期刊文献+
共找到4,671篇文章
< 1 2 234 >
每页显示 20 50 100
An Inner-Element Edge-Based Smoothed Finite Element Method
1
作者 Zhigang Pei Wei Xie +1 位作者 Tao Suo Zhimin Xu 《Acta Mechanica Solida Sinica》 2025年第5期815-824,共10页
A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FE... A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FEM is described and compared with ES-FEM.A practical modification of IES-FEM is then introduced that used the technique employed by ES-FEM for the nodal strain calculation.The differences in the strain computation among ES-FEM,IES-FEM,and FEM are then discussed.The modified IES-FEM exhibited superior performance in displacement and a slight advantage in stress compared to FEM using the same mesh according to the results obtained from both the regular and irregular elements.The robustness of the IES-FEM to severely deformed meshes was also verified. 展开更多
关键词 Smoothed finite element method(S-FEM) Edge-based smoothed finite element method(ES-FEM) User-defined element(UEL) Stress analysis Displacement analysis
原文传递
Research on structural design and mechanical properties of precision electroplating machinery for automobiles based on finite element analysis
2
作者 Wang Jie Jiang Xiaobei 《电镀与精饰》 北大核心 2025年第11期10-21,共12页
Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS... Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS parametric modeling technology is used to construct its three-dimensional geometric model,and geometric simplification is carried out.Two surface treatment processes,HK-35 zinc nickel alloy electroplating and pure zinc electroplating,were designed,and the influence of different coatings on the mechanical properties of steering knuckles was compared and analyzed through numerical simulation.At the same time,standard specimens were prepared for salt spray corrosion testing and scratch method combined strength testing to verify the numerical simulation results.The results showed that under emergency braking and composite working conditions,the peak Von Mises stress of the zinc nickel alloy coating was 119.85 MPa,which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Its equivalent strain value was 652×10^(-6),which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Experimental data confirms that zinc nickel alloy coatings exhibit significant advantages in stress distribution uniformity,strain performance,and load-bearing capacity in high stress zones.The salt spray corrosion test further indicates that the coating has superior corrosion resistance and coating substrate interface bonding strength,which can significantly improve the mechanical stability and long-term reliability of automotive precision electroplating mechanical structures. 展开更多
关键词 finite element analysis electroplating machinery structure mechanical properties electroplating process salt spray corrosion bonding strength
在线阅读 下载PDF
In-Plane Static Analysis of Curved Nanobeams Using Exact-Solution-Based Finite Element Formulation
3
作者 Omer Ekim Genel Hilal Koc Ekrem Tufekci 《Computers, Materials & Continua》 2025年第2期2043-2059,共17页
Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nano... Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nanobeams. Opposite to traditional curved finite elements developed by using approximate interpolation functions, the proposed curved finite element is developed by using exact analytical solutions. Although this approach was first introduced for analyzing the mechanical behaviors of macro-scale curved beams by adopting the local theory of elasticity, the exact analytical expressions used in this study were obtained from the solutions of governing equations that were expressed via the differential form of the nonlocal theory of elasticity. Therefore, the effects of shear strain and axial extension included in the analytical formulation are also inherited by the curved finite element developed here. The rigidity matrix and the consistent force vector are developed for a circular finite element. To demonstrate the applicability of the method, static analyses of various curved nanobeams subjected to different boundary conditions and loading scenarios are performed, and the obtained results are compared with the exact analytical ones. The presented study provides an accurate and low computational cost method for researchers to investigate the in-plane static behavior of curved nanobeams. 展开更多
关键词 Nonlocal elasticity finite element exact solution static analysis nanobeam curved
在线阅读 下载PDF
Design and Finite Element Analysis of a New Type of Skeleton-Free,Traversing Secondary Lining Trolley
4
作者 Liang He 《Journal of Architectural Research and Development》 2025年第3期150-158,共9页
