In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body...In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence.展开更多
The lowest order Pl-nonconforming triangular finite element method (FEM) for elliptic and parabolic interface problems is investigated. Under some reasonable regularity assumptions on the exact solutions, the optima...The lowest order Pl-nonconforming triangular finite element method (FEM) for elliptic and parabolic interface problems is investigated. Under some reasonable regularity assumptions on the exact solutions, the optimal order error estimates are obtained in the broken energy norm. Finally, some numerical results are provided to verify the theoretical analysis.展开更多
This article reports our explorations for solving interface problems of the Helmholtz equation by immersed finite elements (IFE) on interface independent meshes. Two IFE methods are investigated: the partially penaliz...This article reports our explorations for solving interface problems of the Helmholtz equation by immersed finite elements (IFE) on interface independent meshes. Two IFE methods are investigated: the partially penalized IFE (PPIFE) and discontinuous Galerkin IFE (DGIFE) methods. Optimal convergence rates are observed for these IFE methods once the mesh size is smaller than the optimal mesh size which is mainly dictated by the wave number. Numerical experiments also suggest that higher degree IFE methods are advantageous because of their larger optimal mesh size and higher convergence rates.展开更多
In this paper,two-grid immersed finite element (IFE) algorithms are proposed and analyzed for semi-linear interface problems with discontinuous diffusion coefficients in two dimension.Because of the advantages of fini...In this paper,two-grid immersed finite element (IFE) algorithms are proposed and analyzed for semi-linear interface problems with discontinuous diffusion coefficients in two dimension.Because of the advantages of finite element (FE) formulation and the simple structure of Cartesian grids,the IFE discretization is used in this paper.Two-grid schemes are formulated to linearize the FE equations.It is theoretically and numerically illustrated that the coarse space can be selected as coarse as H =O(h^1/4)(or H =O(h^1/8)),and the asymptotically optimal approximation can be achieved as the nonlinear schemes.As a result,we can settle a great majority of nonlinear equations as easy as linearized problems.In order to estimate the present two-grid algorithms,we derive the optimal error estimates of the IFE solution in the L^p norm.Numerical experiments are given to verify the theorems and indicate that the present two-grid algorithms can greatly improve the computing efficiency.展开更多
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed...In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed and analyzed. Optimal errors are obtained and numerical experiments are presented to show the efficiency and effectiveness of the local and parallel finite element algorithm.展开更多
The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully disc...The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully discrete DLM/FD-mixed finite element scheme are developed for the first time for this problem with a moving interface,where the arbitrary Lagrangian-Eulerian(ALE)technique is employed to deal with the moving and immersed subdomain.Stability and optimal convergence properties are obtained for both schemes.Numerical experiments are carried out for different scenarios of jump coefficients,and all theoretical results are validated.展开更多
In this paper,an augmented two-scale finite element method is proposed for a class of linear and nonlinear eigenvalue problems on tensor-product domains.Through a correction step,the augmented two-scale finite element...In this paper,an augmented two-scale finite element method is proposed for a class of linear and nonlinear eigenvalue problems on tensor-product domains.Through a correction step,the augmented two-scale finite element solution is obtained by solving an eigenvalue problem on a low-dimensional augmented subspace.Theoretical analysis and numerical experiments show that the augmented two-scale finite element solution achieves the same order of accuracy as the standard finite element solution on a fine grid,but the computational cost required by the former solution is much lower than that demanded by the latter.The augmented two-scale finite element method also improves the approximation accuracy of eigenfunctions in the L^(2)(Ω)norm compared with the two-scale finite element method.展开更多
In this paper, we study Nitsche extended finite element method (XFEM) for the inter- face problem of a two dimensional diffusion equation. Specifically, we study the quadratic XFEM scheme on some shape-regular famil...In this paper, we study Nitsche extended finite element method (XFEM) for the inter- face problem of a two dimensional diffusion equation. Specifically, we study the quadratic XFEM scheme on some shape-regular family of grids and prove the optimal convergence rate of the scheme with respect to the mesh size. Main efforts are devoted onto classifying the cases of intersection between the elements and the interface and prove a weighted trace inequality for the extended finite element functions needed, and the general framework of analysing XFEM c^n be implemented then.展开更多
