distance.The results show that using stress change rate as clustering index is more effective.When the joint coalescence coefficient is less than 0.6,there is no significant stress concentration in the middle area of adjacent joints,that is,no generation of rock bridge.In addition,the range of rock bridge is affected by the coalescence coefficient(k),the relative position of joints and the parameters of weak interlayer. 展开更多
关键词 SLOPE rock bridge finite difference method k-means algorithm
在线阅读 下载PDF
ASYMPTOTICS OF LARGE DEVIATIONS OF FINITE DIFFERENCE METHOD FOR STOCHASTIC CAHN-HILLIARD EQUATION
4
作者 Diancong JIN Derui SHENG 《Acta Mathematica Scientia》 2025年第3期1078-1106,共29页
In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving th... In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving the convergence of the one-point large deviations rate function (LDRF) of the spatial FDM, which is about the asymptotical limit of a parametric variational problem. The main idea for proving the convergence of the LDRF of the spatial FDM is via the Γ-convergence of objective functions. This relies on the qualitative analysis of skeleton equations of the original equation and the numerical method. In order to overcome the difficulty that the drift coefficient is not one-sided Lipschitz continuous, we derive the equivalent characterization of the skeleton equation of the spatial FDM and the discrete interpolation inequality to obtain the uniform boundedness of the solution to the underlying skeleton equation. These play important roles in deriving the T-convergence of objective functions. 展开更多
关键词 large deviations rate function finite difference method convergence analysis F-convergence stochastic Cahn-Hilliard equation
在线阅读 下载PDF
Unravelling Temperature Profile through Bifacial PV Modules via Finite Difference Method:Effects of Heat Internal Generation Due to Spectral Absorption
5
作者 Khadija Ibaararen Mhammed Zaimi +1 位作者 Khadija El Ainaoui El Mahdi Assaid 《Energy Engineering》 2025年第9期3487-3505,共19页
This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal h... This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal heat generation resulting from optical absorption,grounded in the physical equations governing light-matter interactions within the module’smultilayer structure.The model accounts for reflection and transmission at each interface between adjacent layers,as well as absorption within individual layers,using the wavelength-dependent dielectric properties of constituent materials.These properties are used to calculate the spectral reflectance,transmittance,and absorption coefficients,enabling precise quantification of internal heat sources from irradiance incidents on both the front and rear surfaces of the module.The study further examines the influence of irradiance reflection on thermal behavior,evaluates the thermal impact of various supporting materials placed beneath the module,and analyzes the role of albedo in modifying heat distribution.By incorporating spectrally resolved heat generation across each layer often simplified or omitted in conventional models,the proposed approach enhances physical accuracy.The transient heat equation is solved using a one-dimensional finite difference(FD)method to produce detailed temperature profiles under multiple operating scenarios,including Standard Test Conditions(STC),Bifacial Standard Test Conditions(BSTC),Normal Operating Cell Temperature(NOCT),and Bifacial NOCT(BNOCT).The results offer valuable insights into the interplay between optical and thermal phenomena in bifacial systems,informing the design and optimization of more efficient photovoltaic technologies. 展开更多
关键词 Bifacial photovoltaic(bPV) solarmodule heat transfer optical absorption temperature profile ALBEDO finite difference method
在线阅读 下载PDF
2D Laplace–Fourier domain acoustic wave equation modeling with an optimal finite-difference method
6
作者 Wang Jing-Yu Fan Na +4 位作者 Chen Xue-Fei Zhong Shou-Rui Li Bo-Yu Li Dan Zhao Gang 《Applied Geophysics》 2025年第1期119-131,234,共14页
Laplace–Fourier(L-F)domain finite-difference(FD)forward modeling is an important foundation for L-F domain full-waveform inversion(FWI).An optimal modeling method can improve the efficiency and accuracy of FWI.A fl e... Laplace–Fourier(L-F)domain finite-difference(FD)forward modeling is an important foundation for L-F domain full-waveform inversion(FWI).An optimal modeling method can improve the efficiency and accuracy of FWI.A fl exible FD stencil,which requires pairing and centrosymmetricity of the involved gridpoints,is used on the basis of the 2D L-F domain acoustic wave equation.The L-F domain numerical dispersion analysis is then performed by minimizing the phase error of the normalized numerical phase and attenuation propagation velocities to obtain the optimization coefficients.An optimal FD forward modeling method is finally developed for the L-F domain acoustic wave equation and applied to the traditional standard 9-point scheme and 7-and 9-point schemes,where the latter two schemes are used in discontinuous-grid FD modeling.Numerical experiments show that the optimal L-F domain FD modeling method not only has high accuracy but can also be applied to equal and unequal directional sampling intervals and discontinuous-grid FD modeling to reduce computational cost. 展开更多
