This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is e...This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.展开更多
A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FE...A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FEM is described and compared with ES-FEM.A practical modification of IES-FEM is then introduced that used the technique employed by ES-FEM for the nodal strain calculation.The differences in the strain computation among ES-FEM,IES-FEM,and FEM are then discussed.The modified IES-FEM exhibited superior performance in displacement and a slight advantage in stress compared to FEM using the same mesh according to the results obtained from both the regular and irregular elements.The robustness of the IES-FEM to severely deformed meshes was also verified.展开更多
Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the stru...Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the structural safety of supersonic vehicles,but it has been rarely investigated.Given that existing methods are inefficient for high-frequency dynamic analysis in multi-physics fields,the present work addresses this challenge by proposing a Stochastic Energy Finite Element Method(SEFEM).SEFEM uses energy density instead of displacement to describe the dynamic response,thereby significantly enhancing its efficiency.In SEFEM,the effects of aerodynamic and thermal loads on the energy propagation characteristics are studied analytically and incorporated into the energy density governing equation.These effects are also considered when calculating the input power generated by the acoustic load,and two effective approaches named Frequency Response Function Method(FRFM)and Mechanical Impedance Method(MIM)are developed accordingly and integrated into SEFEM.The good accuracy,applicability,and high efficiency of the proposed SEFEM are demonstrated through numerical simulations performed on a two-dimensional panel under aero-thermoacoustic loads.Additionally,the effects and underlying mechanisms of aero-thermo-acoustic loads on the high-frequency response are explored.This work not only presents an efficient approach for predicting high-frequency dynamic response of panels subjected to aero-thermo-acoustic loads,but also provides insights into the high-frequency dynamic characteristics in multi-physics fields.展开更多
In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow e...In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.展开更多
A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and vi...A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.展开更多
A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D F...A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.展开更多
High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric fini...High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method.Firstly,the physical field is approximated by uniform B-spline interpolation,while geometry is represented by non-uniform rational B-spline interpolation.By introducing a transformation matrix,elements of types C^(0)and C^(1)are constructed in the isogeometric finite element method.Subsequently,the corresponding calculation formats for one-dimensional bars,beams,and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and parameter mapping.The proposed method combines element construction techniques of the finite element method with geometric construction techniques of isogeometric analysis,eliminating the need for mesh generation and maintaining flexibility in element construc-tion.Two elements with interpolation characteristics are constructed in the method so that boundary conditions and connections between elements can be processed like the finite element method.Finally,the test results of several examples show that:(1)Under the same degree and element node numbers,the constructed elements are almost consistent with the results obtained by traditional finite element method;(2)For bar problems with large local field variations and beam problems with variable cross-sections,high-degree and multi-nodes elements constructed can achieve high computational accuracy with fewer degrees of freedom than finite element method;(3)The computational efficiency of isogeometric finite element method is higher than finite element method under similar degrees of freedom,while as degrees of freedom increase,the computational efficiency between the two is similar.展开更多
The basic principle of corrode groove on outside of steel pipe during storage was analyzed in this paper, namely the water film on the contacted surface of steel pipe, which gathered from humidity in the air, rain or ...The basic principle of corrode groove on outside of steel pipe during storage was analyzed in this paper, namely the water film on the contacted surface of steel pipe, which gathered from humidity in the air, rain or gel, and the suspended particles in air, and the corrosive composition, such as SO2, CO2, O2 and NaCI, in addition to the inhomogeneity of the organization and composition, which lead to the corrosion cell reaction, so that cause the corrosion initial from the contact surface of the between steel pipes, so as to form the corrosion groove. At the same time, the corrosion groove with depth of 0.125t (t pipe wall thickness) on the pipe of φ 1016 mm×21 mm ×70 API SPEC 5L was simulated using the FEM (finite element method), and the stress and strain distribution of the defect area near corrosion groove were solved at