To effectively address the challenge where the speed of tunnel lining construction struggles to match that of tunnel face and inverted arch construction,and to enhance the quality of secondary lining,a new type of ske... To effectively address the challenge where the speed of tunnel lining construction struggles to match that of tunnel face and inverted arch construction,and to enhance the quality of secondary lining,a new type of skeleton-free,traversing secondary lining trolley has been developed.This trolley features a set of gantries paired with two sets of formwork.The formwork adopts a multi-segment hinged and strengthened design,ensuring its own strength can meet the requirements of secondary lining concrete pouring without relying on the support of the gantries.When retracted,the formwork can be transported by the gantries through another set of formwork in the supporting state,enabling early formwork support,effectively accelerating the construction progress of the tunnel’s secondary lining,and extending the maintenance time of the secondary lining with the formwork.Finite element software modeling was used for simulation calculations,and the results indicate that the structural strength,stiffness,and other performance parameters of the new secondary lining trolley meet the design requirements,verifying the rationality of the design. 展开更多
关键词 TUNNEL Secondary lining trolley Skeleton-free Traversing finite element analysis
在线阅读 下载PDF
Fatigue Life Prediction Using Finite Element Hot-Spot and Notch Approaches:Strain-Based FAT Curves Proposal for Ti6Al4V Joints
5
作者 Pasqualino Corigliano Giulia Palomba 《Computer Modeling in Engineering & Sciences》 2025年第8期1935-1955,共21页
Experimental tests are essential for evaluating S-N curves and assessing the fatigue life of welded joints.However,in the case of complex geometries,experimental tests often cannot provide the necessary stress-strain ... Experimental tests are essential for evaluating S-N curves and assessing the fatigue life of welded joints.However,in the case of complex geometries,experimental tests often cannot provide the necessary stress-strain data for specific materials and welded joints.Therefore,finite element(FE)analyses are frequently utilized to assess fatigue behavior in complex geometries and address the discontinuities induced by welding processes.In this study,the fatigue properties of titanium welded joints,produced using an innovative laser source and welded without the use of filler materials,were analyzed through numerical methods.Two different FEmethodswere applied to T-specimens fabricated from Ti6Al4V sheets:the hot-spot stress and notch-stress approach.The FE fatigue life predictions were validated using experimental fatigue test results.The Hot-Spot Stress method yielded a fatigue limit slightly below 100 MPa,demonstrating a consistent slope in the S-N response.Conversely,the Notch Stress method,using a 1 mm fictitious notch radius,indicated a higher fatigue strength corresponding to a range between 225 and 250MPa,providing amore conservative and localized fatigue estimate.Fatigue resistance in welded joints of steel and aluminum is commonly assessed using specific fatigue classes called“Fatigue Strength Classes(FAT)curves”and their associated S-N curves as recommended by the International Institute of Welding(IIW).However,no such FAT class assignments currently exist for titanium alloys.To address this gap,strain-based FAT curves were proposed by normalizing steel FAT curves using titanium’s elastic properties.This strain-based framework enables direct comparison across materials and provides a foundation for fatigue evaluation of titanium weldments.The author proposed a procedure to normalize steel FAT curves considering the different elastic material properties,enabling a comparison with Ti6Al4V data in terms of hot spot strain or notch strain.This approach facilitates the development of a universal framework for strain-based fatigue evaluation across different materials. 展开更多
关键词 TI6AL4V finite element analysis fatigue marine structures structural stress welded joints
在线阅读 下载PDF
High-thermal free vibration analysis of functionally graded microplates using a new finite element formulation based on TSDT and MSCT
6
作者 Huu Trong Dang Nhan Thinh Hoang +2 位作者 Quoc Hoa Pham Trung Thanh Tran Huy Gia Luong 《Defence Technology(防务技术)》 2025年第2期131-149,共19页
Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis r... Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles. 展开更多
关键词 Microplates Functionally graded material finite element method Modified couple stress theory New TSDT High-thermal free vibration Pasternak foundation
在线阅读 下载PDF
Finite element analysis and experimental study on the sealing performance of low-phenyl silicone rubber sealing rings
7
作者 Ming Gao Dongkai Li +6 位作者 Kun Liu Shuliang Xu Feng Zhao Ben Guo Anhui Pan Xiao Xie Huanre Han 《Railway Sciences》 2025年第1期123-137,共15页
Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability an... Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability and short service life.To address these issues,low-phenyl silicone rubber was prepared and tested,and the finite element analysis and experimental studies on the sealing performance of its sealing rings were carried out.Design/methodology/approach–The low-temperature resistance and thermal stability of the prepared lowphenyl silicone rubber were studied using low-temperature tensile testing,differential scanning calorimetry,dynamic thermomechanical analysis and thermogravimetric analysis.The sealing performance of the lowphenyl silicone rubber sealing ring was studied by using finite element analysis software abaqus and experiments.Findings–The prepared low-phenyl silicone rubber sealing ring possessed excellent low-temperature resistance and thermal stability.According to the finite element analysis results,the finish of the flange sealing surface and groove outer edge should be ensured,and extrusion damage should be avoided.The sealing rings were more susceptible to damage in high compression ratio and/or low-temperature environments.When the sealing effect was ensured,a small compression ratio should be selected,and rubbers with hardness and elasticity less affected by temperature should be selected.The prepared low-phenyl silicone rubber sealing ring had zero leakage at both room temperature(RT)and�508C.Originality/value–The innovation of this study is that it provides valuable data and experience for the future development of the sealing rings used in the brake pipe flange joints of the railway freight cars in China. 展开更多
关键词 Low-phenyl silicone rubber Sealing ring Sealing performance finite element analysis LEAKAGE
在线阅读 下载PDF
Development of a Digital Model of a Gear Rotor System for Fault Diagnosis Using the Finite Element Method and Machine Learning
8
作者 Anubhav Srivastava Rajiv Tiwari 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第2期121-136,共16页
Geared-rotor systems are critical components in mechanical applications,and their performance can be severely affected by faults,such as profile errors,wear,pitting,spalling,flaking,and cracks.Profile errors in gear t... Geared-rotor systems are critical components in mechanical applications,and their performance can be severely affected by faults,such as profile errors,wear,pitting,spalling,flaking,and cracks.Profile errors in gear teeth are inevitable in manufacturing and subsequently accumulate during operations.This work aims to predict the status of gear profile deviations based on gear dynamics response using the digital model of an experimental rig setup.The digital model comprises detailed CAD models and has been validated against the expected physical behavior using commercial finite element analysis software.The different profile deviations are then modeled using gear charts,and the dynamic response is captured through simulations.The various features are then obtained by signal processing,and various ML models are then evaluated to predict the fault/no-fault condition for the gear.The best performance is achieved by an artificial neural network with a prediction accuracy of 97.5%,which concludes a strong influence on the dynamics of the gear rotor system due to profile deviations. 展开更多
关键词 digital model finite element modeling gear profile errors geared-rotor system machine learning
在线阅读 下载PDF
Integrating finite element analysis in total hip arthroplasty for childhood hip disorders:Enhancing precision and outcomes
9
作者 Muhammad Imam Ammarullah 《World Journal of Orthopedics》 2025年第1期1-11,共11页
Total hip arthroplasty for adults with sequelae from childhood hip disorders poses significant challenges due to altered anatomy.The paper published by Oommen et al reviews the essential management strategies for thes... Total hip arthroplasty for adults with sequelae from childhood hip disorders poses significant challenges due to altered anatomy.The paper published by Oommen et al reviews the essential management strategies for these complex cases.This article explores the integration of finite element analysis(FEA)to enhance surgical precision and outcomes.FEA provides detailed biomechanical insights,aiding in preoperative planning,implant design,and surgical technique optimization.By simulating implant configurations and assessing bone quality,FEA helps in customizing implants and evaluating surgical techniques like subtrochanteric shortening osteotomy.Advanced imaging techniques,such as 3D printing,virtual reality,and augmented reality,further enhance total hip arthroplasty precision.Future research should focus on validating FEA models,developing patient-specific simulations,and promoting multidisciplinary collaboration.Integrating FEA and advanced technologies in total hip arthroplasty can improve functional outcomes,reduce complications,and enhance quality of life for patients with childhood hip disorder sequelae. 展开更多
关键词 finite element analysis Total hip arthroplasty Childhood hip disorders IMPLANT BIOMECHANICAL
暂未订购
Fast 2D forward modeling of electromagnetic propagation well logs using finite element method and data-driven deep learning
10
作者 A.M.Petrov A.R.Leonenko +1 位作者 K.N.Danilovskiy O.V.Nechaev 《Artificial Intelligence in Geosciences》 2025年第1期85-96,共12页
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to... We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation. 展开更多
关键词 PETROPHYSICS Electromagnetic propagation logging Forward modeling finite element method Residual neural networks
在线阅读 下载PDF
Coupling Magneto-Electro-Elastic Multiscale Finite Element Method for Transient Responses of Heterogeneous MEE Structures
