期刊文献+
共找到135,842篇文章
< 1 2 250 >
每页显示 20 50 100
A straightforward 3D polycrystal plasticity finite element method for dynamic/static recrystallization simulation
1
作者 Guowei Zhou Yuanzhe Hu +2 位作者 Ronghui Hu Peidong Wu Dayong Li 《Journal of Materials Science & Technology》 2025年第17期180-198,共19页
The microstructure and related property evolution induced by dynamic recrystallization(DRX)and static recrystallization(SRX)in thermo-mechanical process are two critical factors for the metal forming.The DRX and SRX a... The microstructure and related property evolution induced by dynamic recrystallization(DRX)and static recrystallization(SRX)in thermo-mechanical process are two critical factors for the metal forming.The DRX and SRX are determined by the grain level deformation and sequentially coupled.In order to fully capture the microstructure and mechanical property evolution,a crystal plasticity finite element based modelling method for DRX and SRX is proposed in the current work.The grain level deformation is calculated with crystal plasticity which is coupled with the recrystallization model straightforwardly,and both the grain deformation and microstructure evolution are updated simultaneously.The proposed method is validated with discontinuous DRX experiments and the effects of initial deformation conditions are well-captured.Two controversial mechanisms for recrystallization microstructure evolution,i.e.oriented nucleation and growth selection,are discussed in the current framework with the advantages of accurate grain level deformation and interaction predictions.Furthermore,the sequentially coupled DRX and SRX are modelled seamlessly in the current work which provides a critical method for fully integrated thermo-mechanical processes analysis. 展开更多
关键词 Dynamic recrystallization Static recrystallization Crystal plasticity finite element method MICROSTRUCTURE Growth selection
原文传递
3D finite element numerical simulation of advanced detection in roadway for DC focus method 被引量:7
2
作者 邓小康 柳建新 +2 位作者 刘海飞 童孝忠 柳卓 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2187-2193,共7页
Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detec... Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detection was carried out using a three-dimensional finite element method (FEM), meanwhile the electric-field distribution of the point source and nine-point power source were calculated and analyzed with the same electric charges. The results show that the nine-point power source array has a very good ability to focus, and the DC focus method can be used to predict the aquifer abnormality body precisely. By comparing the FEM modelling results with physical simulation results from soil sink, it is shown that the accuracy of forward simulation meets the requirement and the artificial disturbance from roadway has no impact on the DC focus method. 展开更多
关键词 ROADWAY DC focus advanced detection finite element method
在线阅读 下载PDF
Discrete element and finite element coupling simulation and experiment of hot granule medium pressure forming 被引量:3
3
作者 董国疆 赵长财 +1 位作者 押媛媛 赵建培 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4089-4101,共13页
The granule medium of discreteness is supposed to be continuous(Drucker-Prager model) in the existing finite element simulation analysis on the hot granule medium pressure forming(HGMF) process, so the granule med... The granule medium of discreteness is supposed to be continuous(Drucker-Prager model) in the existing finite element simulation analysis on the hot granule medium pressure forming(HGMF) process, so the granule medium may produce tensile stress in the process of pressure-transferring and flowing, which does not coincide with the reality. The analysis method, discrete element and finite element(DE-FE) coupling simulation, is proposed to solve the problem. The material parameters of simulation model are obtained by the pressure-transfer performance test of granule medium and the hot uniaxial tensile test of sheet metal. The DE-FE coupling simulation platform is established by adopting Visual Basic language. The features in the process that AA7075-T6 conical parts are formed by the HGMF process are analyzed and verified by the process test. The studies show that the results of DE-FE coupling simulation coincide well with the test results, which provides a new analysis method to solve the mechanics problem in the coupling of discrete and continuum. 展开更多
关键词 granule medium aluminum alloy sheet hot forming finite element discrete element
在线阅读 下载PDF
NUMERICAL SIMULATION OF UNSTEADY-STATE UNDEREXPANDED JET USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:3
4
作者 陈二云 李志刚 +3 位作者 马大为 乐贵高 赵改平 任杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期89-93,共5页
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex... A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet. 展开更多
