This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid s...This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results.展开更多
According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfe...According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfect inspections, thresholds and repeated intervals are concerned in delay-time models. Since the suggestion by the existing delay-time models that the inspections are implemented in an infinite time span lacks practical value, a de- lay-time model with imperfect inspection within a finite time span is proposed. In the model, the nonhomogenous Poisson process is adopted to obtain the renewal probabilities between two different successive inspections on de- fects or failures. An algorithm is applied based on the Nelder-Mead downhill simplex method to solve the model. Finally, a numerical example proves the validity and effectiveness of the model.展开更多
By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed w...By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed with p Laplacian. The topological degree and fixed point theorem on cone are used to prove the existence of solution and positive solution. The conditions are all easy to check.展开更多
The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation o...The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation of guidance systems into the feedbackable linearization model, in which the guidance law is obtained without considering the impact angle via FLC. For the purpose of the line of sight(LOS) angle and its rate converging to the desired values, the second-order LOS angle is considered as a double-integral system. Then, this paper utilizes FTC to design a controller which can guarantee the states of the double-integral system converging to the desired values. Numerical simulation illustrates the performance of the IACG, in contrast to the existing guidance law.展开更多
This article analyzes the problem about the missile overload requirement in a homing terminal guidance under various engagement scenarios. An augmented proportional navigation guidance (APNG) model is introduced on ...This article analyzes the problem about the missile overload requirement in a homing terminal guidance under various engagement scenarios. An augmented proportional navigation guidance (APNG) model is introduced on the basis of linear kinematics. To analyze the peak-to-peak performance of the terminal guidance system, a new finite time L1 performance measure for a linear time-varying (LTV) continuous system is proposed. Then, according to the idea of the adjoint system, a novel method for computing the L1 norm of a linear continuous system is first derived. Within the finite time L1 framework, the quantitative relation between the guidance loop dynamics and the maximum missile-target maneuver ratio is offered. This relation is expressed in the form of graphs and formulas that can be used to synthesize some of the major subsystem specifications for the missile guidance system. The illustrative examples show that a significant performance improvement is achieved with the proposed guidance loop dynamics.展开更多
For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to ...For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.展开更多
In this paper, the control problem for a quadrotor helicopter which is subjected to modeling uncertainties and unknown external disturbance is investigated. A new nonlinear robust control strategy is proposed. First, ...In this paper, the control problem for a quadrotor helicopter which is subjected to modeling uncertainties and unknown external disturbance is investigated. A new nonlinear robust control strategy is proposed. First, a nonlinear complementary filter is developed to fuse the raw data from the onboard barometer and the accelerometer to decrease the negative effects from the noise associated with the low-cost onboard sensors Then the adaptive super-twisting methodology is combined with a backstepping method to formulate the nonlinear robust controller for the quadrotor's attitude angles and the altitude position. Lyapunov based stability analysis shows that finite time convergence is ensured for the closed-loop operation of the quadrotor's roll angle, pitch angle, row angle and the altitude position. Real-time flight experimental results, which are performed on a quadrotor flight testbed, are included to demonstrate the good control performance of the proposed control methodology.展开更多
Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are ...Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are derived. The results are valid for initial data with arbitrary high positive energy. The proofs are based on the concave method and new sign preserving functionals.展开更多
We consider a discrete time risk model in which the net payout (insurance risk) {Xk, k = 1, 2,...} are assumed to take real values and belong to the heavy-tailed class L∩ D and the discount factors (financial risk...We consider a discrete time risk model in which the net payout (insurance risk) {Xk, k = 1, 2,...} are assumed to take real values and belong to the heavy-tailed class L∩ D and the discount factors (financial risk) {Yk, k = 1,2,...} concentrate on [θ, L], where 0 〈 0 〈 1, L 〈 ∞, {Xk, k = 1,2,...}, and {Yk, k=1,2,...} are assumed to be mutually independent. We investigate the asymptotic behavior of the ruin probability within a finite time horizon as the initial capital tends to infinity, and figure out that the convergence holds uniformly for all n ≥ 1, which is different from Tang Q H and Tsitsiashvili G (Adv Appl Prob, 2004, 36: 1278-1299).展开更多