the inner pressure of 12 MPa, 10 MPa, 8 MPa, 6 MPa, 4 MPa and 2 MPa, respectively, which showed that no matter the pressure values were, the maximum stress and strain were lied at the bottom of corrosion defects groove and were in good linear relationship with the internal pressure increasing from 2 MPa to 6 MPa. When the internal pres- sures were greater than 6 MPa, they felled into the nonlinear model and to be yielded or even to be destroyed. In addition, the residual strength and the limit operation pressure of the corrode pipe with the defects groove of 0.125t were calculated or simulated according to the theoretical calculation, the finite element method based on the stress, the finite element method based on strain, DNV-RP-F101, ASME B31G and experimental methods respectively. The results showed that the residual strength and the limit operation pressure of the defective parts solved by the finite element method based on stress were 424 MPa, and 15.34 MPa, respectively, which was very close to that of experimental method, the residual strength was 410 MPa and the limit operation pressure 14.78 MPa. Besides, the results also showed that it was feasible and effective to simulate the residual strength of the structure with corrosion defects using the finite element method.展开更多
This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the...This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.展开更多
The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based...The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.展开更多
The Finite Element Limiting Analysis Method(LELAM) has the advantage of combining a numerical analysis method with traditional limiting equilibrium methods.It is particularly applicable to the analysis and design of g...The Finite Element Limiting Analysis Method(LELAM) has the advantage of combining a numerical analysis method with traditional limiting equilibrium methods.It is particularly applicable to the analysis and design of geotechnical engineering.In the early 20th century,FELAM has been developed vigorously in domestic geotechnical engineering over international common finite element procedures.It has made great achievements in basic theory research and computational precision,thus broadening the application fields in practical projects.In order to gradually make innovations in geotechnical design methods,some of our research results are presented,mainly including geotechnical safety factor definitions,the principles for use of the method concerned,the overall failure criterion,the deduction and selection of the yield criterion,and the measurement to improve the computational precision,etc..The application field has been broadened from two-dimensional to three-dimensional,from soil slope to jointed rock slope and foundation,from stable seepage to non-stable seepage,from slope and foundation to tunnel.This method has also been used in search of many hidden sliding surfaces of complex landslides,conducting the structural support design considering the interaction between the soil and the structure,and computing simulation foundation bearing plates load tests,etc..展开更多
Coupled thermo-mechanical analysis of two bonded functionally graded materials subjected to thermal loads is conducted in this study with the graded finite element method. The thermal-mechanical properties of the bi-m...Coupled thermo-mechanical analysis of two bonded functionally graded materials subjected to thermal loads is conducted in this study with the graded finite element method. The thermal-mechanical properties of the bi-material interfaces are classified based on discontinuity degrees of their material properties and their derivatives at the interfaces. Numerical results indicate that discontinuity exerts remarkable effect on the temperature profile and stress value at the interface of two bonded functionally-graded materials. Under the thermal flux loading conditions, the stronger the interface discontinuity is, the smaller the heat flux is.展开更多
The Finite Element Method of Lines (FEMOL) is a semi-analytic approach and takes a position between FEM and analytic methods. First, FEMOL in Fracture Mechanics is presented in detail. Then, the method is applied to...The Finite Element Method of Lines (FEMOL) is a semi-analytic approach and takes a position between FEM and analytic methods. First, FEMOL in Fracture Mechanics is presented in detail. Then, the method is applied to a set of examples such as edge-crack plate, the central-crack plate, the plate with cracks emanating from a hole under tensile or under combination loads of tensile and bending. Their dimensionless stress distribution, the stress intensify factor (SIF) and crack opening displacement (COD) are obtained, and comparison with known solutions by other methods are reported. It is found that a good accuracy is achieved by FEMOL. The method is successfully modified to remarkably increase the accuracy and reduce convergence difficulties. So it is a very useful and new tool in studying fracture mechanics problems.展开更多
The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced conc...The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.展开更多