关键词 jets computational fluid dynamics multiple Mach disks vortex ring discontinuous Galerkin finite element method
在线阅读 下载PDF
Finite element simulation of ball spinning of NiTi shape memory alloy tube based on variable temperature field 被引量:2
5
作者 江树勇 张艳秋 +2 位作者 赵亚楠 唐明 李春峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期781-787,共7页
As a new attempt,ball spinning was used to manufacture the nickel-titanium shape memory alloy(NiTi SMA) tube at elevated temperature.The NiTi bar with a nominal composition of Ni50.9Ti49.1(mole fraction,%) was sol... As a new attempt,ball spinning was used to manufacture the nickel-titanium shape memory alloy(NiTi SMA) tube at elevated temperature.The NiTi bar with a nominal composition of Ni50.9Ti49.1(mole fraction,%) was solution treated and was used as the original tube blank for ball spinning.Based on the variable temperature field and the constitutive equation,rigid-viscoplastic finite element method(FEM) was applied in order to simulate the ball spinning of NiTi SMA tube.The temperature field,the stress field,the strain field and the load prediction were obtained by means of FEM.FEM results reveal that there is a temperature increase of about 160 ℃ in the principal deformation zone of the spun part.It can be found from the stress fields and the strain fields that the outer wall of NiTi SMA tube is easier to meet the plastic yield criterion than the inner wall,and the plastic deformation zone is caused to be in a three-dimensional compressive stress state.The radial strain and the tangential strain are characterized by the compressive strain,while the axial strain belongs to the tensile strain.The variation of spinning loads with the progression of the ball is of great importance in predicting the stable flow of the spun part. 展开更多
关键词 NiTi alloy NiTi tube shape memory alloy finite element method ball spinning
在线阅读 下载PDF
Finite Element Simulation of the Vibratory Characteristics for Quartz Tuning Fork Gyroscope 被引量:2
6
作者 王莹 孙雨南 秦秉坤 《Journal of Beijing Institute of Technology》 EI CAS 2002年第2期155-158,共4页
The micro quartz crystal tuning fork gyroscope is a new type of vibratory gyroscope. The gyroscope should be analyzed and simulated early in the design stage in order to offer reliable basis for design and to shorten ... The micro quartz crystal tuning fork gyroscope is a new type of vibratory gyroscope. The gyroscope should be analyzed and simulated early in the design stage in order to offer reliable basis for design and to shorten the period of development. Thus the vibratory characteristics of the gyroscope is simulated with the finite element method of coupled field. The optimum exciting frequency and the factors which influence the gyroscope sensitivity are determined. The method for adjusting the frequency deviation between driving and detecting modes is also proposed. 展开更多
关键词 quartz gyroscope tuning fork finite element method
在线阅读 下载PDF
Finite element simulation and optimal analysis of surfacing on steel orthotropic bridge deck 被引量:2
7
作者 谭积青 徐伟 张肖宁 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期539-543,共5页
To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the ... To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the whole bridge structure and tyre load are analyzed by the finite element method of submodeling. Influence of surfacing modulus on the strain state of the overlay is analyzed for the purpose of the optimal design of the overlay structure. Analysis results show that the deformation of the whole bridge structure has no evident influence on the stress state of the overlay. The key factor of the overlay design is the transverse tensile strain in the overlay above the upper edge of web plate of rib. The stress state of the overlay is influenced evidently by the modulus of rigidity transform overlay. And the stress state of the overlay can be optimized and lowered by increasing the modulus and thickness of rigidity transform overlay, The fatigue test has been done to evaluate the fatigue performance and modulus of different deck pavement materials such as epoxy asphalt, SBS modified asphalt, rosphalt asphalt which can provide reference for deck pavement structure design. 展开更多
关键词 steel orthotropic deck bridge deck overlay finite element submodeling optimal analysis fatigue test
在线阅读 下载PDF
COUPLED SIMULATION OF 3D ELECTRO-MAGNETO-FLOW FIELD IN HALL-HEROULT CELLS USING FINITE ELEMENT METHOD 被引量:10
8
作者 J. Li W. Liu +2 位作者 Y.Q. Lai Q.Y. Li Y.X. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第2期105-116,共12页
Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the... Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad. 展开更多
关键词 coupled simulation electromagnetic field flow field aluminum reduction cell finite element analysis