An iterative algorithm is proposed and analyzed based on a hybridized mixed finite element method for numerically solving two-phase generalized Stefan interface problems with strongly discontinuous solutions, conormal...An iterative algorithm is proposed and analyzed based on a hybridized mixed finite element method for numerically solving two-phase generalized Stefan interface problems with strongly discontinuous solutions, conormal derivatives, and coefficients. This algorithm iteratively solves small problems for each single phase with good accuracy and exchange information at the interface to advance the iteration until convergence, following the idea of Schwarz Alternating Methods. Error estimates are derived to show that this algorithm always converges provided that relaxation parameters are suitably chosen. Numeric experiments with matching and non-matching grids at the interface from different phases are performed to show the accuracy of the method for capturing discontinuities in the solutions and coefficients. In contrast to standard numerical methods, the accuracy of our method does not seem to deteriorate as the coefficient discontinuity increases.展开更多
This article concerns numerical approximation of a parabolic interface problem with general L 2 initial value.The problem is discretized by a finite element method with a quasi-uniform triangulation of the domain fitt...This article concerns numerical approximation of a parabolic interface problem with general L 2 initial value.The problem is discretized by a finite element method with a quasi-uniform triangulation of the domain fitting the interface,with piecewise linear approximation to the interface.The semi-discrete finite element problem is furthermore discretized in time by the k-step backward difference formula with k=1,...,6.To maintain high-order convergence in time for possibly nonsmooth L 2 initial value,we modify the standard backward difference formula at the first k−1 time levels by using a method recently developed for fractional evolution equations.An error bound of O(t−k nτk+t−1 n h 2|log h|)is established for the fully discrete finite element method for general L 2 initial data.展开更多
This article is to discuss the bilinear and linear immersed finite element(IFE)solutions generated from the algebraic multigrid solver for both stationary and moving interface problems.For the numerical methods based ...This article is to discuss the bilinear and linear immersed finite element(IFE)solutions generated from the algebraic multigrid solver for both stationary and moving interface problems.For the numerical methods based on finite difference formulation and a structured mesh independent of the interface,the stiffness matrix of the linear system is usually not symmetric positive-definite,which demands extra efforts to design efficient multigrid methods.On the other hand,the stiffness matrix arising from the IFE methods are naturally symmetric positive-definite.Hence the IFE-AMG algorithm is proposed to solve the linear systems of the bilinear and linear IFE methods for both stationary and moving interface problems.The numerical examples demonstrate the features of the proposed algorithms,including the optimal convergence in both L 2 and semi-H1 norms of the IFE-AMG solutions,the high efficiency with proper choice of the components and parameters of AMG,the influence of the tolerance and the smoother type of AMG on the convergence of the IFE solutions for the interface problems,and the relationship between the cost and the moving interface location.展开更多
This paper is devoted to solving the transient electric field and transient charge density on the dielectric interface under the electroquasistatic(EQS)field conditions with high accuracy.The proposed method is suitab...This paper is devoted to solving the transient electric field and transient charge density on the dielectric interface under the electroquasistatic(EQS)field conditions with high accuracy.The proposed method is suitable for both 2-D and 3-D applications.Firstly,the governing equations represented by scalar electric potential are discretized by the nodal finite element method(FEM)in space and the finite difference method in time.Secondly,the transient constrained electric field equation on the boundary(TCEFEB)is derived to calculate the normal component of the transient electric field intensities on the Dirichlet boundary and dielectric interface as well as the transient charge density on the dielectric interface.Finally,a 2-D numerical example is employed to demonstrate the validity of the proposed method.Furthermore,the comparisons of the numerical accuracy of the proposed method in this paper with the existing FEMs for electric field intensity and charge density on the dielectric interface are conducted.The results show that the numerical accuracy of the proposed method for calculating the normal component of transient electric field intensities on the Dirichlet boundary and dielectric interface as well as the transient charge density on the dielectric interface is close to that of nodal electric potential and an order of magnitude higher than those of existing FEMs.展开更多
The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approx...The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.展开更多
This paper investigates L∞--estimates for the general optimal control problems governed by two-dimensional nonlinear elliptic equations with pointwise control constraints using mixed finite element methods. The state...This paper investigates L∞--estimates for the general optimal control problems governed by two-dimensional nonlinear elliptic equations with pointwise control constraints using mixed finite element methods. The state and the co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. The authors derive L∞--estimates for the mixed finite element approximation of nonlinear optimal control problems. Finally, the numerical examples are given.展开更多
