期刊文献+
共找到941篇文章
< 1 2 48 >
每页显示 20 50 100
Finite element analysis and experimental study on the sealing performance of low-phenyl silicone rubber sealing rings 被引量:1
1
作者 Ming Gao Dongkai Li +6 位作者 Kun Liu Shuliang Xu Feng Zhao Ben Guo Anhui Pan Xiao Xie Huanre Han 《Railway Sciences》 2025年第1期123-137,共15页
Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability an... Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability and short service life.To address these issues,low-phenyl silicone rubber was prepared and tested,and the finite element analysis and experimental studies on the sealing performance of its sealing rings were carried out.Design/methodology/approach–The low-temperature resistance and thermal stability of the prepared lowphenyl silicone rubber were studied using low-temperature tensile testing,differential scanning calorimetry,dynamic thermomechanical analysis and thermogravimetric analysis.The sealing performance of the lowphenyl silicone rubber sealing ring was studied by using finite element analysis software abaqus and experiments.Findings–The prepared low-phenyl silicone rubber sealing ring possessed excellent low-temperature resistance and thermal stability.According to the finite element analysis results,the finish of the flange sealing surface and groove outer edge should be ensured,and extrusion damage should be avoided.The sealing rings were more susceptible to damage in high compression ratio and/or low-temperature environments.When the sealing effect was ensured,a small compression ratio should be selected,and rubbers with hardness and elasticity less affected by temperature should be selected.The prepared low-phenyl silicone rubber sealing ring had zero leakage at both room temperature(RT)and�508C.Originality/value–The innovation of this study is that it provides valuable data and experience for the future development of the sealing rings used in the brake pipe flange joints of the railway freight cars in China. 展开更多
关键词 Low-phenyl silicone rubber Sealing ring Sealing performance finite element analysis LEAKAGE
在线阅读 下载PDF
Research on structural design and mechanical properties of precision electroplating machinery for automobiles based on finite element analysis
2
作者 Wang Jie Jiang Xiaobei 《电镀与精饰》 北大核心 2025年第11期10-21,共12页
Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS... Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS parametric modeling technology is used to construct its three-dimensional geometric model,and geometric simplification is carried out.Two surface treatment processes,HK-35 zinc nickel alloy electroplating and pure zinc electroplating,were designed,and the influence of different coatings on the mechanical properties of steering knuckles was compared and analyzed through numerical simulation.At the same time,standard specimens were prepared for salt spray corrosion testing and scratch method combined strength testing to verify the numerical simulation results.The results showed that under emergency braking and composite working conditions,the peak Von Mises stress of the zinc nickel alloy coating was 119.85 MPa,which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Its equivalent strain value was 652×10^(-6),which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Experimental data confirms that zinc nickel alloy coatings exhibit significant advantages in stress distribution uniformity,strain performance,and load-bearing capacity in high stress zones.The salt spray corrosion test further indicates that the coating has superior corrosion resistance and coating substrate interface bonding strength,which can significantly improve the mechanical stability and long-term reliability of automotive precision electroplating mechanical structures. 展开更多
关键词 finite element analysis electroplating machinery structure mechanical properties electroplating process salt spray corrosion bonding strength
在线阅读 下载PDF
Design and Finite Element Analysis of a New Type of Skeleton-Free,Traversing Secondary Lining Trolley
3
作者 Liang He 《Journal of Architectural Research and Development》 2025年第3期150-158,共9页
To effectively address the challenge where the speed of tunnel lining construction struggles to match that of tunnel face and inverted arch construction,and to enhance the quality of secondary lining,a new type of ske... To effectively address the challenge where the speed of tunnel lining construction struggles to match that of tunnel face and inverted arch construction,and to enhance the quality of secondary lining,a new type of skeleton-free,traversing secondary lining trolley has been developed.This trolley features a set of gantries paired with two sets of formwork.The formwork adopts a multi-segment hinged and strengthened design,ensuring its own strength can meet the requirements of secondary lining concrete pouring without relying on the support of the gantries.When retracted,the formwork can be transported by the gantries through another set of formwork in the supporting state,enabling early formwork support,effectively accelerating the construction progress of the tunnel’s secondary lining,and extending the maintenance time of the secondary lining with the formwork.Finite element software modeling was used for simulation calculations,and the results indicate that the structural strength,stiffness,and other performance parameters of the new secondary lining trolley meet the design requirements,verifying the rationality of the design. 展开更多