在线阅读 下载PDF
Finite Element Simulation on Thermal Fatigue of a Turbine Blade with Thermal Barrier Coatings 被引量:20
9
作者 L.Yang Q.X.Liu +2 位作者 Y.C.Zhou W.G.Mao C.Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第4期371-380,共10页
In this paper, a finite element model was developed for a turbine blade with thermal barrier coatings to investigate its failure behavior under cyclic thermal loading. Based on temperature and stress fields obtained f... In this paper, a finite element model was developed for a turbine blade with thermal barrier coatings to investigate its failure behavior under cyclic thermal loading. Based on temperature and stress fields obtained from finite element simulations, dangerous regions in ceramic coating were determined in terms of the maximum principal stress criterion. The results show that damage preferentially occurs in the chamfer and rabbet of a turbine blade with thermal barrier coatings and its thermal fatigue life decreases with the increase of thermal stress induced by high service temperature. 展开更多
关键词 Turbine blade Thermal barrier coatings finite element model Thermal fatigue Life prediction
原文传递
Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method 被引量:21
10
作者 Zhong-xiu FEI Shui-guang TONG Chao WEI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第4期268-280,共13页
Recently,the finite element method(FEM) has been commonly applied in the engineering analysis of rotor dynamics.Gyroscopic moments,rotary inertia,transverse shear deformation and gravity can be included in computation... Recently,the finite element method(FEM) has been commonly applied in the engineering analysis of rotor dynamics.Gyroscopic moments,rotary inertia,transverse shear deformation and gravity can be included in computational models of rotor-bearing systems.In this paper,a finite element model and its solution method are presented for the calculation of the dynamics of dual rotor systems.A typical structure with two rotor shafts is discussed and the procedure for obtaining the coupling motion equations of the subsystems is illustrated.A computer program is developed to solve critical speeds and to simulate the transient motion.The influence of gyroscopic moments on co-rotation and counter-rotation is analyzed,and the effect of the speed ratio on critical speed is studied.The dynamic characteristics under different conditions of increasing speed during start-up are demonstrated by comparison with transient nodal displacements.The presented model provides a complete foundation for further investigation of the dynamics of dual rotor systems. 展开更多
关键词 Dual rotor system Critical speed Transient response finite element method(FEM)
原文传递
Applications of finite element simulation in orthopedic and trauma surgery 被引量:8
11
作者 Antonio Herrera Elena Ibarz +5 位作者 José Cego?ino Antonio Lobo-Escolar Sergio Puértolas Enrique López Jesús Mateo Luis Gracia 《World Journal of Orthopedics》 2012年第4期25-41,共17页
Research in different areas of orthopedic and trauma surgery requires a methodology that allows both a more economic approach and the ability to reproduce different situations in an easy way. Simulation models have be... Research in different areas of orthopedic and trauma surgery requires a methodology that allows both a more economic approach and the ability to reproduce different situations in an easy way. Simulation models have been introduced recently in bioengineering and could become an essential tool in the study of any physiological unity, regardless of its complexity. The main problem in modeling with finite elements simulation is to achieve an accurate reproduction of the anatomy and a perfect correlation of the different structures, in any region of the human body. Authors have developed a mixed technique, joining the use of a three-dimensional laser scanner Roland Picza captured together with computed tomography(CT) and 3D CT images, to achieve a perfect reproduction of the anatomy. Finite element(FE) simulation lets us know the biomechanical changes that take place after hipprostheses or osteosynthesis implantation and biological responses of bone to biomechanical changes. The simulation models are able to predict changes in bone stress distribution around the implant, so allowing preventing future pathologies. The development of a FE model of lumbar spine is another interesting application of the simulation. The model allows research on the lumbar spine, not only in physiological conditions but also simulating different load conditions, to assess the impact on biomechanics. Different degrees of disc degeneration can also be simulated to determine the impact on adjacent anatomical elements. Finally, FE models may be useful to test different fixation systems, i.e., pedicular screws, interbody devices or rigid fixations compared with the dynamic ones. We have also developed models of lumbar spine and hip joint to predict the occurrence of osteoporotic fractures, based on densitometric determinations and specific biomechanical models, including approaches from damage and fracture mechanics. FE simulations also allow us to predict the behavior of orthopedic splints applied to the correction of deformities, providing the recovering force-displacement and angle-moment curves that characterize the mechanical behavior of the splint in the overall range of movement. 展开更多