A finite time attitude controller is designed for a flexible spacecraft based on a novel output redefinition method, in this paper. To make the flexible appendages vibration suppression effective, the appendage tip-po...A finite time attitude controller is designed for a flexible spacecraft based on a novel output redefinition method, in this paper. To make the flexible appendages vibration suppression effective, the appendage tip-point is selected as the output. First, a novel output redefinition method is proposed to overcome the non-minimum phase property of the dynamic model. The proposed method not only makes the system model minimum phase but also improves the attitude control system performance. Consequently, the precise attitude pointing and stabilization are achieved.Then, a nonlinear finite time H∞controller is designed based on the backstepping approach. For the situation where the modal variables measurements are not available, a modal observer is also designed. The simulation results show the effectiveness of the proposed method in the presence of the model uncertainties and environmental disturbances.展开更多
Finite time stability and stabilization are studied for hy-brid dynamic systems. By combining multiple Lyapunov function and finite time Lyapunov function, a sufficient condition of finite time stability is given for ...Finite time stability and stabilization are studied for hy-brid dynamic systems. By combining multiple Lyapunov function and finite time Lyapunov function, a sufficient condition of finite time stability is given for the system. Compared with the previ-ous works, our results have less conservativeness. Furthermore, based on the state partition of continuous and resetting parts of system, a hybrid feedback controller is constructed, which stabi-lizes the closed-loop systems in finite time. Finally, a numerical example is provided to demonstrate the effectiveness of the pro-posed method.展开更多
A finite time controller with PD-like structure for satellite attitude control is proposed in this paper.The controller is constructed with simple structure based on standard PD controller.The fractional order term is...A finite time controller with PD-like structure for satellite attitude control is proposed in this paper.The controller is constructed with simple structure based on standard PD controller.The fractional order term is designed hence system could both have strong robustness and finite time convergence rate,and the advantage of finite time control and PD control is combined in this paper.System convergence rate is discussed by Lyapunov method,and the constraint on control parameters is given by implementing the coupled term of angular velocity and attitude quaternion.Moreover,the accuracy at steady stage depending on control parameters is given hence system could converge to this field within finite time.System stability and performance is demonstrated by numerical simulation results.展开更多
We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their...We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.展开更多
Consider an insurance risk model,in which the surplus process satisfies a recursive equationU n=U n?1(1+r n)?X n forn≥1,whereU 0=x≥0 is the initial surplus,{r n;n≥1}the interest rate sequence,{X n;n≥1}the sequence...Consider an insurance risk model,in which the surplus process satisfies a recursive equationU n=U n?1(1+r n)?X n forn≥1,whereU 0=x≥0 is the initial surplus,{r n;n≥1}the interest rate sequence,{X n;n≥1}the sequence of i.i.d.real-valued random variables with common distribution functionF,which denotes the gross loss during thenth year.We investigate the ruin probability within a finite time horizon and give the asymptotic result asx→∞.展开更多
The cooperative output tracking problem of multi-agent systems in finite time is considered.In order to enable the agents to quickly track and converge to external system within a finite time,a novel distributed outpu...The cooperative output tracking problem of multi-agent systems in finite time is considered.In order to enable the agents to quickly track and converge to external system within a finite time,a novel distributed output feedback control strategy based on the finite-time state observer is designed.This distributed finite-time observer can not only solve cooperative output tracking problems when the agents can not get external system signal,but also make the systems have a faster convergence and a good robustness.The stability of the system in finite time is proved based on Lyapunov function.Numerical simulations results have been provided to demonstrate the effectiveness of the proposed protocol.展开更多
The existing theories of finite-time stability depend on a prescribed bound on initial disturbances and a prescribed threshold for allowable responses. It remains a challenge to identify the critical value of loading ...The existing theories of finite-time stability depend on a prescribed bound on initial disturbances and a prescribed threshold for allowable responses. It remains a challenge to identify the critical value of loading parameter for finite time instability observed in experiments without the need of specifying any prescribed threshold for al- lowable responses. Based on an energy balance analysis of a simple dynamic system, this paper proposes a general criterion for finite time stability which indicates that finite time stability of a linear dynamic system with constant coefficients during a given time interval [0, tf] is guaranteed provided the product of its maximum growth rate (determined by the maximum eigen-root pl 〉0) and the duration tf does not exceed 2, i.e., pltf 〈2. The proposed criterion (pltf=2) is applied to several problems of impacted buckling of elastic columns: (i) an elastic column impacted by a striking mass, (ii) longitudinal impact of an elastic column on a rigid wall, and (iii) an elastic column compressed at a constant speed ("Hoff problem"), in which the time-varying axial force is replaced approximately by its average value over the time duration. Comparison of critical parameters predicted by the proposed criterion with available experimental and simulation data shows that the proposed criterion is in robust reasonable agreement with the known data, which suggests that the proposed simple criterion (pltf---2) can be used to estimate critical parameters for finite time stability of dynamic systems governed by linear equations with constant coefficients.展开更多