关键词 TUNNEL Secondary lining trolley Skeleton-free Traversing finite element analysis
在线阅读 下载PDF
Integrating finite element analysis in total hip arthroplasty for childhood hip disorders:Enhancing precision and outcomes
4
作者 Muhammad Imam Ammarullah 《World Journal of Orthopedics》 2025年第1期1-11,共11页
Total hip arthroplasty for adults with sequelae from childhood hip disorders poses significant challenges due to altered anatomy.The paper published by Oommen et al reviews the essential management strategies for thes... Total hip arthroplasty for adults with sequelae from childhood hip disorders poses significant challenges due to altered anatomy.The paper published by Oommen et al reviews the essential management strategies for these complex cases.This article explores the integration of finite element analysis(FEA)to enhance surgical precision and outcomes.FEA provides detailed biomechanical insights,aiding in preoperative planning,implant design,and surgical technique optimization.By simulating implant configurations and assessing bone quality,FEA helps in customizing implants and evaluating surgical techniques like subtrochanteric shortening osteotomy.Advanced imaging techniques,such as 3D printing,virtual reality,and augmented reality,further enhance total hip arthroplasty precision.Future research should focus on validating FEA models,developing patient-specific simulations,and promoting multidisciplinary collaboration.Integrating FEA and advanced technologies in total hip arthroplasty can improve functional outcomes,reduce complications,and enhance quality of life for patients with childhood hip disorder sequelae. 展开更多
关键词 finite element analysis Total hip arthroplasty Childhood hip disorders IMPLANT BIOMECHANICAL
暂未订购
Investigation of mechanical strength and deformation properties of Y25 bogie suspension systems by finite element analysis
5
作者 Celalettin Baykara 《Railway Sciences》 2025年第6期685-710,共26页
Purpose–This paper aims to offer a novel viewpoint for improving performance and reliability by developing and optimizing suspension components in a Y25 bogie through material optimization based on wheel–rail intera... Purpose–This paper aims to offer a novel viewpoint for improving performance and reliability by developing and optimizing suspension components in a Y25 bogie through material optimization based on wheel–rail interactions under variable load and track conditions.Design/methodology/approach–The suspension system,a critical component ensuring adaptation to road and load conditions in all vehicle types,is especially vital in heavy freight and passenger trains.In this context,the suspension set of the Y25 bogie–commonly used in T€urkiye and Europe–was modelled using CATIAV5,and stress analyses have been performed by way of ANSYS using the finite element analysis(FEA)method.E300-520-M cast steel was selected for the bogie frame,while two different spring steels,61SiCr7 and 51CrV4,were considered for the suspension springs.The modeled system was subjected to numerical analysis under loading conditions.The resulting stresses and displacements were compared with the mechanical properties of the selected materials to validate the design.Findings–The results demonstrate that the mechanical strength and deformation characteristics of the suspension components vary according to the applied external loads.The stress and displacement responses of the system were found to be within the allowable limits of the selected materials,confirming the structural integrity and reliability of the design.The suspension set is deemed suitable for the prescribed material and environmental conditions,suggesting potential for practical application in real-world rail systems.Originality/value–This research contributes to the design and optimization of bogie suspension systems using advanced CAD/CAE tools.It thinks that the material selection and numerical validation approach presented here can guide future designs in heavy load rail applications and potentially improve both safety and performance. 展开更多
关键词 finite element analysis Y25 railway bogie Suspension system Railway vehicles Wheel-rail interaction
在线阅读 下载PDF
Finite element analysis of the impact of graphene filler dispersion on local hotspots in HMX-based PBX explosives