关键词 finite element simulation Hip prosthesis LUMBAR spine LUMBAR FIXATIONS OSTEOPOROTIC fractures SPLINTS
暂未订购
Refining constitutive relation by integration of finite element simulations and Gleeble experiments 被引量:7
12
作者 D.J. Yu D.S. Xu +3 位作者 H. W ang Z.B. Zhao G.Z. Wei R. Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第6期1039-1043,共5页
Thermo-mechanical coupled finite element calculations were carried out to simulate the Gleeble compression of the samples of a titanium alloy(Ti60), and the results are analyzed and compared with the actual compressio... Thermo-mechanical coupled finite element calculations were carried out to simulate the Gleeble compression of the samples of a titanium alloy(Ti60), and the results are analyzed and compared with the actual compression tests conducted on a Gleeble 3800 thermo-mechanical simulator. The changes in temperature, stress and strain distribution in the samples and the source of error on the constitutive relations from Gleeble hot compression test were analyzed in detail. Both simulations and experiments showed that the temperature distribution in the specimen is not uniform during hot compression, resulting in significant deformation inhomogeneity and non-ignorable error in the flow stress strain relation,invalidating the uniform strain assumption commonly assumed when extracting the constitutive relation from Gleeble tests. Based on the finite element simulations with iterative corrections, we propose a scheme to refine the constitutive relations from Gleeble tests. 展开更多
关键词 TITANIUM alloy CONSTITUTIVE RELATION finite element Compression Temperature distribution
原文传递
Effect of stress profile on microstructure evolution of cold-drawn commercially pure aluminum wire analyzed by finite element simulation 被引量:6
13
作者 Y.K.Zhu Q.Y.Chen +6 位作者 Q.Wang H.Y.Yu R.Li J.P.Hou Z.J.Zhang G.P.Zhang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第7期1214-1221,共8页
The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress p... The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress profile on the texture evolution of the CPAW was systematically investigated by combining the numerical simulation and the microstructure observation. The results show that the tensile stress at the wire center promotes the formation of 〈111〉 texture, whereas the shear stress nearby the rim makes little contribution to the texture formation. Therefore, the 〈111 〉 texture at the wire center is stronger than that in the surface layer, which also results in a higher microhardness at the center of the CPAW under axial loading.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology. 展开更多
关键词 Commercially pure aluminum wire Cold drawing TEXTURE finite element simulation Stress profile
原文传递
Convex shaping process simulation during counter-rotating electrochemical machining by using the finite element method 被引量:11
14
作者 Wang Dengyong Zhu Zengwei +1 位作者 Wang Hongrui Zhu Di 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第2期534-541,共8页
In counter-rotating electrochemical machining (CRECM), a revolving cathode tool with hollow windows of various shapes is used to fabricate convex structures on a revolving part. During this process, the anode workpi... In counter-rotating electrochemical machining (CRECM), a revolving cathode tool with hollow windows of various shapes is used to fabricate convex structures on a revolving part. During this process, the anode workpiece and the cathode tool rotate relative to each other at the same rotation speed. In contrast to the conventional schemes of ECM machining with linear motion of a block tool electrode, this scheme of ECM is unique, and has not been adequately studied yet. In this paper, the finite element method (FEM) is used to simulate the anode shaping process during CRECM, and the simulation process which involves a meshing model, a moving boundary, and a simulation algorithm is described. The simulated anode profiles of the convex structure at different processing times show that the CRECM process can be used to fabricate convex structures of various shapes with different heights. Besides, the variation of the inter-electrode gap indicates that this process can also reach a relative equilibrium state like that in conventional ECM. A rectangular convex and a circular convex are successfully fabricated on revolving parts. The experimental results indicate relatively good agreement with the simulation results. The proposed simulation process is valid for convex shaping prediction and feasibility studies as well. 展开更多