关键词 Laplace-Fourier domain 2D acoustic wave equation finite difference and optimization coefficients
在线阅读 下载PDF
An Optimal Spatial Finite-Difference Operator which ReducesTruncation Error to a Minimum 被引量:1
7
作者 王 元 伍荣生 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第3期468-486,共19页
Highly accurate spatial discretization is essentially required to perform numerical climate and weather prediction. The difference between the differential and the finite-difference operator is however a primitive err... Highly accurate spatial discretization is essentially required to perform numerical climate and weather prediction. The difference between the differential and the finite-difference operator is however a primitive error source in the numerics. This paper presents an optimization of centered finite-difference operator based on the principle of constrained cost function, which can reduce the truncation error to minimum. In the optimization point of view, such optimal operator is in fact an attempt to minimize spatial truncation er-rors in atmospheric modeling, in a simple way and indeed a quite innovative way to implement Variational Continuous Assimilation (VCA) technique. Furthermore, the optimizing difference operator is consciously designed to be meshing-independent, so that it can be used for most Arakawa-mesh configurations, such as un-staggered (Arakawa-A) or com-monly staggered (Arakawa-B, Arakawa-C, Arakawa-D) mesh. But for the calibration purpose, the pro-posed operator is implemented on an un-staggered mesh in which the truncation oscillation is mostly ex-cited, and it thus makes a severe and indeed a benchmark test for the proposed optimal scheme. Both theo-retical investigation and practical modeling indicate that the aforementioned numerical noise can be significantly eliminated. 展开更多
关键词 finite—difference operator Truncation error OPTIMIZATION
在线阅读 下载PDF
Source wavefield reconstruction based on an implicit staggered-grid finite-difference operator for seismic imaging 被引量:2
8
作者 Zhi-Ming Ren Xue Dai Qian-Zong Bao 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2095-2106,共12页
Reverse time migration and full waveform inversion involve the crosscorrelation of two wavefields,propagated in the forward-and reverse-time directions,respectively.As a result,the forward-propagated wavefield needs t... Reverse time migration and full waveform inversion involve the crosscorrelation of two wavefields,propagated in the forward-and reverse-time directions,respectively.As a result,the forward-propagated wavefield needs to be stored,and then accessed to compute the correlation with the backward-propagated wavefield.Boundary-value methods reconstruct the source wavefield using saved boundary wavefields and can significantly reduce the storage requirements.However,the existing boundary-value methods are based on the explicit finite-difference(FD)approximations of the spatial derivatives.Implicit FD methods exhibit greater accuracy and thus allow for a smaller operator length.We develop two(an accuracy-preserving and a memory-efficient)wavefield reconstruction schemes based on an implicit staggered-grid FD(SFD)operator.The former uses boundary wavefields at M layers of grid points and the spatial derivatives of wavefields at one layer of grid points to reconstruct the source wavefield for a(2M+2)th-order implicit SFD operator.The latter applies boundary wavefields at N layers of grid points,a linear combination of wavefields at M–N layers of grid points,and the spatial derivatives of wavefields at one layer of grid points to reconstruct the source wavefield(0≤N<M).The required memory of accuracy-preserving and memory-efficient schemes is(M+1)/M and(N+2)/M times,respectively,that of the explicit reconstruction scheme.Numerical results reveal that the accuracy-preserving scheme can achieve accurate reconstruction at the cost of storage.The memory-efficient scheme with N=2 can obtain plausible reconstructed wavefields and images,and the storage amount is 4/(M+1)of the accuracy-preserving scheme. 展开更多
关键词 finite difference Reverse time migration Source wavefield reconstruction IMPLICIT Staggered grid
原文传递
Optimization of the seismic processing phase-shift plus finite-difference migration operator based on a hybrid genetic and simulated annealing algorithm 被引量:2
9