6
作者 Xuanyi Yang Xin Huang +2 位作者 Chaoyang Zhang Yanqing Wang Yuxiang Ni 《Chinese Physics B》 2025年第5期467-472,共6页
The incorporation of graphene fillers into polymer matrices has been recognized for its potential to enhance thermal conductivity,which is particularly beneficial for applications in thermal management.The uniformity ... The incorporation of graphene fillers into polymer matrices has been recognized for its potential to enhance thermal conductivity,which is particularly beneficial for applications in thermal management.The uniformity of graphene dispersion is pivotal to achieving optimal thermal conductivity,thereby directly influencing the effectiveness of thermal management,including the mitigation of local hot-spot temperatures.This research employs a quantitative approach to assess the distribution of graphene fillers within a PBX(plastic-bonded explosive)matrix,focusing specifically on the thermal management of hot spots.Through finite element method(FEM)simulations,we have explored the impact of graphene filler orientation,proximity to the central heat source,and spatial clustering on heat transfer.Our findings indicate that the strategic distribution of graphene fillers can create efficient thermal conduction channels,which significantly reduce the temperatures at local hot spots.In a model containing 0.336%graphene by volume,the central hot-spot temperature was reduced by approximately 60 K compared to a pure PBX material,under a heat flux of 600 W/m^(2).This study offers valuable insights into the optimization of the spatial arrangement of low-concentration graphene fillers,aiming to improve the thermal management capabilities of HMX-based PBX explosives. 展开更多
关键词 thermal management graphene fillers spatial distribution optimization finite element analysis hot-spot temperature
原文传递
Integrated Discrete Cell Complexes and Finite Element Analysis for Microstructure Topology Evolution during Severe Plastic Deformation
7
作者 Siying Zhu Weijian Gao +1 位作者 Min Yi Zhuhua Zhang 《Computers, Materials & Continua》 2025年第10期657-679,共23页
Microstructure topology evolution during severe plastic deformation(SPD)is crucial for understanding and optimising the mechanical properties of metallic materials,though its prediction remains challenging.Herein,we c... Microstructure topology evolution during severe plastic deformation(SPD)is crucial for understanding and optimising the mechanical properties of metallic materials,though its prediction remains challenging.Herein,we combine discrete cell complexes(DCC),a fully discrete algebraic topology model-with finite element analysis(FEA)to simulate and analyse the microstructure topology of pure copper under SPD.Using DCC,we model the evolution of microstructure topology characterised by Betti numbers(β_(0),β_(1),β_(2))and Euler characteristic(χ).This captures key changes in GBNs and topological features within representative volume elements(RVEs)containing several hundred grains during SPD-induced recrystallisation.As SPD cycles increase,high-angle grain boundaries(HAGBs)progressively form.Topological analysis reveals an overall decrease in β_(0)values,indicating fewer isolated HAGB substructures,while β_(2) values show a steady upward trend,highlighting new grain formation.Leveraging DCC-derived RVE topology and FEA-generated plastic strain data,we directly simulate the evolution and spatial distribution of microstructure topology and HAGB fraction in a copper tube undergoing cyclic parallel tube channel angular pressing(PTCAP),a representative SPD technique.Within the tube,the HAGB fraction continuously increases with PTCAP cycles,reflecting the microstructure’s gradual transition from subgrains to fully-formed grains.Analysis of Betti number distribution and evolution reveals the microstructural reconstruction mechanism underpinning this subgrain to grain transition during PTCAP.We further demonstrate the significant influence of spatially non-uniform plastic strain distribution on microstructure reconstruction kinetics.This study demonstrates a feasible approach for simulating microstructure topology evolution of metals processed by cyclic SPD via the integration of DCC and FEA. 展开更多
关键词 Microstructure topology betti numbers discrete cell complexes finite element analysis severe plastic deformation
在线阅读 下载PDF
Inverse identification of damage and fracture properties in fine‑grained nuclear graphite using finite element analysis
8
作者 Jie Shen Hong‑Niao Chen +2 位作者 DKLTsang Xiao Li Shi‑Gui Zhao 《Nuclear Science and Techniques》 2025年第10期192-210,共19页