In this paper,we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems.The state and co-state are approximated by the lowest order Raviart-...In this paper,we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems.The state and co-state are approximated by the lowest order Raviart-Thomas mixed fi-nite element spaces and the control variable is approximated by piecewise constant functions.We derive L^(2) and L^(∞)-error estimates for the control variable.Moreover,using a recovery operator,we also derive some superconvergence results for the control variable.Finally,a numerical example is given to demonstrate the theoretical results.展开更多
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me...In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.展开更多
A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element m...A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element method together. The finite volume method is used to discretize the unsteady reaction-diffusion equation, while the finite element method is applied to estimate the gradient quantities at cell faces. Robustness and efficiency of the combined method have been evaluated on uniform rectangular grids by using available numerical solutions of the two-dimensional reaction-diffusion problems. The numerical solutions demonstrate that the combined method is stable and can provide accurate solution without spurious oscillation along the high-gradient boundary layers.展开更多
In this paper,we investigate a stochastic meshfree finite volume element method for an optimal control problem governed by the convection diffusion equations with random coefficients.There are two contributions of thi...In this paper,we investigate a stochastic meshfree finite volume element method for an optimal control problem governed by the convection diffusion equations with random coefficients.There are two contributions of this paper.Firstly,we establish a scheme to approximate the optimality system by using the finite volume element method in the physical space and the meshfree method in the probability space,which is competitive for high-dimensional random inputs.Secondly,the a priori error estimates are derived for the state,the co-state and the control variables.Some numerical tests are carried out to confirm the theoretical results and demonstrate the efficiency of the proposed method.展开更多
We investigate the superconvergence properties of the constrained quadratic elliptic optimal control problem which is solved by using rectangular mixed finite element methods.We use the lowest order Raviart-Thomas mix...We investigate the superconvergence properties of the constrained quadratic elliptic optimal control problem which is solved by using rectangular mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite element spaces to approximate the state and co-state variables and use piecewise constant functions to approximate the control variable.We obtain the superconvergence of O(h^(1+s))(0<s≤1)for the control variable.Finally,we present two numerical examples to confirm our superconvergence results.展开更多
基金supported by the US ARO grants 49308-MA and 56349-MAthe US AFSOR grant FA9550-06-1-024+1 种基金he US NSF grant DMS-0911434the State Key Laboratory of Scientific and Engineering Computing of Chinese Academy of Sciences during a visit by Z.Li between July-August,2008.
文摘In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence.
基金Project supported by the National Natural Science Foundation of China(No.11271340)
文摘The lowest order Pl-nonconforming triangular finite element method (FEM) for elliptic and parabolic interface problems is investigated. Under some reasonable regularity assumptions on the exact solutions, the optimal order error estimates are obtained in the broken energy norm. Finally, some numerical results are provided to verify the theoretical analysis.
文摘This article reports our explorations for solving interface problems of the Helmholtz equation by immersed finite elements (IFE) on interface independent meshes. Two IFE methods are investigated: the partially penalized IFE (PPIFE) and discontinuous Galerkin IFE (DGIFE) methods. Optimal convergence rates are observed for these IFE methods once the mesh size is smaller than the optimal mesh size which is mainly dictated by the wave number. Numerical experiments also suggest that higher degree IFE methods are advantageous because of their larger optimal mesh size and higher convergence rates.
基金Project supported by the National Natural Science Foundation of China(Nos.11671157 and11826212)
文摘In this paper,two-grid immersed finite element (IFE) algorithms are proposed and analyzed for semi-linear interface problems with discontinuous diffusion coefficients in two dimension.Because of the advantages of finite element (FE) formulation and the simple structure of Cartesian grids,the IFE discretization is used in this paper.Two-grid schemes are formulated to linearize the FE equations.It is theoretically and numerically illustrated that the coarse space can be selected as coarse as H =O(h^1/4)(or H =O(h^1/8)),and the asymptotically optimal approximation can be achieved as the nonlinear schemes.As a result,we can settle a great majority of nonlinear equations as easy as linearized problems.In order to estimate the present two-grid algorithms,we derive the optimal error estimates of the IFE solution in the L^p norm.Numerical experiments are given to verify the theorems and indicate that the present two-grid algorithms can greatly improve the computing efficiency.
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
文摘In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed and analyzed. Optimal errors are obtained and numerical experiments are presented to show the efficiency and effectiveness of the local and parallel finite element algorithm.
基金P.Sun was supported by NSF Grant DMS-1418806C.S.Zhang was partially supported by the National Key Research and Development Program of China(Grant No.2016YFB0201304)+1 种基金the Major Research Plan of National Natural Science Foundation of China(Grant Nos.91430215,91530323)the Key Research Program of Frontier Sciences of CAS.