11
作者 Xiaolin Li Xinyue Li +2 位作者 Liming Zhou Hangran Yang Xiaoqing Yuan 《Computers, Materials & Continua》 2025年第3期3821-3841,共21页
Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant i... Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant importance.The traditional finite element method(FEM)remains one of the primary approaches for addressing such issues.However,the application of FEM typically necessitates the use of a fine finite element mesh to accurately capture the heterogeneous properties of the materials and meet the required computational precision,which inevitably leads to a reduction in computational efficiency.To enhance the computational accuracy and efficiency of the FEM for heterogeneous multi-field coupling problems,this study presents the coupling magneto-electro-elastic multiscale finite element method(CM-MsFEM)for heterogeneous MEE structures.Unlike the conventional multiscale FEM(MsFEM),the proposed algorithm simultaneously constructs displacement,electric,and magnetic potential multiscale basis functions to address the heterogeneity of the corresponding parameters.The macroscale formulation of CM-MsFEM was derived,and the macroscale/microscale responses of the problems were obtained through up/downscaling calculations.Evaluation using numerical examples analyzing the transient behavior of heterogeneous MEE structures demonstrated that the proposed method outperforms traditional FEM in terms of both accuracy and computational efficiency,making it an appropriate choice for numerically modeling the dynamics of heterogeneous MEE structures. 展开更多
关键词 Multiscale finite element method heterogeneous materials transient responses MAGNETO-ELECTRO-ELASTIC multiscale basis function
在线阅读 下载PDF
Finite element analysis of the impact of graphene filler dispersion on local hotspots in HMX-based PBX explosives
12
作者 Xuanyi Yang Xin Huang +2 位作者 Chaoyang Zhang Yanqing Wang Yuxiang Ni 《Chinese Physics B》 2025年第5期467-472,共6页
The incorporation of graphene fillers into polymer matrices has been recognized for its potential to enhance thermal conductivity,which is particularly beneficial for applications in thermal management.The uniformity ... The incorporation of graphene fillers into polymer matrices has been recognized for its potential to enhance thermal conductivity,which is particularly beneficial for applications in thermal management.The uniformity of graphene dispersion is pivotal to achieving optimal thermal conductivity,thereby directly influencing the effectiveness of thermal management,including the mitigation of local hot-spot temperatures.This research employs a quantitative approach to assess the distribution of graphene fillers within a PBX(plastic-bonded explosive)matrix,focusing specifically on the thermal management of hot spots.Through finite element method(FEM)simulations,we have explored the impact of graphene filler orientation,proximity to the central heat source,and spatial clustering on heat transfer.Our findings indicate that the strategic distribution of graphene fillers can create efficient thermal conduction channels,which significantly reduce the temperatures at local hot spots.In a model containing 0.336%graphene by volume,the central hot-spot temperature was reduced by approximately 60 K compared to a pure PBX material,under a heat flux of 600 W/m^(2).This study offers valuable insights into the optimization of the spatial arrangement of low-concentration graphene fillers,aiming to improve the thermal management capabilities of HMX-based PBX explosives. 展开更多
关键词 thermal management graphene fillers spatial distribution optimization finite element analysis hot-spot temperature
原文传递
Investigation of mechanical strength and deformation properties of Y25 bogie suspension systems by finite element analysis
13
作者 Celalettin Baykara 《Railway Sciences》 2025年第6期685-710,共26页
Purpose–This paper aims to offer a novel viewpoint for improving performance and reliability by developing and optimizing suspension components in a Y25 bogie through material optimization based on wheel–rail intera... Purpose–This paper aims to offer a novel viewpoint for improving performance and reliability by developing and optimizing suspension components in a Y25 bogie through material optimization based on wheel–rail interactions under variable load and track conditions.Design/methodology/approach–The suspension system,a critical component ensuring adaptation to road and load conditions in all vehicle types,is especially vital in heavy freight and passenger trains.In this context,the suspension set of the Y25 bogie–commonly used in T€urkiye and Europe–was modelled using CATIAV5,and stress analyses have been performed by way of ANSYS using the finite element analysis(FEA)method.E300-520-M cast steel was selected for the bogie frame,while two different spring steels,61SiCr7 and 51CrV4,were considered for the suspension springs.The modeled system was subjected to numerical analysis under loading conditions.The resulting stresses and displacements were compared with the mechanical properties