Identifying the damage and fracture properties of nuclear graphite materials and accurately simulating them are crucial when designing graphite core structures.To simulate the damage evolution and crack propagation of... Identifying the damage and fracture properties of nuclear graphite materials and accurately simulating them are crucial when designing graphite core structures.To simulate the damage evolution and crack propagation of graphite under stress in a finite element model,compression tests on disks and three-point bending tests on center-notched beams for fine-grained graphite(CDI-1D and IG11 graphite)were conducted.During these tests,digital image correlation and electronic speckle pattern interferometry techniques were utilized to observe the surface full-field displacements of the specimens.A segmented finite element inverse analysis method was developed to characterize the graphite’s damage evolution by quantifying the reduction in Young’s modulus with tensile and compressive strains in disk specimens.The fracture energy and bilinear tensile softening curve of the graphite were determined by comparing the load–displacement responses of the three-point bending tests and the finite element simulation.Finally,by combining the identified damage laws with a fracture criterion based on fracture energy,a damage–fracture model was established and used to simulate tensile tests on L-shaped specimens with different fillet radii.Simulations indicate that the damage area at the fillet expands with increasing radius,creating a blunting effect that enhances the load-bearing capacity of the specimens.This damage–fracture model can be applied to simulate graphite components in core structures. 展开更多
关键词 GRAPHITE Fracture energy Damage characterization finite element analysis
在线阅读 下载PDF
The Finite Element Analysis of Optimal Orthodontic Force for Canine Distalization with Long-Arm Brackets
9
作者 Zhidan Zhu Xiaojing Sun +4 位作者 Bin Lu Qijie Shi Yun Tang Siyu Zou Qian Jiang 《Journal of Biosciences and Medicines》 2025年第1期196-205,共10页
Objective: To compare the stress distribution in the periodontal ligament under different orthodontic forces during canine distalization using long-arm brackets, and to determine the optimal force value for this devic... Objective: To compare the stress distribution in the periodontal ligament under different orthodontic forces during canine distalization using long-arm brackets, and to determine the optimal force value for this device in orthodontic treatment. Methods: A finite element model was constructed after extracting the mandibular first premolar, and a long-arm bracket with a traction height of 6 mm was placed on the labial side of the mandibular canine. Three working conditions of 50 g, 100 g, and 150 g were simulated, and the magnitude and distribution of von Mises stress in the periodontal ligament were compared for each condition. Results: The maximum von Mises stress in the periodontal ligament was 0.013281 MPa in the 50 g condition, 0.02536 MPa in the 100 g condition, and 0.035549 MPa in the 150 g condition. As the orthodontic force increased, the stress distribution area in the periodontal ligament also expanded. Conclusion: A 100 g orthodontic force is the most suitable when using long-arm brackets, providing a relatively uniform stress distribution in the periodontal ligament and keeping the stress within a reasonable range. 展开更多
关键词 Orthodontic Force Tooth Movement finite element analysis Periodontal Ligament Stress
暂未订购
Finite element analysis and optimization of the rubber diaphragms in type-120 relief valves
10
作者 Ming Gao Dongkai Li +5 位作者 Kun Liu Lijun Liu Ben Guo Anhui Pan Xiao Xie Huanre Han 《Railway Sciences》 2025年第5期598-612,共15页
Purpose–Type-120 relief valves are critical components of locomotive braking systems,and they rapidly discharge the air pressure during brake release to enable swift pressure relief.In order to develop type-120 relie... Purpose–Type-120 relief valves are critical components of locomotive braking systems,and they rapidly discharge the air pressure during brake release to enable swift pressure relief.In order to develop type-120 relief valve rubber diaphragms with long life and high performance,the damaged faulty samples were analyzed and studied.Design/methodology/approach–Finite element analysis(FEA)was used to investigate the stress distribution and failure mechanism of the rubber diaphragms within the type-120 relief valves under dynamic loading conditions.The Ogden hyperelastic constitutive model was used to fit the diaphragm data obtained from the uniaxial tensile tests,and its suitability for the modeling of large deformations was confirmed.Findings–The FEA results indicated that,when the rubber diaphragms reached their maximum deformation,the peak stress on their upper surfaces was 5.44 MPa.Thus,this region is highly susceptible to fatigue damage.The service life of the rubber diaphragms could be extended by using rubber compounds with high tensile moduli or a fabric-reinforced rubber diaphragm.Originality/value–This study provides valuable data and experience for the development of the rubber diaphragms in the type-120 valves and other long-life rubber products in the railway field. 展开更多