The recursion relation of preventive maintenance (PM) cycle is built up concerning the concept of effective age and age setback factor proposed in this paper, which illustrates the dynamic relationship between failure...The recursion relation of preventive maintenance (PM) cycle is built up concerning the concept of effective age and age setback factor proposed in this paper, which illustrates the dynamic relationship between failure rate and preventive maintenance activity. And the nonlinear optimal PM policy model satisfying the reliability constraints in finite time horizon following Weibull distribution is proposed. The model built in this paper avoids the shortcoming of steady analytical PM model in infinite time horizon and can be used to aid scheduling the maintenance plan and providing decision supporting for job shop scheduling.展开更多
This article explores the existence results and finite time stability of nonlinear Riemann-Liouville fractional oscillatory differential equations of order 1<■<2 with pure delay.The approaches we adopted to exp...This article explores the existence results and finite time stability of nonlinear Riemann-Liouville fractional oscillatory differential equations of order 1<■<2 with pure delay.The approaches we adopted to explore the existence results are fixed point theorems.What’s more,based on some important inequalities,we explore the finite time stability of the system.In the end,the rationality of our conclusion is verified by a case.展开更多
In this paper,we consider a semilinear parabolic equation with a general nonlinearity.We establish a new finite time blow-up criterion and also derive the upper bound for the blow-up time.The results partially general...In this paper,we consider a semilinear parabolic equation with a general nonlinearity.We establish a new finite time blow-up criterion and also derive the upper bound for the blow-up time.The results partially generalize some recent ones obtained by He Ma et al.展开更多
In the present paper we consider the case of a Dirac field in a finite time domain and coupled to an external field. We decompose the field and its Hamiltonian in terms of creation and annihilation operators and path ...In the present paper we consider the case of a Dirac field in a finite time domain and coupled to an external field. We decompose the field and its Hamiltonian in terms of creation and annihilation operators and path integrate it via Grassmannian variables techniques. In that way we obtain its finite time domain Green function. We use it in the perturbative study of the interaction of Dirac particles with classical electromagnetic waves.展开更多
基金Project supported by Jilin Provincial Science and Technology Development Plan(Grant No.20220101137JC).
文摘This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results.
基金Supported by the National Natural Science Foundation of China(61079013)the Natural Science Fund Project in Jiangsu Province(BK2011737)~~
文摘According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfect inspections, thresholds and repeated intervals are concerned in delay-time models. Since the suggestion by the existing delay-time models that the inspections are implemented in an infinite time span lacks practical value, a de- lay-time model with imperfect inspection within a finite time span is proposed. In the model, the nonhomogenous Poisson process is adopted to obtain the renewal probabilities between two different successive inspections on de- fects or failures. An algorithm is applied based on the Nelder-Mead downhill simplex method to solve the model. Finally, a numerical example proves the validity and effectiveness of the model.
文摘By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed with p Laplacian. The topological degree and fixed point theorem on cone are used to prove the existence of solution and positive solution. The conditions are all easy to check.
基金supported by the National Natural Science Foundation of China(51679201)
文摘The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation of guidance systems into the feedbackable linearization model, in which the guidance law is obtained without considering the impact angle via FLC. For the purpose of the line of sight(LOS) angle and its rate converging to the desired values, the second-order LOS angle is considered as a double-integral system. Then, this paper utilizes FTC to design a controller which can guarantee the states of the double-integral system converging to the desired values. Numerical simulation illustrates the performance of the IACG, in contrast to the existing guidance law.
基金National Natural Science Foundation of China (60674 043)
文摘This article analyzes the problem about the missile overload requirement in a homing terminal guidance under various engagement scenarios. An augmented proportional navigation guidance (APNG) model is introduced on the basis of linear kinematics. To analyze the peak-to-peak performance of the terminal guidance system, a new finite time L1 performance measure for a linear time-varying (LTV) continuous system is proposed. Then, according to the idea of the adjoint system, a novel method for computing the L1 norm of a linear continuous system is first derived. Within the finite time L1 framework, the quantitative relation between the guidance loop dynamics and the maximum missile-target maneuver ratio is offered. This relation is expressed in the form of graphs and formulas that can be used to synthesize some of the major subsystem specifications for the missile guidance system. The illustrative examples show that a significant performance improvement is achieved with the proposed guidance loop dynamics.