of the selected materials to validate the design.Findings–The results demonstrate that the mechanical strength and deformation characteristics of the suspension components vary according to the applied external loads.The stress and displacement responses of the system were found to be within the allowable limits of the selected materials,confirming the structural integrity and reliability of the design.The suspension set is deemed suitable for the prescribed material and environmental conditions,suggesting potential for practical application in real-world rail systems.Originality/value–This research contributes to the design and optimization of bogie suspension systems using advanced CAD/CAE tools.It thinks that the material selection and numerical validation approach presented here can guide future designs in heavy load rail applications and potentially improve both safety and performance. 展开更多
关键词 finite element analysis Y25 railway bogie Suspension system Railway vehicles Wheel-rail interaction
在线阅读 下载PDF
A stochastic energy finite element method for predicting the high-frequency dynamic response of panels under aero-thermo-acoustic loads
14
作者 Zhaolin CHEN Yueming DU +1 位作者 Yingsong GU Zhichun YANG 《Chinese Journal of Aeronautics》 2025年第8期367-387,共21页
Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the stru... Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the structural safety of supersonic vehicles,but it has been rarely investigated.Given that existing methods are inefficient for high-frequency dynamic analysis in multi-physics fields,the present work addresses this challenge by proposing a Stochastic Energy Finite Element Method(SEFEM).SEFEM uses energy density instead of displacement to describe the dynamic response,thereby significantly enhancing its efficiency.In SEFEM,the effects of aerodynamic and thermal loads on the energy propagation characteristics are studied analytically and incorporated into the energy density governing equation.These effects are also considered when calculating the input power generated by the acoustic load,and two effective approaches named Frequency Response Function Method(FRFM)and Mechanical Impedance Method(MIM)are developed accordingly and integrated into SEFEM.The good accuracy,applicability,and high efficiency of the proposed SEFEM are demonstrated through numerical simulations performed on a two-dimensional panel under aero-thermoacoustic loads.Additionally,the effects and underlying mechanisms of aero-thermo-acoustic loads on the high-frequency response are explored.This work not only presents an efficient approach for predicting high-frequency dynamic response of panels subjected to aero-thermo-acoustic loads,but also provides insights into the high-frequency dynamic characteristics in multi-physics fields. 展开更多
关键词 Aero-thermo-acoustic loads High frequency Multi-physics field Stochastic energy finite element method Vibration analysis
原文传递
Integrated Discrete Cell Complexes and Finite Element Analysis for Microstructure Topology Evolution during Severe Plastic Deformation
15
作者 Siying Zhu Weijian Gao +1 位作者 Min Yi Zhuhua Zhang 《Computers, Materials & Continua》 2025年第10期657-679,共23页
Microstructure topology evolution during severe plastic deformation(SPD)is crucial for understanding and optimising the mechanical properties of metallic materials,though its prediction remains challenging.Herein,we c... Microstructure topology evolution during severe plastic deformation(SPD)is crucial for understanding and optimising the mechanical properties of metallic materials,though its prediction remains challenging.Herein,we combine discrete cell complexes(DCC),a fully discrete algebraic topology model-with finite element analysis(FEA)to simulate and analyse the microstructure topology of pure copper under SPD.Using DCC,we model the evolution of microstructure topology characterised by Betti numbers(β_(0),β_(1),β_(2))and Euler characteristic(χ).This captures key changes in GBNs and topological features within representative volume elements(RVEs)containing several hundred grains during SPD-induced recrystallisation.As SPD cycles increase,high-angle grain boundaries(HAGBs)progressively form.Topological analysis reveals an overall decrease in β_(0)values,indicating fewer isolated HAGB substructures,while β_(2) values show a steady upward trend,highlighting new grain formation.Leveraging DCC-derived RVE topology and FEA-generated plastic strain data,we directly simulate the evolution and spatial distribution of microstructure topology and HAGB fraction in a copper tube undergoing cyclic parallel tube channel angular pressing(PTCAP),a representative SPD technique.Within the tube,the HAGB fraction continuously increases with PTCAP cycles,reflecting the microstructure’s gradual transition from subgrains to fully-formed grains.Analysis of Betti number distribution and evolution reveals the microstructural reconstruction mechanism underpinning this subgrain to grain transition during PTCAP.We further demonstrate the significant influence of spatially non-uniform plastic strain distribution on microstructure reconstruction kinetics.This study demonstrates a feasible approach for simulating microstructure topology evolution of metals processed by cyclic SPD via the integration of DCC and FEA. 展开更多