关键词 Type-120 relief valve Rubber diaphragm Damage failure finite element analysis
在线阅读 下载PDF
Bioinspired Microgroove's Geometry Design and Finite Element Analysis of Bursting Influence Parameters for Metal-based Rupture Diaphragms
11
作者 Peilin Cao Cong Wang +5 位作者 Zhenzhi Mu Shichao Niu Xiao Liu Xiaosong Feng Linpeng Liu Zhiwu Han 《Journal of Bionic Engineering》 2025年第1期293-305,共13页
Serving as the initiating explosive devices between the propellant tank and the engines,metal-based rupture diaphragms are widely used in ramjet igniters owing to the advantages provided by their simple structure,smal... Serving as the initiating explosive devices between the propellant tank and the engines,metal-based rupture diaphragms are widely used in ramjet igniters owing to the advantages provided by their simple structure,small size,and low cost.However,the reliability of rupture pressure directly affects the success of engine ignition and rocket launch,which is mainly influenced by factors like material,structure,and residual thickness of the surface notch of the diaphragm.Among those,the geometry of the notch is easy to define and control when compared to the mechanical parameters of the ruptured diaphragm.Thus,to make the diaphragm rupture(1A30 Al)within the required pressure range(0.4 MPa±3.5%)with highly sensitive and reliability,we draw inspiration from the arthropod’s force-sensitive slit organ which encompasses curved microgrooves to design a Ω-shaped notch for the rupture diaphragm.Finite element analysis is used to study the relationship between the burst pressure and geometric dimension of theΩ-shaped and bioinspired microgroove.Based on that,metal-based rupture diaphragms are fabricated by femtosecond laser processing technology,followed by rupture tests.Experiment results demonstrate that the practical rupture pressure of the diaphragm is highly consistent with the finite element analysis results,which verifies the effectiveness of the bionic design. 展开更多
关键词 Rupture diaphragm Bioinspired microgroove Ω-shaped finite element analysis Burst pressure
在线阅读 下载PDF
Finite element analysis of stress at implant-bone interface of dental implants with different structures 被引量:3
12
作者 陈良建 何浩 +3 位作者 李益民 李挺 郭小平 汪瑞芳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1602-1610,共9页
The effect of structure,elastic modulus and thickness of lower modulus layer in porous titanium implants on the stress distribution at the implant-bone interface was investigated.Three-dimensional finite element model... The effect of structure,elastic modulus and thickness of lower modulus layer in porous titanium implants on the stress distribution at the implant-bone interface was investigated.Three-dimensional finite element models of different titanium implants were constructed.The structures of the implants included the whole lower modulus style (No.1),bio-mimetic style (No.2),the whole lower modulus style in cancellous bone (No.3) and the whole dense style No.4.The stress distributions at bone-implant interface under static loading were analyzed using Ansys Workbench 10.0 software.The results indicated that the distribution of interface stress is strongly depended on the structure of the implants.The maximum stresses in cancellous bone and root region of implant No.2 are lower than those in the other three implants.A decrease in the modulus of the low modulus layer facilitates the interface stress transferring.Increasing the thickness of the low modulus layer can reduce the stress and induce a more uniform stress distribution at the interface.Among the four implants,biomimetic style implant No.2 is superior in transferring implant-bone interface stress to surrounding bones. 展开更多
关键词 titanium implant elastic modulus finite element analysis porous structure
暂未订购
Modeling Technology in Finite Element Analysis of Electrostatic Proximity Fuze Problem 被引量:2
13
作者 李银林 施聚生 《Journal of Beijing Institute of Technology》 EI CAS 2000年第3期286-290,共5页
In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object a... In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly. 展开更多
关键词 electrostatic proximity fuze finite element analysis boundary condition scale reduction method
在线阅读 下载PDF
Finite element analysis of the Taizhou Water Station Site 被引量:2
14
作者 潘建伍 淳庆 《Journal of Southeast University(English Edition)》 EI CAS 2013年第3期289-293,共5页