文摘For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.
基金This work was supported by the Key Project of Tianjin Science and Technology Support Program (No. 15ZCZDGX00810), the Natural Science Foundation of Tianjin (No. 14JCZDJC31900), and the National Natural Science Foundation of China (Nos. 91748121, 90916004, 60804004).
文摘In this paper, the control problem for a quadrotor helicopter which is subjected to modeling uncertainties and unknown external disturbance is investigated. A new nonlinear robust control strategy is proposed. First, a nonlinear complementary filter is developed to fuse the raw data from the onboard barometer and the accelerometer to decrease the negative effects from the noise associated with the low-cost onboard sensors Then the adaptive super-twisting methodology is combined with a backstepping method to formulate the nonlinear robust controller for the quadrotor's attitude angles and the altitude position. Lyapunov based stability analysis shows that finite time convergence is ensured for the closed-loop operation of the quadrotor's roll angle, pitch angle, row angle and the altitude position. Real-time flight experimental results, which are performed on a quadrotor flight testbed, are included to demonstrate the good control performance of the proposed control methodology.
基金partially supported by Grant No.DFNI I-02/9 of the Bulgarian Science Fund
文摘Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are derived. The results are valid for initial data with arbitrary high positive energy. The proofs are based on the concave method and new sign preserving functionals.
基金supported by the National Natural Science Foundation of China (10671149)the Ministry of Education of China, the Natural Science Foundation of Jiangxi(2008GQS0035)the Foundation of the Hubei Provincial Department of Education (B20091107)
文摘We consider a discrete time risk model in which the net payout (insurance risk) {Xk, k = 1, 2,...} are assumed to take real values and belong to the heavy-tailed class L∩ D and the discount factors (financial risk) {Yk, k = 1,2,...} concentrate on [θ, L], where 0 〈 0 〈 1, L 〈 ∞, {Xk, k = 1,2,...}, and {Yk, k=1,2,...} are assumed to be mutually independent. We investigate the asymptotic behavior of the ruin probability within a finite time horizon as the initial capital tends to infinity, and figure out that the convergence holds uniformly for all n ≥ 1, which is different from Tang Q H and Tsitsiashvili G (Adv Appl Prob, 2004, 36: 1278-1299).
文摘A finite time attitude controller is designed for a flexible spacecraft based on a novel output redefinition method, in this paper. To make the flexible appendages vibration suppression effective, the appendage tip-point is selected as the output. First, a novel output redefinition method is proposed to overcome the non-minimum phase property of the dynamic model. The proposed method not only makes the system model minimum phase but also improves the attitude control system performance. Consequently, the precise attitude pointing and stabilization are achieved.Then, a nonlinear finite time H∞controller is designed based on the backstepping approach. For the situation where the modal variables measurements are not available, a modal observer is also designed. The simulation results show the effectiveness of the proposed method in the presence of the model uncertainties and environmental disturbances.
基金supported by the National Natural Science Foundation of China (60974139)
文摘Finite time stability and stabilization are studied for hy-brid dynamic systems. By combining multiple Lyapunov function and finite time Lyapunov function, a sufficient condition of finite time stability is given for the system. Compared with the previ-ous works, our results have less conservativeness. Furthermore, based on the state partition of continuous and resetting parts of system, a hybrid feedback controller is constructed, which stabi-lizes the closed-loop systems in finite time. Finally, a numerical example is provided to demonstrate the effectiveness of the pro-posed method.
基金supported partially by National Natural Science Foundation of China(Project Nos.61903289 and 62073102)。
文摘A finite time controller with PD-like structure for satellite attitude control is proposed in this paper.The controller is constructed with simple structure based on standard PD controller.The fractional order term is designed hence system could both have strong robustness and finite time convergence rate,and the advantage of finite time control and PD control is combined in this paper.System convergence rate is discussed by Lyapunov method,and the constraint on control parameters is given by implementing the coupled term of angular velocity and attitude quaternion.Moreover,the accuracy at steady stage depending on control parameters is given hence system could converge to this field within finite time.System stability and performance is demonstrated by numerical simulation results.