关键词 Microstructure topology betti numbers discrete cell complexes finite element analysis severe plastic deformation
在线阅读 下载PDF
Mechanical behavior of SiC reinforced ZA63 Mg matrix composites: Experiments and 3D finite element modelling
16
作者 Chong Wang Zelong Du +6 位作者 Enyu Guo Shuying Bai Zongning Chen Huijun Kang Guohao Du Yanling Xue Tongmin Wang 《Journal of Magnesium and Alloys》 2025年第3期1294-1309,共16页
In this work,the microstructure evolution and mechanical behavior of extruded SiC/ZA63 Mg matrix composites are investigated via combined experimental study and three-dimensionalfinite element modelling(3D FEM)based on... In this work,the microstructure evolution and mechanical behavior of extruded SiC/ZA63 Mg matrix composites are investigated via combined experimental study and three-dimensionalfinite element modelling(3D FEM)based on the actual 3D microstructure achieved by synchrotron tomography.The results show that the average grain size of composite increases from 0.57μm of 8μm-SiC/ZA63 to 8.73μm of 50μm-SiC/ZA63.The type of texture transforms from the typicalfiber texture in 8μm-SiC/ZA63 to intense basal texture in 50μm-SiC/ZA63 composite and the intensity of texture increases sharply with increase of SiC particle size.The dynamic recrystallization(DRX)mechanism is also changed with increasing SiC particle size.Experimental and simulation results verify that the strength and elongation both decrease with increase of SiC particle size.The 8μm-SiC/ZA63 composite possesses the optimal mechanical property with yield strength(YS)of 383 MPa,ultimate tensile strength(UTS)of 424 MPa and elongation of 6.3%.The outstanding mechanical property is attributed to the ultrafine grain size,high-density precipitates and dislocation,good loading transfer effect and the interface bonding between SiC and matrix,as well as the weakened basal texture.The simulation results reveal that the micro-cracks tend to initiate at the interface between SiC and matrix,and then propagate along the interface between particle and Mg matrix or at the high strain and stress regions,and further connect with other micro-cracks.The main fracture mechanism in 8μm-SiC/ZA63 composite is ductile damage of matrix and interfacial debonding.With the increase of particle size,interface strength and particle strength decrease,and interface debonding and particle rupture become the main fracture mechanism in the 30μm-and 50μm-SiC/ZA63 composites. 展开更多
关键词 Mg matrix composite Synchrotron tomography 3D finite element model Microstructure evolution Mechanical property
在线阅读 下载PDF
Design and Finite Element Analysis of Smart Lining Trolley for Plateau Railway
17
作者 Yuan Wang 《Journal of World Architecture》 2025年第3期125-133,共9页
As a key national project,a newly built plateau railway features a large proportion of tunnels and high construction difficulty.To reduce the voids in the secondary lining of tunnels and address issues such as ineffec... As a key national project,a newly built plateau railway features a large proportion of tunnels and high construction difficulty.To reduce the voids in the secondary lining of tunnels and address issues such as ineffective vibration of the vault,vault voiding,and the inability to monitor the casting status during tunnel lining construction with ordinary lining trolleys,a new smart lining trolley with large clearance that integrates functions such as vibration,automatic casting,and pressure monitoring has been developed.This was achieved by combining the functional design of the new smart lining trolley,comparing traditional construction techniques,and introducing information-based and intelligent design concepts.Through simulation calculations using finite element software modeling,it is verified that the structural stiffness,strength,and other performance parameters of the smart lining trolley meet the technical design requirements. 展开更多
关键词 New lining trolley Smart casting finite element INFORMATIZATION
在线阅读 下载PDF
Inverse identification of damage and fracture properties in fine‑grained nuclear graphite using finite element analysis
18
作者 Jie Shen Hong‑Niao Chen +2 位作者 DKLTsang Xiao Li Shi‑Gui Zhao 《Nuclear Science and Techniques》 2025年第10期192-210,共19页