Simulation of the temperature field of copier paper in copier fusing is very important for improving the fusing property of reprography. The temperature field of copier paper varies with a high gradient when the copie...Simulation of the temperature field of copier paper in copier fusing is very important for improving the fusing property of reprography. The temperature field of copier paper varies with a high gradient when the copier paper is moving through the fusing rollers. By means of conventional shaft elements, the high gradient temperature variety causes the oscillation of the numerical solution. Based on the Daubechies scaling functions, a kind of wavelet based element is constructed for the above problem. The temperature field of the copier paper moving through the fusing rollers is simulated using the two methods. Comparison of the results shows the advantages of the wavelet finite element method, which provides a new method for improving the copier properties.展开更多
The nonlinear analysis of reinforced concrete rectangular slabs undermonotonic transverse loads is performed by finite element method.The layered rectangu-lar element with 4 nodes and 20 degrees of freedom is develope...The nonlinear analysis of reinforced concrete rectangular slabs undermonotonic transverse loads is performed by finite element method.The layered rectangu-lar element with 4 nodes and 20 degrees of freedom is developed,in whichbending-stretching coupling effect is taken into account.An orthotropic equivalentuniaxial stress-strain constitutive model of concrete is used.A program is worked out andused to calculate two reinforced concrete slabs.The results of calculation are in goodconformity with the corresponding test results.In addition,the influence of tension stif-fening effect of cracked concrete on the results of calculation is discussed.展开更多
An axisymmetrical unit cell model was used to represent a bimodal Al alloy that was composed of both nano-grained (NG) and coarse-grained (CG) aluminum. Effects of microstructural and materials parameters on tensi...An axisymmetrical unit cell model was used to represent a bimodal Al alloy that was composed of both nano-grained (NG) and coarse-grained (CG) aluminum. Effects of microstructural and materials parameters on tensile properties of bimodal AI alloy were investigated by finite element method (FEM). The parameters analyzed included aspect ratios of CG Al and the unit cell, volume fraction of CG Al (VFCG), and yield strength and strain hardening exponent of CG Al. Aspect ratios of CG Al and the unit cell have no significant influence on tensile stress-strain response of the bimodal Al alloy. This phenomenon derives from the similarity in elastic modulus and coefficient of thermal expansion between CG AI and NG Al. Conversely, tensile properties of bimodal Al alloy are extremely sensitive to VFCG, yield strength and strain hardening exponent of CG Al. Specifically, as VFCG increases, both yield strength and ultimate tensile strength (UTS) of the bimodal Al alloy decreases, while uniform strain of bimodal AI alloy increases. In addition, an increase in yield strength of CG Al results in an increase in both yield stress and UTS of bimodal AI alloy and a decrease in uniform strain of bimodal Al alloy. The lower capability in lowering the increase of stress concentration in NG Al due to a higher yield strength of CG Al causes the lower uniform strain of the bimodal AI alloy. When strain hardening exponent of CG Al increases, 0.2% yield stress, UTS, and uniform strain of the bimodal Al alloy increases. This can be attributed to the increased work-hardening ability of CG Al with a higher strain hardening exponent.展开更多
The compactly supported wavelet basis functions are introduced into the construction of interpolating function of traditional finite element method when analyzing the problems with high gradient, and the traditional i...The compactly supported wavelet basis functions are introduced into the construction of interpolating function of traditional finite element method when analyzing the problems with high gradient, and the traditional interpolating method is modified. The numerical stability of the new interpolating pattern is discussed and the convergence of the new method is also discussed by patch test analysis. The additional freedom of the new interpolating pattern is eliminated by static condensation method. Finally, the wavelet finite element formulations based on variational principles are put forward.展开更多
The plastic node method is reformulated by the variational principle and is applied to elasto-plastic finite element analysis of tubular joints, eventually including the effect of internal and external gussets, stiffe...The plastic node method is reformulated by the variational principle and is applied to elasto-plastic finite element analysis of tubular joints, eventually including the effect of internal and external gussets, stiffener rings, etc., if necessary. Four different joints are studied here in detail for the elasto-plastic behavior, the strain at the hot spot, the strain concentration factor around the intersection line, and the propagation of the plastic region with loading up to collapse in order to determine the ultimate strength, safety factor, and development of the plastic field. The present results are in good agreement with the experimental results.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51890912,51979025 and 52011530189).
文摘This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.
基金the National Natural Science Foundation of China(No.11672238)the 111 Project(No.BP0719007)the Shaanxi Province Natural Science Foundation(No.2020JZ-06)for the financial support.