The Taizhou Water Station Site is an ancient masonry structure ruin built in the Southern Song Dynasty. The main structure was severely damaged. In order to understand its current structural properties and provide a s... The Taizhou Water Station Site is an ancient masonry structure ruin built in the Southern Song Dynasty. The main structure was severely damaged. In order to understand its current structural properties and provide a scientific basis for protection design nonlinear finite element analysis and parameter analysis are carried out.The crack patterns deformations and stresses of the main structure under four load cases are analyzed by nonlinear finite element analysis and the effect of the backfill bulk density and modulus on the maximum principal tensile stress and maximum compressive stress are studied by parameter analysis.The results show that the most unfavorable condition for the foundation is the combination of weight+backfill soil pressure+additional load the most unfavorable load case to the main structure is weight +backfill soil pressure +water pressure+additional heap load the maximum principal tensile stress of the main structure is very sensitive to the changes in the bulk density of the backfill soil. 展开更多
关键词 finite element analysis Taizhou Water StationSite ancient masonry structure
在线阅读 下载PDF
Seismic performance of double-skin steel-concrete composite box piers: Part Ⅱ—Nonlinear finite element analysis
15
作者 夏坚 宗周红 +1 位作者 徐焯然 李明鸿 《Journal of Southeast University(English Edition)》 EI CAS 2016年第3期346-355,共10页
An accurate finite element ( FE) model was constructed to examine the hysteretic behavior of double-skin steel-concrete composite box ( DSCB) piers for further understanding the seismic performance of DSCB piers;... An accurate finite element ( FE) model was constructed to examine the hysteretic behavior of double-skin steel-concrete composite box ( DSCB) piers for further understanding the seismic performance of DSCB piers; where the local buckling behavior of steel tubes, the confinement of the in-filled concrete and the interface action between steel tube and in-filled concrete were considered. The accuracy of the proposed FE model was verified by the bidirectional cyclic loading test results. Based on the validated FE model, the effects of some key parameters, such as section width to steel thickness ratio, slenderness ratio, aspect ratio and axial load ratio on the hysteretic behavior of DSCB piers were investigated. Finally, the skeleton curve model of DSCB piers was proposed. The numerical simulation results reveal that the peak strength and elastic stiffness decrease with the increase of the section width to steel thickness ratio. Moreover, the increase of the slenderness ratio may result in a significant reduction in the peak strength and elastic stiffness while the ultimate displacement increases. The proposed skeleton curve model can be taken as a reference for seismic performance analyses of the DSCB piers. 展开更多
关键词 double-skin steel-concrete composite box(DSCB) pier finite element analysis local buckling hysteretic behavior skeleton curve model
在线阅读 下载PDF
STIFFNESS ANALYSIS OF THE MAIN MODULE FOR PARALLEL MACHINE TOOLS BY FINITE ELEMENT ANALYSIS 被引量:2
16
作者 周立华 王玉茹 +1 位作者 黄田 Modler K H 《Transactions of Tianjin University》 EI CAS 2001年第1期30-35,共6页
With the aid of commercial finite element analysis software package ANSYS,investigations are made on the contributions of main components to stiffness of the main module for parallel machine tools,and it is found that... With the aid of commercial finite element analysis software package ANSYS,investigations are made on the contributions of main components to stiffness of the main module for parallel machine tools,and it is found that the frame is the main contributor.Then,influences of constraints,strut length and working ways of the main module have also been investigated.It can be concluded that when one of the main planes of the frame without linear drive unit is constrained,the largest whole stiffness can be acquired.And,the stiffness is much better when the main module is used in a vertical machine tool instead of a horizontal one.Finally,the principle of stiffness variation is summarized when the mobile platform reaches various positions within its working space and when various loads are applied.These achievements have provided critical instructions for the design of the main module for parallel machine tools. 展开更多
关键词 parallel machine tool main module STIFFNESS finite element analysis
全文增补中
Finite element analysis of stress distribution and burst failure of SiC_f/Ti-6Al-4V composite ring 被引量:2
17
作者 张红园 杨延清 罗贤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期261-270,共10页
A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinfo... A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinforced areas, thermal residual stresses and two different temperatures on stress distribution were studied. The burst speed was obtained through analyzing the hoop tensile stresses under a series of rotating speeds. The results indicate that at the two different temperatures, the influences of fiber volume fractions and reinforced areas on stress level and distribution are different. Some proposals are provided for the structure design of the TMCs ring. With regard to thermal residual stresses, a larger reinforced area is an advisable choice for design of the ring at higher temperature. 展开更多