作者 Luo Renze Huang Yuanyi +2 位作者 Liang Xianghao Luo Jun Cao Ying 《Petroleum Science》 SCIE CAS CSCD 2013年第2期190-194,共5页
Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome... Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation. 展开更多
关键词 Migration operator phase-shift plus finite-difference hybrid algorithm genetic andsimulated annealing algorithm optimization coefficient
原文传递
THE UPWIND OPERATOR SPLITTING FINITE DIFFERENCE METHOD FOR COMPRESSIBLE TWO-PHASE DISPLACEMENT PROBLEM AND ANALYSIS
10
作者 袁益让 《Acta Mathematica Scientia》 SCIE CSCD 2002年第4期489-499,共11页
For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation r... For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L 2 norm are derived to determine the error, in the approximate solution. 展开更多
关键词 two-phase displacement two-dimensional compressibility upwind operator splitting finite difference schemes convergence analysis
在线阅读 下载PDF
Seismic modeling by combining the finite-difference scheme with the numerical dispersion suppression neural network 被引量:1
11
作者 Hong-Yong Yan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3157-3165,共9页
Seismic finite-difference(FD) modeling suffers from numerical dispersion including both the temporal and spatial dispersion, which can decrease the accuracy of the numerical modeling. To improve the accuracy and effic... Seismic finite-difference(FD) modeling suffers from numerical dispersion including both the temporal and spatial dispersion, which can decrease the accuracy of the numerical modeling. To improve the accuracy and efficiency of the conventional numerical modeling, I develop a new seismic modeling method by combining the FD scheme with the numerical dispersion suppression neural network(NDSNN). This method involves the following steps. First, a training data set composed of a small number of wavefield snapshots is generated. The wavefield snapshots with the low-accuracy wavefield data and the high-accuracy wavefield data are paired, and the low-accuracy wavefield snapshots involve the obvious numerical dispersion including both the temporal and spatial dispersion. Second, the NDSNN is trained until the network converges to simultaneously suppress the temporal and spatial dispersion.Third, the entire set of low-accuracy wavefield data is computed quickly using FD modeling with the large time step and the coarse grid. Fourth, the NDSNN is applied to the entire set of low-accuracy wavefield data to suppress the numerical dispersion including the temporal and spatial dispersion.Numerical modeling examples verify the effectiveness of my proposed method in improving the computational accuracy and efficiency. 展开更多
关键词 finite difference Seismic modeling Numerical dispersion suppression Computational accuracy Computational efficiency
原文传递
Spectrum of a Class of Difference Operators with Indefinite Weights
12
作者 Congmin Yang Yunlan Gao Kang Sun 《Journal of Applied Mathematics and Physics》 2020年第4期727-736,共10页
In this study, we use analytical methods and Sylvester inertia theorem to research a class of second order difference operators with indefinite weights and coupled boundary conditions. The eigenvalue problem with sign... In this study, we use analytical methods and Sylvester inertia theorem to research a class of second order difference operators with indefinite weights and coupled boundary conditions. The eigenvalue problem with sign-changing weight has lasted a long time. The number of eigenvalues and the number of sign changes of the corresponding eigenfunctions of discrete equations under different boundary conditions are mainly studied. For the discrete Sturm-Liouville problems, similar conclusions about the properties of eigenvalues and the number of sign changes of the corresponding eigenfunctions are obtained under different boundary conditions, such as periodic boundary conditions, antiperiodic boundary conditions and separated boundary conditions etc. The purpose of this paper is to extend the similar conclusion to the coupled boundary conditions, which is of great significance to the perfection of the theory of the discrete Sturm-Liouville problems. We came to the following conclusions: first, the eigenvalues of the problem are real and single, the number of the positive eigenvalues is equal to the number of positive elements in the weight function, and the number of negative eigenvalues is equal to the number of negative elements in the weight function. Second, under some conditions, we obtain the sign change of the eigenfunction corresponding to the j-th positive/negative eigenvalue. 展开更多
关键词 SPECTRUM difference operator Coupled BOUNDARY Conditions INDEfinite WEIGHT
在线阅读 下载PDF
Analysis of Extended Fisher-Kolmogorov Equation in 2D Utilizing the Generalized Finite Difference Method with Supplementary Nodes
13