文摘A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FEM is described and compared with ES-FEM.A practical modification of IES-FEM is then introduced that used the technique employed by ES-FEM for the nodal strain calculation.The differences in the strain computation among ES-FEM,IES-FEM,and FEM are then discussed.The modified IES-FEM exhibited superior performance in displacement and a slight advantage in stress compared to FEM using the same mesh according to the results obtained from both the regular and irregular elements.The robustness of the IES-FEM to severely deformed meshes was also verified.
基金financially supported by the National Natural Science Foundation of China(Nos.12302228 and 12372170)。
文摘Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the structural safety of supersonic vehicles,but it has been rarely investigated.Given that existing methods are inefficient for high-frequency dynamic analysis in multi-physics fields,the present work addresses this challenge by proposing a Stochastic Energy Finite Element Method(SEFEM).SEFEM uses energy density instead of displacement to describe the dynamic response,thereby significantly enhancing its efficiency.In SEFEM,the effects of aerodynamic and thermal loads on the energy propagation characteristics are studied analytically and incorporated into the energy density governing equation.These effects are also considered when calculating the input power generated by the acoustic load,and two effective approaches named Frequency Response Function Method(FRFM)and Mechanical Impedance Method(MIM)are developed accordingly and integrated into SEFEM.The good accuracy,applicability,and high efficiency of the proposed SEFEM are demonstrated through numerical simulations performed on a two-dimensional panel under aero-thermoacoustic loads.Additionally,the effects and underlying mechanisms of aero-thermo-acoustic loads on the high-frequency response are explored.This work not only presents an efficient approach for predicting high-frequency dynamic response of panels subjected to aero-thermo-acoustic loads,but also provides insights into the high-frequency dynamic characteristics in multi-physics fields.
基金supported by the Natural Science Foundation of Shandong Province(ZR2021MA019)the National Natural Science Foundation of China(11871312)。
文摘In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.
基金This work was supported by the National Natural Science Foundation of China(Nos.51405370&51421004)the National Key Basic Research Program of China(No.2015CB057400)+2 种基金the project supported by Natural Science Basic Plan in Shaanxi Province of China(No.2015JQ5184)the Fundamental Research Funds for the Central Universities(xjj2014014)Shaanxi Province Postdoctoral Research Project.
文摘A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.
基金supported by the National Natural Science Foundation of China (51109029,51178081,51138001,and 51009020)the State Key Development Program for Basic Research of China (2013CB035905)
文摘A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.
基金funded by the Zhejiang Province Science and Technology Plan Project under grant number 2023C01069the Hebei Provincial Program on Key Basic Research Project under grant number 23311808Dthe Wenzhou Major Science and Technology Innovation Project of China under grant number ZG2022004。
文摘High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method.Firstly,the physical field is approximated by uniform B-spline interpolation,while geometry is represented by non-uniform rational B-spline interpolation.By introducing a transformation matrix,elements of types C^(0)and C^(1)are constructed in the isogeometric finite element method.Subsequently,the corresponding calculation formats for one-dimensional bars,beams,and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and parameter mapping.The proposed method combines element construction techniques of the finite element method with geometric construction techniques of isogeometric analysis,eliminating the need for mesh generation and maintaining flexibility in element construc-tion.Two elements with interpolation characteristics are constructed in the method so that boundary conditions and connections between elements can be processed like the finite element method.Finally,the test results of several examples show that:(1)Under the same degree and element node numbers,the constructed elements are almost consistent with the results obtained by traditional finite element method;(2)For bar problems with large local field variations and beam problems with variable cross-sections,high-degree and multi-nodes elements constructed can achieve high computational accuracy with fewer degrees of freedom than finite element method;(3)The computational efficiency of isogeometric finite element method is higher than finite element method under similar degrees of freedom,while as degrees of freedom increase,the computational efficiency between the two is similar.