关键词 titanium-matrix composites RING stress distribution burst failure finite element analysis thermal residual stresses
在线阅读 下载PDF
Three-dimensional Finite Element Analysis of the Mechanical Properties of Helical Thread Connection 被引量:21
18
作者 YANG Guoqing HONG Jun +3 位作者 ZHU Linbo LI Baotong XIONG Meihua WANG Fei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期564-572,共9页
Conventional analytical and numerical methods for the mechanical properties of helical threads are relied on many assumptions and approximations and thus hardly yield satisfied results. A parameterized 3D finite eleme... Conventional analytical and numerical methods for the mechanical properties of helical threads are relied on many assumptions and approximations and thus hardly yield satisfied results. A parameterized 3D finite element model of bolted joints with real helical thread geometry is established and meshed with refined hexahedral elements. The Von Mises plasticity criterion, kinematic hardening rule of materials and interfacial contacts are employed to make it possible for the suggested model be able to approach real assembly conditions. Then, the mechanical properties of bolted joints with different thread pitches, thread numbers and modular ratios are investigated, including the contact pressure distribution at joint interfaces, the axial load distribution and stress concentration in screw threads during the loading and unloading process. Simulation results indicate that the load distribution in screw threads produced by the suggested model agrees well the results from CHEN’s photoelastic tests. In addition, an interesting phenomenon is found that tightening the bolt with a large preload first and then adjusting the clamping force by unloading can make the load distribution more uniform and reduce the maximum residual equivalent stress in thread roots by up to 40%. This research provides a simple and practical approach to constructing the 3D finite element model and predicting the mechanical properties of helical thread connection. 展开更多
关键词 finite element analysis thread connection load distribution stress concentration
在线阅读 下载PDF
A biomechanical case study on the optimal orthodontic force on the maxillary canine tooth based on finite element analysis 被引量:15
19
作者 Jian-lei WU Yun-feng LIU +2 位作者 Wei PENG Hui-yue DONG Jian-xing ZHANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2018年第7期535-546,共12页
Excessive forces may cause root resorption and insufficient forces would introduce no effect in orthodontics. The objective of this study was to investigate the optimal orthodontic forces on a maxillary canine, using ... Excessive forces may cause root resorption and insufficient forces would introduce no effect in orthodontics. The objective of this study was to investigate the optimal orthodontic forces on a maxillary canine, using hydrostatic stress and logarithmic strain of the periodontal ligament(PDL) as indicators. Finite element models of a maxillary canine and surrounding tissues were developed. Distal translation/tipping forces, labial translation/tipping forces, and extrusion forces ranging from 0 to 300 g(100 g=0.98 N) were applied to the canine, as well as the force moment around the canine long axis ranging from 0 to 300 g·mm. The stress/strain of the PDL was quantified by nonlinear finite element analysis, and an absolute stress range between 0.47 k Pa(capillary pressure) and 12.8 k Pa(80% of human systolic blood pressure) was considered to be optimal, whereas an absolute strain exceeding 0.24%(80% of peak strain during canine maximal moving velocity) was considered optimal strain. The stress/strain distributions within the PDL were acquired for various canine movements, and the optimal orthodontic forces were calculated. As a result the optimal tipping forces(40–44 g for distal-direction and 28–32 g for labial-direction) were smaller than the translation forces(130–137 g for distal-direction and 110–124 g for labial-direction). In addition, the optimal forces for labialdirection motion(110–124 g for translation and 28–32 g for tipping) were smaller than those for distal-direction motion(130–137 g for translation and 40–44 g for tipping). Compared with previous results, the force interval was smaller than before and was therefore more conducive to the guidance of clinical treatment. The finite element analysis results provide new insights into orthodontic biomechanics and could help to optimize orthodontic treatment plans. 展开更多
关键词 BIOMECHANICS Optimal orthodontic force finite element analysis Periodontal ligament
原文传递
上一页 1 2 48 下一页 到第
使用帮助 返回顶部