文摘We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.
基金Supported by the NationalNatural Science Foun-dation of China(10071058,70273029)
文摘Consider an insurance risk model,in which the surplus process satisfies a recursive equationU n=U n?1(1+r n)?X n forn≥1,whereU 0=x≥0 is the initial surplus,{r n;n≥1}the interest rate sequence,{X n;n≥1}the sequence of i.i.d.real-valued random variables with common distribution functionF,which denotes the gross loss during thenth year.We investigate the ruin probability within a finite time horizon and give the asymptotic result asx→∞.
基金National Natural Science Foundation of China(No.61663020)National Key R&D Program of China(No.2017YFB1201003-020)Natural Science Foundation of Gansu Province(No.17JR5RA096)
文摘The cooperative output tracking problem of multi-agent systems in finite time is considered.In order to enable the agents to quickly track and converge to external system within a finite time,a novel distributed output feedback control strategy based on the finite-time state observer is designed.This distributed finite-time observer can not only solve cooperative output tracking problems when the agents can not get external system signal,but also make the systems have a faster convergence and a good robustness.The stability of the system in finite time is proved based on Lyapunov function.Numerical simulations results have been provided to demonstrate the effectiveness of the proposed protocol.
基金Project supported by the Natural Science and Engineering Research Council (NSERC) of Canada (No.NSERC-RGPIN204992)
文摘The existing theories of finite-time stability depend on a prescribed bound on initial disturbances and a prescribed threshold for allowable responses. It remains a challenge to identify the critical value of loading parameter for finite time instability observed in experiments without the need of specifying any prescribed threshold for al- lowable responses. Based on an energy balance analysis of a simple dynamic system, this paper proposes a general criterion for finite time stability which indicates that finite time stability of a linear dynamic system with constant coefficients during a given time interval [0, tf] is guaranteed provided the product of its maximum growth rate (determined by the maximum eigen-root pl 〉0) and the duration tf does not exceed 2, i.e., pltf 〈2. The proposed criterion (pltf=2) is applied to several problems of impacted buckling of elastic columns: (i) an elastic column impacted by a striking mass, (ii) longitudinal impact of an elastic column on a rigid wall, and (iii) an elastic column compressed at a constant speed ("Hoff problem"), in which the time-varying axial force is replaced approximately by its average value over the time duration. Comparison of critical parameters predicted by the proposed criterion with available experimental and simulation data shows that the proposed criterion is in robust reasonable agreement with the known data, which suggests that the proposed simple criterion (pltf---2) can be used to estimate critical parameters for finite time stability of dynamic systems governed by linear equations with constant coefficients.
基金Natural Science Foundation of China (No. 59889505)
文摘The recursion relation of preventive maintenance (PM) cycle is built up concerning the concept of effective age and age setback factor proposed in this paper, which illustrates the dynamic relationship between failure rate and preventive maintenance activity. And the nonlinear optimal PM policy model satisfying the reliability constraints in finite time horizon following Weibull distribution is proposed. The model built in this paper avoids the shortcoming of steady analytical PM model in infinite time horizon and can be used to aid scheduling the maintenance plan and providing decision supporting for job shop scheduling.
基金Supported by the National Natural Science Foundation of China(Grant No.11871064).
文摘This article explores the existence results and finite time stability of nonlinear Riemann-Liouville fractional oscillatory differential equations of order 1<■<2 with pure delay.The approaches we adopted to explore the existence results are fixed point theorems.What’s more,based on some important inequalities,we explore the finite time stability of the system.In the end,the rationality of our conclusion is verified by a case.
基金Supported by the Nation Natural Science Foundation of China(Grant No.11271141)Chongqing Science and Technology Commission(Grant No.cstc2018jcyjAX0787).
文摘In this paper,we consider a semilinear parabolic equation with a general nonlinearity.We establish a new finite time blow-up criterion and also derive the upper bound for the blow-up time.The results partially generalize some recent ones obtained by He Ma et al.
文摘In the present paper we consider the case of a Dirac field in a finite time domain and coupled to an external field. We decompose the field and its Hamiltonian in terms of creation and annihilation operators and path integrate it via Grassmannian variables techniques. In that way we obtain its finite time domain Green function. We use it in the perturbative study of the interaction of Dirac particles with classical electromagnetic waves.