期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Predicting carbon storage of mixed broadleaf forests based on the finite mixture model incorporating stand factors,site quality,and aridity index 被引量:1
1
作者 Yanlin Wang Dongzhi Wang +2 位作者 Dongyan Zhang Qiang Liu Yongning Li 《Forest Ecosystems》 SCIE CSCD 2024年第3期276-286,共11页
The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,an... The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,and aridity index to predict stand CS in multi-species mixed forests with complex structures.This study used data from70 survey plots for mixed broadleaf Populus davidiana and Betula platyphylla forests in the Mulan Rangeland State Forest,Hebei Province,China,to construct the DDF based on maximum likelihood estimation and finite mixture model(FMM).Ordinary least squares(OLS),linear seemingly unrelated regression(LSUR),and back propagation neural network(BPNN)were used to investigate the influences of stand factors,site quality,and aridity index on the shape and scale parameters of DDF and predicted stand CS of mixed broadleaf forests.The results showed that FMM accurately described the stand-level diameter distribution of the mixed P.davidiana and B.platyphylla forests;whereas the Weibull function constructed by MLE was more accurate in describing species-level diameter distribution.The combined variable of quadratic mean diameter(Dq),stand basal area(BA),and site quality improved the accuracy of the shape parameter models of FMM;the combined variable of Dq,BA,and De Martonne aridity index improved the accuracy of the scale parameter models.Compared to OLS and LSUR,the BPNN had higher accuracy in the re-parameterization process of FMM.OLS,LSUR,and BPNN overestimated the CS of P.davidiana but underestimated the CS of B.platyphylla in the large diameter classes(DBH≥18 cm).BPNN accurately estimated stand-and species-level CS,but it was more suitable for estimating stand-level CS compared to species-level CS,thereby providing a scientific basis for the optimization of stand structure and assessment of carbon sequestration capacity in mixed broadleaf forests. 展开更多
关键词 Weibull function finite mixture model Linear seemingly unrelated regression Back propagation neural network Carbon storage
在线阅读 下载PDF
A Weighted Spatially Constrained Finite Mixture Model for Image Segmentation 被引量:1
2
作者 Mohammad Masroor Ahmed Saleh Al Shehri +3 位作者 Jawad Usman Arshed Mahmood Ul Hassan Muzammil Hussain Mehtab Afzal 《Computers, Materials & Continua》 SCIE EI 2021年第4期171-185,共15页
Spatially Constrained Mixture Model(SCMM)is an image segmentation model that works over the framework of maximum a-posteriori and Markov Random Field(MAP-MRF).It developed its own maximization step to be used within t... Spatially Constrained Mixture Model(SCMM)is an image segmentation model that works over the framework of maximum a-posteriori and Markov Random Field(MAP-MRF).It developed its own maximization step to be used within this framework.This research has proposed an improvement in the SCMM’s maximization step for segmenting simulated brain Magnetic Resonance Images(MRIs).The improved model is named as the Weighted Spatially Constrained Finite Mixture Model(WSCFMM).To compare the performance of SCMM and WSCFMM,simulated T1-Weighted normal MRIs were segmented.A region of interest(ROI)was extracted from segmented images.The similarity level between the extracted ROI and the ground truth(GT)was found by using the Jaccard and Dice similarity measuring method.According to the Jaccard similarity measuring method,WSCFMM showed an overall improvement of 4.72%,whereas the Dice similarity measuring method provided an overall improvement of 2.65%against the SCMM.Besides,WSCFMM signicantly stabilized and reduced the execution time by showing an improvement of 83.71%.The study concludes that WSCFMM is a stable model and performs better as compared to the SCMM in noisy and noise-free environments. 展开更多
关键词 finite mixture model maximum aposteriori Markov random eld image segmentation
在线阅读 下载PDF
Log-cumulants of the finite mixture model and their application to statistical analysis of fully polarimetric UAVSAR data
3
作者 Xinping Deng Jinsong Chen +2 位作者 Hongzhong Li Pengpeng Han Wen Yang 《Geo-Spatial Information Science》 SCIE CSCD 2018年第1期45-55,共11页
Since its first flight in 2007,the UAVSAR instrument of NASA has acquired a large number of fully Polarimetric SAR(PolSAR)data in very high spatial resolution.It is possible to observe small spatial features in this t... Since its first flight in 2007,the UAVSAR instrument of NASA has acquired a large number of fully Polarimetric SAR(PolSAR)data in very high spatial resolution.It is possible to observe small spatial features in this type of data,offering the opportunity to explore structures in the images.In general,the structured scenes would present multimodal or spiky histograms.The finite mixture model has great advantages in modeling data with irregular histograms.In this paper,a type of important statistics called log-cumulants,which could be used to design parameter estimator or goodness-of-fit tests,are derived for the finite mixture model.They are compared with logcumulants of the texture models.The results are adopted to UAVSAR data analysis to determine which model is better for different land types. 展开更多