作者 Bingrui Ju Wenxiang Sun +1 位作者 Wenzhen Qu Yan Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期267-280,共14页
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso... In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem. 展开更多
关键词 Generalized finite difference method nonlinear extended Fisher-Kolmogorov equation Crank-Nicolson scheme
在线阅读 下载PDF
Finite Element Method Simulation of Wellbore Stability under Different Operating and Geomechanical Conditions
14
作者 Junyan Liu Ju Liu +3 位作者 Yan Wang Shuang Liu Qiao Wang Yihe Du 《Fluid Dynamics & Materials Processing》 EI 2024年第1期205-218,共14页
The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory... The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory of poro-elasticity and the Mohr-Coulomb rock damage criterion,is used here to analyze such a risk.The changes in wellbore stability before and after reservoir acidification are simulated for different pressure differences.The results indicate that the risk of wellbore instability grows with an increase in the production-pressure difference regardless of whether acidification is completed or not;the same is true for the instability area.After acidizing,the changes in the main geomechanical parameters(i.e.,elastic modulus,Poisson’s ratio,and rock strength)cause the maximum wellbore instability coefficient to increase. 展开更多
关键词 Wellbore stability finite element acidizing operation well completion
在线阅读 下载PDF
Efficient Finite Difference WENO Scheme for Hyperbolic Systems withNon-conservativeProducts
15
作者 Dinshaw S.Balsara Deepak Bhoriya +1 位作者 Chi-Wang Shu Harish Kumar 《Communications on Applied Mathematics and Computation》 EI 2024年第2期907-962,共56页
Higher order finite difference weighted essentially non-oscillatory(WENO)schemes have been constructed for conservation laws.For multidimensional problems,they offer a high order accuracy at a fraction of the cost of ... Higher order finite difference weighted essentially non-oscillatory(WENO)schemes have been constructed for conservation laws.For multidimensional problems,they offer a high order accuracy at a fraction of the cost of a finite volume WENO or DG scheme of the comparable accuracy.This makes them quite attractive for several science and engineering applications.But,to the best of our knowledge,such schemes have not been extended to non-linear hyperbolic systems with non-conservative products.In this paper,we perform such an extension which improves the domain of the applicability of such schemes.The extension is carried out by writing the scheme in fluctuation form.We use the HLLI Riemann solver of Dumbser and Balsara(J.Comput.Phys.304:275-319,2016)as a building block for carrying out this extension.Because of the use of an HLL building block,the resulting scheme has a proper supersonic limit.The use of anti-diffusive fluxes ensures that stationary discontinuities can be preserved by the scheme,thus expanding its domain of the applicability.Our new finite difference WENO formulation uses the same WENO reconstruction that was used in classical versions,making it very easy for users to transition over to the present formulation.For conservation laws,the new finite difference WENO is shown to perform as well as the classical version of finite difference WENO,with two major advantages:(i)It can capture jumps in stationary linearly degenerate wave families exactly.(i)It only requires the reconstruction to be applied once.Several examples from hyperbolic PDE systems with non-conservative products are shown which indicate that the scheme works and achieves its design order of the accuracy for smooth multidimensional flows.Stringent Riemann problems and several novel multidimensional problems that are drawn from compressible Baer-Nunziato multiphase flow,multiphase debris flow and twolayer shallow water equations are also shown to document the robustness of the method.For some test problems that require well-balancing we have even been able to apply the scheme without any modification and obtain good results.Many useful PDEs may have stiff relaxation source terms for which the finite difference formulation of WENO is shown to provide some genuine advantages. 展开更多
关键词 Hyperbolic PDEs Numerical schemes Non-conservative products Stiff source terms finite difference WENO
在线阅读 下载PDF
A High Order Accurate Bound-Preserving Compact Finite Difference Scheme for Two-Dimensional Incompressible Flow
16
作者 Hao Li Xiangxiong Zhang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期113-141,共29页
For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple boun... For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple bound-preserving limiter in Li et al.(SIAM J Numer Anal 56:3308–3345,2018)can enforce the strict bounds of the vorticity,if the velocity field satisfies a discrete divergence free constraint.For reducing oscillations,a modified TVB limiter adapted from Cockburn and Shu(SIAM J Numer Anal 31:607–627,1994)is constructed without affecting the bound-preserving property.This bound-preserving finite difference method can be used for any passive convection equation with a divergence free velocity field. 展开更多