关键词 COUNTER-ROTATING Convex shaping process Electrochemical machining finite element method Inter-electrode gap
原文传递
Finite element analysis and simulation for cold precision forging of a helical gear 被引量:13
15
作者 冯玮 华林 韩星会 《Journal of Central South University》 SCIE EI CAS 2012年第12期3369-3377,共9页
To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the bille... To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the billet geometry on the forming load and the deformation uniformity were analyzed by three-dimensional (3D) finite element method (FEM) under the commercial software DEFORM 3D. The billet geometry was optimized to meet lower forming load and better deformation uniformity requirement. Deformation mechanism was studied through the distribution of flow velocity field and effective strain field. The forging experiments of the helical gear were successfully performed using lead material as a model material under the same process conditions used in the FE simulations. The results show that the forming load decreases as the diameter of relief-hole do increases, but the effect of do on the deformation uniformity is very complicated. The forming load is lower and the deformation is more uniform when do is 10 mm. 展开更多
关键词 helical gear cold precision forging finite element simulation relief-hole principle
在线阅读 下载PDF
Finite Element Numerical Simulation and PIV Measurement of Flow Field inside Metering-in Spool Valve 被引量:12
16
作者 GAO Dianrong QIAO Haijun LU Xianghui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期102-108,共7页
The finite element method (FEM) and particle image velocimetry (PIV) technique are utilized to get the flow field along the inlet passage, the chamber, the metering port and the outlet passage of spool valve at th... The finite element method (FEM) and particle image velocimetry (PIV) technique are utilized to get the flow field along the inlet passage, the chamber, the metering port and the outlet passage of spool valve at three different valve openings. For FEM numerical simulation, the stream function ψ-vorticity ω forms of continuity and Navier-Stokes equations are employed and FEM is applied to discrete the equations. Homemade simulation codes are executed to compute the values of stream function and vorticity at each node in the flow domain, then according to the correlation between stream function and velocity components, the velocity vectors of the whole field are calculated. For PIV experiment, pulse Nd: YAG laser is exploited to generate laser beam, cylindrical and spherical lenses are combined each other to produce 1.0 mm thickness laser sheet to illuminate the object plane, Polystyrene spherical particle with diameter of 30-50 μm is seeded in the fluid as a tracing particles, Kodak ES 1.0 CCD camera is employed to capture the images of interested, the images are processed with fast Fourier transform (FFT) cross-correlation algorithm and the processing results is displayed. Both results of numerical simulation and PIV experimental show that there are three main areas in the spool valve where vortex is formed. Numerical results also indicate that the valve opening have some effects on the flow structure of the valve. The investigation is helpful for qualitatively analyzing the energy loss, noise generating, steady state flow forces and even designing the geometry structure and flow passage. 展开更多
关键词 flow field spool valve finite element method (FEM) particle image velocimetry (PIV)
在线阅读 下载PDF
GURTIN VARIATIONAL PRINCIPLE AND FINITE ELEMENT SIMULATION FOR DYNAMICAL PROBLEMS OF FLUID-SATURATED POROUS MEDIA 被引量:10
17
作者 Yang Xiao Cheng Changjun Department o,f Mechanics, Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University,Shanghai 200436,China) 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第1期24-32,共9页
Based on the theory of porous media, a general Gurtin variational principle for the initial boundary value problem of dynamical response of fluid-saturated elastic porous media is developed by assuming infinitesimal d... Based on the theory of porous media, a general Gurtin variational principle for the initial boundary value problem of dynamical response of fluid-saturated elastic porous media is developed by assuming infinitesimal deformation and incompressible constituents of the solid and fluid phase. The finite element formulation based on this variational principle is also derived. As the functional of the variational principle is a spatial integral of the convolution formulation, the general finite element discretization in space results in symmetrical differential-integral equations in the time domain. In some situations, the differential-integral equations can be reduced to symmetrical differential equations and, as a numerical example, it is employed to analyze the reflection of one-dimensional longitudinal wave in a fluid-saturated porous solid. The numerical results can provide further understanding of the wave propagation in porous media. 展开更多