文摘The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully discrete DLM/FD-mixed finite element scheme are developed for the first time for this problem with a moving interface,where the arbitrary Lagrangian-Eulerian(ALE)technique is employed to deal with the moving and immersed subdomain.Stability and optimal convergence properties are obtained for both schemes.Numerical experiments are carried out for different scenarios of jump coefficients,and all theoretical results are validated.
基金supported by the National Key R&D Program of China under Grant Nos.2019YFA0709600 and 2019YFA0709601the National Natural Science Foundation of China under Grant No.12021001+2 种基金supported by the National Natural Science Foundation of China under Grant No.92270206supported by the National Natural Science Foundation of China(Grant No.11771467)the disciplinary funding of Central University of Finance and Economics.
文摘In this paper,an augmented two-scale finite element method is proposed for a class of linear and nonlinear eigenvalue problems on tensor-product domains.Through a correction step,the augmented two-scale finite element solution is obtained by solving an eigenvalue problem on a low-dimensional augmented subspace.Theoretical analysis and numerical experiments show that the augmented two-scale finite element solution achieves the same order of accuracy as the standard finite element solution on a fine grid,but the computational cost required by the former solution is much lower than that demanded by the latter.The augmented two-scale finite element method also improves the approximation accuracy of eigenfunctions in the L^(2)(Ω)norm compared with the two-scale finite element method.
基金The first author is partially supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research as part of the Collaboratory on Mathematics for Mesoscopic Modeling of Materials under Award Number DE-SC-0009249, and the Key Program of National Natural Science Foundation of China with Grant No. 91430215. The second author is supported by State Key Laboratory of Scientific and Engineering Computing (LSEC), National Center for Mathematics and Interdisciplinary Sciences of Chinese Academy of Sciences (NCMIS), and National Natural Science Foundation of China with Grant No. 11471026 he is thankful to the Center for Computational Mathematics and Applications, the Pennsylvania State University, where he worked on this manuscript as a visiting scholar. The authors are grateful to Professor Jinchao Xu, Dr. Yuanming Xiao and Dr. Maximilian Metti for their valuable suggestions and discussions, to Professor Haijun Wu for his valuable help on preparing the numerical example, and to the anonymous referee for the valuable comments and suggestion which lead to improvements of the paper.
文摘In this paper, we study Nitsche extended finite element method (XFEM) for the inter- face problem of a two dimensional diffusion equation. Specifically, we study the quadratic XFEM scheme on some shape-regular family of grids and prove the optimal convergence rate of the scheme with respect to the mesh size. Main efforts are devoted onto classifying the cases of intersection between the elements and the interface and prove a weighted trace inequality for the extended finite element functions needed, and the general framework of analysing XFEM c^n be implemented then.
文摘An iterative algorithm is proposed and analyzed based on a hybridized mixed finite element method for numerically solving two-phase generalized Stefan interface problems with strongly discontinuous solutions, conormal derivatives, and coefficients. This algorithm iteratively solves small problems for each single phase with good accuracy and exchange information at the interface to advance the iteration until convergence, following the idea of Schwarz Alternating Methods. Error estimates are derived to show that this algorithm always converges provided that relaxation parameters are suitably chosen. Numeric experiments with matching and non-matching grids at the interface from different phases are performed to show the accuracy of the method for capturing discontinuities in the solutions and coefficients. In contrast to standard numerical methods, the accuracy of our method does not seem to deteriorate as the coefficient discontinuity increases.
文摘This article concerns numerical approximation of a parabolic interface problem with general L 2 initial value.The problem is discretized by a finite element method with a quasi-uniform triangulation of the domain fitting the interface,with piecewise linear approximation to the interface.The semi-discrete finite element problem is furthermore discretized in time by the k-step backward difference formula with k=1,...,6.To maintain high-order convergence in time for possibly nonsmooth L 2 initial value,we modify the standard backward difference formula at the first k−1 time levels by using a method recently developed for fractional evolution equations.An error bound of O(t−k nτk+t−1 n h 2|log h|)is established for the fully discrete finite element method for general L 2 initial data.
基金supported by DOE grant DE-FE0009843National Natural Science Foundation of China(11175052)GRF of HKSAR#501012 and NSERC(Canada).