基金supported by the National Natural Science Foundation of China(Nos.51101127 and 51171154)Soar Star of Northwestern Polytechnical University(2011)Fundamental Research Foundation of Northwestern Polytechnical University(No.JC201213)
文摘The basic principle of corrode groove on outside of steel pipe during storage was analyzed in this paper, namely the water film on the contacted surface of steel pipe, which gathered from humidity in the air, rain or gel, and the suspended particles in air, and the corrosive composition, such as SO2, CO2, O2 and NaCI, in addition to the inhomogeneity of the organization and composition, which lead to the corrosion cell reaction, so that cause the corrosion initial from the contact surface of the between steel pipes, so as to form the corrosion groove. At the same time, the corrosion groove with depth of 0.125t (t pipe wall thickness) on the pipe of φ 1016 mm×21 mm ×70 API SPEC 5L was simulated using the FEM (finite element method), and the stress and strain distribution of the defect area near corrosion groove were solved at the inner pressure of 12 MPa, 10 MPa, 8 MPa, 6 MPa, 4 MPa and 2 MPa, respectively, which showed that no matter the pressure values were, the maximum stress and strain were lied at the bottom of corrosion defects groove and were in good linear relationship with the internal pressure increasing from 2 MPa to 6 MPa. When the internal pres- sures were greater than 6 MPa, they felled into the nonlinear model and to be yielded or even to be destroyed. In addition, the residual strength and the limit operation pressure of the corrode pipe with the defects groove of 0.125t were calculated or simulated according to the theoretical calculation, the finite element method based on the stress, the finite element method based on strain, DNV-RP-F101, ASME B31G and experimental methods respectively. The results showed that the residual strength and the limit operation pressure of the defective parts solved by the finite element method based on stress were 424 MPa, and 15.34 MPa, respectively, which was very close to that of experimental method, the residual strength was 410 MPa and the limit operation pressure 14.78 MPa. Besides, the results also showed that it was feasible and effective to simulate the residual strength of the structure with corrosion defects using the finite element method.
文摘This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.
基金the Fundamental Research Funds for the Central Universities under Grant No.HEUCFZ1125National Natural Science Foundation of China under Grant No.10972064
文摘The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.
文摘The Finite Element Limiting Analysis Method(LELAM) has the advantage of combining a numerical analysis method with traditional limiting equilibrium methods.It is particularly applicable to the analysis and design of geotechnical engineering.In the early 20th century,FELAM has been developed vigorously in domestic geotechnical engineering over international common finite element procedures.It has made great achievements in basic theory research and computational precision,thus broadening the application fields in practical projects.In order to gradually make innovations in geotechnical design methods,some of our research results are presented,mainly including geotechnical safety factor definitions,the principles for use of the method concerned,the overall failure criterion,the deduction and selection of the yield criterion,and the measurement to improve the computational precision,etc..The application field has been broadened from two-dimensional to three-dimensional,from soil slope to jointed rock slope and foundation,from stable seepage to non-stable seepage,from slope and foundation to tunnel.This method has also been used in search of many hidden sliding surfaces of complex landslides,conducting the structural support design considering the interaction between the soil and the structure,and computing simulation foundation bearing plates load tests,etc..
基金supported by the National Natural Science Foundation of China(Nos.10902046,11032006and11121202)the Fundamental Research Funds for the Central Universities(lzujbky-2012-2)+1 种基金the Fund of Ministry of Education of the Program of Changjiang Scholars and Innovative Research Team in University(No.IRT0628)the Science Foundation of the Ministry of Education of China for Ph.D.program
文摘Coupled thermo-mechanical analysis of two bonded functionally graded materials subjected to thermal loads is conducted in this study with the graded finite element method. The thermal-mechanical properties of the bi-material interfaces are classified based on discontinuity degrees of their material properties and their derivatives at the interfaces. Numerical results indicate that discontinuity exerts remarkable effect on the temperature profile and stress value at the interface of two bonded functionally-graded materials. Under the thermal flux loading conditions, the stronger the interface discontinuity is, the smaller the heat flux is.