关键词 saturated porous media Gurtin variational principle finite element method longitudinal wave
在线阅读 下载PDF
Hot deformation behavior and finite element simulation of Mg-8.3Gd-4.4Y-1.5Zn-0.8Mn alloy 被引量:7
18
作者 Jiabin Fan Minglong Ma +4 位作者 Kui Zhang Yongjun Li Xinggang Li Guoliang Shi Jiawei Yuan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第5期831-839,I0006,共10页
To study the hot deformation behavior of Mg-8.3 Gd-4.4 Y-1.5 Zn-0.8 Mn(wt%) alloy,hot compression tests were conducted using a Gleeble-3500 thermal simulator at temperatures ranging from 653 to773 K,true strain rates ... To study the hot deformation behavior of Mg-8.3 Gd-4.4 Y-1.5 Zn-0.8 Mn(wt%) alloy,hot compression tests were conducted using a Gleeble-3500 thermal simulator at temperatures ranging from 653 to773 K,true strain rates of 0.001-1 s^(-1),and a deformation degree of 60%.Results of hot compression experiments show that the flow stress of the alloy increases with the strain rate.The true stress-true strain curves are corrected by correcting the effect of temperature rise in the deformation process.Activation energy,Q,equal to 287380 J/mol and material constant,n,equal to 4.59 were calculated by fitting the true stress-true strain curves.Then,the constitutive equation was established and verified via finite element simulation.Results of the hot processing map show that the probability of material instability increases with the degree of deformation,which indicates that the material is not suitable for large deformation in a single pass.On the whole,the alloy is appropriate for multipass processing with small deformation and a suitable processing temperature and strain rate are 733 K and 0.01 s-1,respectively. 展开更多
关键词 Mg-Gd-Y-Zn-Mn alloy Hot deformation Constitutive relationship finite element simulation Processing map Rare earths
原文传递
Plastic characterization of metals by combining nanoindentation test and finite element simulation 被引量:6
19
《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2368-2373,共6页
Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a goo... Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a good approach was proposed to extract the plastic properties or constitutive equations of metals from nanoindentation test combining finite element simulation. Firstly, without consideration of strain hardening, the representative stress was determined by varying assumed representative stress over a wide range until a good agreement was reached between the computed and experimental loading curves. Similarly, the corresponding representative strain was determined with different hypothetical values of strain hardening exponent in the range of 0-0.6. Through modulating assumed strain hardening exponent values to make the computed unloading curve coincide with that of the experiment, the real strain hardening exponent was acquired. Once the strain hardening exponent was determined, the initial yield stress ay of metals could be obtained by the power law constitution. The validity of the proposed methodology was verified by three real metals: AISI 304 steel, Fe andA1 alloy. 展开更多
关键词 NANOINDENTATION finite element simulation representative stress representative stain initial yield stress
在线阅读 下载PDF
Finite element simulation of inertia friction welding of superalloy bars 被引量:5
20
作者 王非凡 李文亚 +1 位作者 代野 李京龙 《China Welding》 EI CAS 2012年第1期13-17,共5页
A thermo-mechanical coupling.finite element model was built to investigate the inertia friction welding of GH4169 bars. The remeshing and map solution techniques were adopted. Ttle whole welding process was investigat... A thermo-mechanical coupling.finite element model was built to investigate the inertia friction welding of GH4169 bars. The remeshing and map solution techniques were adopted. Ttle whole welding process was investigated by adopting an innovative heat generation model and the flywheel rotational speed measured via the experiment. The simulated evolution of axial shortening shows a good agreement with the experiment. In addition, extensive .strain concentration presents in the interface and flash, and the largest ,strain exists near the flash root. Moreover, an intere.sting thermal reflux phenomenon during the cooling stage was found. 展开更多
关键词 inertia friclion welding finite element simulation heat generation thermal reflux
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部