文摘This article is to discuss the bilinear and linear immersed finite element(IFE)solutions generated from the algebraic multigrid solver for both stationary and moving interface problems.For the numerical methods based on finite difference formulation and a structured mesh independent of the interface,the stiffness matrix of the linear system is usually not symmetric positive-definite,which demands extra efforts to design efficient multigrid methods.On the other hand,the stiffness matrix arising from the IFE methods are naturally symmetric positive-definite.Hence the IFE-AMG algorithm is proposed to solve the linear systems of the bilinear and linear IFE methods for both stationary and moving interface problems.The numerical examples demonstrate the features of the proposed algorithms,including the optimal convergence in both L 2 and semi-H1 norms of the IFE-AMG solutions,the high efficiency with proper choice of the components and parameters of AMG,the influence of the tolerance and the smoother type of AMG on the convergence of the IFE solutions for the interface problems,and the relationship between the cost and the moving interface location.
基金This work was supported by the National Natural Science Foundation of China-State Grid Corporation Joint Fund for Smart Grid(No.U1766219).
文摘This paper is devoted to solving the transient electric field and transient charge density on the dielectric interface under the electroquasistatic(EQS)field conditions with high accuracy.The proposed method is suitable for both 2-D and 3-D applications.Firstly,the governing equations represented by scalar electric potential are discretized by the nodal finite element method(FEM)in space and the finite difference method in time.Secondly,the transient constrained electric field equation on the boundary(TCEFEB)is derived to calculate the normal component of the transient electric field intensities on the Dirichlet boundary and dielectric interface as well as the transient charge density on the dielectric interface.Finally,a 2-D numerical example is employed to demonstrate the validity of the proposed method.Furthermore,the comparisons of the numerical accuracy of the proposed method in this paper with the existing FEMs for electric field intensity and charge density on the dielectric interface are conducted.The results show that the numerical accuracy of the proposed method for calculating the normal component of transient electric field intensities on the Dirichlet boundary and dielectric interface as well as the transient charge density on the dielectric interface is close to that of nodal electric potential and an order of magnitude higher than those of existing FEMs.
文摘The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.
基金supported by the Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China under Grant No.10971074China Postdoctoral Science Foundation under Grant No.2011M500968
文摘This paper investigates L∞--estimates for the general optimal control problems governed by two-dimensional nonlinear elliptic equations with pointwise control constraints using mixed finite element methods. The state and the co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. The authors derive L∞--estimates for the mixed finite element approximation of nonlinear optimal control problems. Finally, the numerical examples are given.
基金This work is supported by National Science Foundation of China,Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009).
文摘In this paper,we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems.The state and co-state are approximated by the lowest order Raviart-Thomas mixed fi-nite element spaces and the control variable is approximated by piecewise constant functions.We derive L^(2) and L^(∞)-error estimates for the control variable.Moreover,using a recovery operator,we also derive some superconvergence results for the control variable.Finally,a numerical example is given to demonstrate the theoretical results.
基金heprojectissupportedbyNNSFofChina (No .1 9972 0 39) .
文摘In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.
文摘A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element method together. The finite volume method is used to discretize the unsteady reaction-diffusion equation, while the finite element method is applied to estimate the gradient quantities at cell faces. Robustness and efficiency of the combined method have been evaluated on uniform rectangular grids by using available numerical solutions of the two-dimensional reaction-diffusion problems. The numerical solutions demonstrate that the combined method is stable and can provide accurate solution without spurious oscillation along the high-gradient boundary layers.
基金supported by the National Natural Science Foundation of China(Nos.11701253,11971259,11801216)Natural Science Foundation of Shandong Province(No.ZR2017BA010)。
文摘In this paper,we investigate a stochastic meshfree finite volume element method for an optimal control problem governed by the convection diffusion equations with random coefficients.There are two contributions of this paper.Firstly,we establish a scheme to approximate the optimality system by using the finite volume element method in the physical space and the meshfree method in the probability space,which is competitive for high-dimensional random inputs.Secondly,the a priori error estimates are derived for the state,the co-state and the control variables.Some numerical tests are carried out to confirm the theoretical results and demonstrate the efficiency of the proposed method.
基金supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China 10971074+1 种基金the National Basic Research Program under the Grant 2005CB321703Hunan Provincial Innovation Foundation For Postgraduate CX2009B119.
文摘We investigate the superconvergence properties of the constrained quadratic elliptic optimal control problem which is solved by using rectangular mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite element spaces to approximate the state and co-state variables and use piecewise constant functions to approximate the control variable.We obtain the superconvergence of O(h^(1+s))(0<s≤1)for the control variable.Finally,we present two numerical examples to confirm our superconvergence results.