关键词 finite difference MONOTONICITY Bound-preserving Discrete maximum principle Passive convection Incompressible flow Total variation bounded limiter
在线阅读 下载PDF
Unconditional and Optimal Pointwise Error Estimates of Finite Difference Methods for the Two-Dimensional Complex Ginzburg-Landau Equation
17
作者 Yue CHENG Dongsheng TANG 《Journal of Mathematical Research with Applications》 CSCD 2024年第2期248-268,共21页
In this paper,we give improved error estimates for linearized and nonlinear CrankNicolson type finite difference schemes of Ginzburg-Landau equation in two dimensions.For linearized Crank-Nicolson scheme,we use mathem... In this paper,we give improved error estimates for linearized and nonlinear CrankNicolson type finite difference schemes of Ginzburg-Landau equation in two dimensions.For linearized Crank-Nicolson scheme,we use mathematical induction to get unconditional error estimates in discrete L^(2)and H^(1)norm.However,it is not applicable for the nonlinear scheme.Thus,based on a‘cut-off’function and energy analysis method,we get unconditional L^(2)and H^(1)error estimates for the nonlinear scheme,as well as boundedness of numerical solutions.In addition,if the assumption for exact solutions is improved compared to before,unconditional and optimal pointwise error estimates can be obtained by energy analysis method and several Sobolev inequalities.Finally,some numerical examples are given to verify our theoretical analysis. 展开更多
关键词 complex Ginzburg-Landau equation finite difference method unconditional convergence optimal estimates pointwise error estimates
原文传递
Study of Axisymmetric Infinite Guide Lined with Locally Reacting Material without Flow Using DtN Operators
18
作者 Boureima Ouedraogo Emmanuel Redon 《Open Journal of Applied Sciences》 2024年第2期572-588,共17页
The present work proposed a new method for the modeling by the finite element method of the acoustic propagation problems in infinite axisymmetric cylindrical guides lined with locally reacting absorbent materials wit... The present work proposed a new method for the modeling by the finite element method of the acoustic propagation problems in infinite axisymmetric cylindrical guides lined with locally reacting absorbent materials without flow. The method deals with the development of an efficient transparent boundary condition based on DtN operators. The method developed in this study is successfully applied to a straight axisymmetric lined guide by imposing a mode on one of the artificial boundaries of the truncated guide. The results are in good agreement with analytical solutions. Applying the method for a non-uniform axisymmetric lined guide which is a complex case, proved its effectiveness and the results compared to those of PML layers are in very good agreement. 展开更多
关键词 DtN operator Axisymmetric Cylindrical Guides finite Element Method Modes
在线阅读 下载PDF
FINITE ELEMENT APPROXIMATION OF AN INTEGRO-DIFFERENTIAL OPERATOR 被引量:3
19
作者 丁夏畦 罗佩珠 《Acta Mathematica Scientia》 SCIE CSCD 2009年第6期1767-1776,共10页
This paper deals with the finite element approximation of an integro-differential equation related with Riemann zeta-function.
关键词 finite element integro-differential operator Riemann zeta-function
在线阅读 下载PDF
Post-stack reverse-time migration using a finite difference method based on triangular grids 被引量:4
20
作者 郭书娟 李振春 +3 位作者 孙小东 叶月明 滕厚华 李芳 《Applied Geophysics》 SCIE CSCD 2008年第2期115-120,共6页
Compared with other migration methods, reverse-time migration is based on a precise wave equation, not an approximation, and performs extrapolation in the depth domain rather than the time domain. It is highly accurat... Compared with other migration methods, reverse-time migration is based on a precise wave equation, not an approximation, and performs extrapolation in the depth domain rather than the time domain. It is highly accurate and not affected by strong subsurface structure complexity and horizontal velocity variations. The difference method based on triangular grids maintains the simplicity of the difference method and the precision of the finite element method. It can be used directly for forward modeling on models with complex top surfaces and migration without statics preprocessing. We apply a finite difference method based on triangular grids for post-stack reverse-time migration for the first time. Tests on model data verify that the combination of the two methods can achieve near-perfect results in application. 展开更多
关键词 reverse-time migration structural complexity triangular grids finite difference
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部