文摘The Finite Element Method of Lines (FEMOL) is a semi-analytic approach and takes a position between FEM and analytic methods. First, FEMOL in Fracture Mechanics is presented in detail. Then, the method is applied to a set of examples such as edge-crack plate, the central-crack plate, the plate with cracks emanating from a hole under tensile or under combination loads of tensile and bending. Their dimensionless stress distribution, the stress intensify factor (SIF) and crack opening displacement (COD) are obtained, and comparison with known solutions by other methods are reported. It is found that a good accuracy is achieved by FEMOL. The method is successfully modified to remarkably increase the accuracy and reduce convergence difficulties. So it is a very useful and new tool in studying fracture mechanics problems.
文摘The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.
文摘Simulation of the temperature field of copier paper in copier fusing is very important for improving the fusing property of reprography. The temperature field of copier paper varies with a high gradient when the copier paper is moving through the fusing rollers. By means of conventional shaft elements, the high gradient temperature variety causes the oscillation of the numerical solution. Based on the Daubechies scaling functions, a kind of wavelet based element is constructed for the above problem. The temperature field of the copier paper moving through the fusing rollers is simulated using the two methods. Comparison of the results shows the advantages of the wavelet finite element method, which provides a new method for improving the copier properties.
文摘The nonlinear analysis of reinforced concrete rectangular slabs undermonotonic transverse loads is performed by finite element method.The layered rectangu-lar element with 4 nodes and 20 degrees of freedom is developed,in whichbending-stretching coupling effect is taken into account.An orthotropic equivalentuniaxial stress-strain constitutive model of concrete is used.A program is worked out andused to calculate two reinforced concrete slabs.The results of calculation are in goodconformity with the corresponding test results.In addition,the influence of tension stif-fening effect of cracked concrete on the results of calculation is discussed.
基金supported by the Office of Naval Re-search, contract N00014-03-C-0163, monitored by Rod Pe-terson.
文摘An axisymmetrical unit cell model was used to represent a bimodal Al alloy that was composed of both nano-grained (NG) and coarse-grained (CG) aluminum. Effects of microstructural and materials parameters on tensile properties of bimodal AI alloy were investigated by finite element method (FEM). The parameters analyzed included aspect ratios of CG Al and the unit cell, volume fraction of CG Al (VFCG), and yield strength and strain hardening exponent of CG Al. Aspect ratios of CG Al and the unit cell have no significant influence on tensile stress-strain response of the bimodal Al alloy. This phenomenon derives from the similarity in elastic modulus and coefficient of thermal expansion between CG AI and NG Al. Conversely, tensile properties of bimodal Al alloy are extremely sensitive to VFCG, yield strength and strain hardening exponent of CG Al. Specifically, as VFCG increases, both yield strength and ultimate tensile strength (UTS) of the bimodal Al alloy decreases, while uniform strain of bimodal AI alloy increases. In addition, an increase in yield strength of CG Al results in an increase in both yield stress and UTS of bimodal AI alloy and a decrease in uniform strain of bimodal Al alloy. The lower capability in lowering the increase of stress concentration in NG Al due to a higher yield strength of CG Al causes the lower uniform strain of the bimodal AI alloy. When strain hardening exponent of CG Al increases, 0.2% yield stress, UTS, and uniform strain of the bimodal Al alloy increases. This can be attributed to the increased work-hardening ability of CG Al with a higher strain hardening exponent.
文摘The compactly supported wavelet basis functions are introduced into the construction of interpolating function of traditional finite element method when analyzing the problems with high gradient, and the traditional interpolating method is modified. The numerical stability of the new interpolating pattern is discussed and the convergence of the new method is also discussed by patch test analysis. The additional freedom of the new interpolating pattern is eliminated by static condensation method. Finally, the wavelet finite element formulations based on variational principles are put forward.
文摘The plastic node method is reformulated by the variational principle and is applied to elasto-plastic finite element analysis of tubular joints, eventually including the effect of internal and external gussets, stiffener rings, etc., if necessary. Four different joints are studied here in detail for the elasto-plastic behavior, the strain at the hot spot, the strain concentration factor around the intersection line, and the propagation of the plastic region with loading up to collapse in order to determine the ultimate strength, safety factor, and development of the plastic field. The present results are in good agreement with the experimental results.