Identifying the damage and fracture properties of nuclear graphite materials and accurately simulating them are crucial when designing graphite core structures.To simulate the damage evolution and crack propagation of... Identifying the damage and fracture properties of nuclear graphite materials and accurately simulating them are crucial when designing graphite core structures.To simulate the damage evolution and crack propagation of graphite under stress in a finite element model,compression tests on disks and three-point bending tests on center-notched beams for fine-grained graphite(CDI-1D and IG11 graphite)were conducted.During these tests,digital image correlation and electronic speckle pattern interferometry techniques were utilized to observe the surface full-field displacements of the specimens.A segmented finite element inverse analysis method was developed to characterize the graphite’s damage evolution by quantifying the reduction in Young’s modulus with tensile and compressive strains in disk specimens.The fracture energy and bilinear tensile softening curve of the graphite were determined by comparing the load–displacement responses of the three-point bending tests and the finite element simulation.Finally,by combining the identified damage laws with a fracture criterion based on fracture energy,a damage–fracture model was established and used to simulate tensile tests on L-shaped specimens with different fillet radii.Simulations indicate that the damage area at the fillet expands with increasing radius,creating a blunting effect that enhances the load-bearing capacity of the specimens.This damage–fracture model can be applied to simulate graphite components in core structures. 展开更多
关键词 GRAPHITE Fracture energy Damage characterization finite element analysis
在线阅读 下载PDF
Solving fluid flow in discontinuous heterogeneous porous media and multi-layer strata with interpretable physics-encoded finite element network
19
作者 Xi Wang Wei Wu He-Hua Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5509-5525,共17页
Physics-informed neural networks(PINNs)have prevailed as differentiable simulators to investigate flow in porous media.Despite recent progress PINNs have achieved,practical geotechnical scenarios cannot be readily sim... Physics-informed neural networks(PINNs)have prevailed as differentiable simulators to investigate flow in porous media.Despite recent progress PINNs have achieved,practical geotechnical scenarios cannot be readily simulated because conventional PINNs fail in discontinuous heterogeneous porous media or multi-layer strata when labeled data are missing.This work aims to develop a universal network structure to encode the mass continuity equation and Darcy’s law without labeled data.The finite element approximation,which can decompose a complex heterogeneous domain into simpler ones,is adopted to build the differentiable network.Without conventional DNNs,physics-encoded finite element network(PEFEN)can avoid spectral bias and learn high-frequency functions with sharp/steep gradients.PEFEN rigorously encodes Dirichlet and Neumann boundary conditions without training.Benefiting from its discretized formulation,the discontinuous heterogeneous hydraulic conductivity is readily embedded into the network.Three typical cases are reproduced to corroborate PEFEN’s superior performance over conventional PINNs and the PINN with mixed formulation.PEFEN is sparse and demonstrated to be capable of dealing with heterogeneity with much fewer training iterations(less than 1/30)than the improved PINN with mixed formulation.Thus,PEFEN saves energy and contributes to low-carbon AI for science.The last two cases focus on common geotechnical settings of impermeable sheet pile in singlelayer and multi-layer strata.PEFEN solves these cases with high accuracy,circumventing costly labeled data,extra computational burden,and additional treatment.Thus,this study warrants the further development and application of PEFEN as a novel differentiable network in porous flow of practical geotechnical engineering. 展开更多
关键词 finite element method(FEM) Physics-informed neural network(PINN) Carbon neutrality Sheet pile Sharp/steep gradients Porous flow
在线阅读 下载PDF
Advanced 3D finite element limit analysis for assessing blowout stability in water main bursts
20
作者 Jim Shiau Tan Nguyen Bishal Chudal 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期5348-5358,共11页
The increasing occurrence of sinkholes caused by water main bursts has attracted significant research attention in recent years.This study addresses the gap in evaluating soil blowout stability resulting from water ma... The increasing occurrence of sinkholes caused by water main bursts has attracted significant research attention in recent years.This study addresses the gap in evaluating soil blowout stability resulting from water main failures by investigating the three-dimensional stability of blowouts with circular,hemispherical,and spherical openings.Advanced finite element limit analysis(FELA)combined with adaptive meshing is employed to analyze critical factors,including soil cover depth,surcharge pressure,and internal water pressure,that contribute to blowout failure.In addition,dimensionless ratios are used throughout the paper to assess the influence of these factors.Numerical findings are rigorously validated,ensuring reliability and accuracy.Practical design charts are provided to accommodate a wide range of design scenarios,offering valuable guidance for engineers.This study introduces a pioneering sinkhole simulation methodology,leading to the understanding of three-dimensional blowout stability mechanisms. 展开更多
关键词 Blowout stability CAVITY SINKHOLE finite element limit analysis(FELA)
在线阅读 下载PDF
上一页 1 2 234 下一页 到第
使用帮助 返回顶部