关键词 finite mixture model UAVSAR log-cumulant statistical analysis Polarimetric SAR(PolSAR)
原文传递
A Finite Mixture of Generalised Inverse Gaussian with Indexes -1/2 and -3/2 as Mixing Distribution for Normal Variance Mean Mixture with Application
4
作者 Calvin B. Maina Patrick G. O. Weke +1 位作者 Carolyne A. Ogutu Joseph A. M. Ottieno 《Open Journal of Statistics》 2021年第6期963-976,共14页
Mixture models have become more popular in modelling compared to standard distributions. The mixing distributions play a role in capturing the variability of the random variable in the conditional distribution. Studie... Mixture models have become more popular in modelling compared to standard distributions. The mixing distributions play a role in capturing the variability of the random variable in the conditional distribution. Studies have lately focused on finite mixture models as mixing distributions in the mixing mechanism. In the present work, we consider a Normal Variance Mean mix<span>ture model. The mixing distribution is a finite mixture of two special cases of</span><span> Generalised Inverse Gaussian distribution with indexes <span style="white-space:nowrap;">-1/2 and -3/2</span>. The </span><span>parameters of the mixed model are obtained via the Expectation-Maximization</span><span> (EM) algorithm. The iterative scheme is based on a presentation of the normal equations. An application to some financial data has been done. 展开更多
关键词 finite mixture Weighted Distribution Mixed Model EM-ALGORITHM
在线阅读 下载PDF
Fast Mixture Distribution Optimization for Rain-Flow Matrix of a Steel Arch Bridge by REBMIX Algorithm
5
作者 Yuliang He Weihong Lou +1 位作者 Da Hang Youhua Su 《Structural Durability & Health Monitoring》 2025年第4期887-902,共16页
The computational accuracy and efficiency of modeling the stress spectrum derived from bridge monitoring data significantly influence the fatigue life assessment of steel bridges.Therefore,determining the optimal stre... The computational accuracy and efficiency of modeling the stress spectrum derived from bridge monitoring data significantly influence the fatigue life assessment of steel bridges.Therefore,determining the optimal stress spectrum model is crucial for further fatigue reliability analysis.This study investigates the performance of the REBMIX algorithm in modeling both univariate(stress range)and multivariate(stress range and mean stress)distributions of the rain-flowmatrix for a steel arch bridge,usingAkaike’s Information Criterion(AIC)as a performance metric.Four types of finitemixture distributions—Normal,Lognormal,Weibull,and Gamma—are employed tomodel the stress range.Additionally,mixed distributions,including Normal-Normal,Lognormal-Normal,Weibull-Normal,and Gamma-Normal,are utilized to model the joint distribution of stress range and mean stress.The REBMIX algorithm estimates the number of components,component weights,and component parameters for each candidate finite mixture distribution.The results demonstrate that the REBMIX algorithm-based mixture parameter estimation approach effectively identifies the optimal distribution based on AIC values.Furthermore,the algorithm exhibits superior computational efficiency compared to traditional methods,making it highly suitable for practical applications. 展开更多
关键词 Steel bridge stress spectrum finite mixture distribution REBMIX algorithm Akaike’s information criterion
在线阅读 下载PDF
Classification of forest vegetation with the application of iterative reallocation and model-based clustering
6
作者 Naghmeh Pakgohar Javad Eshaghi Rad +4 位作者 Hossein Gholami Ahmad Alijanpour David W.Roberts Attila Lengyel Enrico Feoli 《Journal of Forestry Research》 2025年第5期103-112,共10页
Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study comp... Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study compares the performance of practical iterative reallocation algorithms with model-based clustering algorithms.The data is from forest vegetation in Virginia(United States),the Hyrcanian Forest(Asia),and European beech forests.Practical iterative reallocation algorithms were applied as non-hierarchical methods and Finite Gaussian mixture modeling was used as a model-based clustering method.Due to limitations on dimensionality in model-based clustering,principal coordinates analysis was employed to reduce the dataset’s dimensions.A log transformation was applied to achieve a normal distribution for the pseudo-species data before calculating the Bray-Curtis dissimilarity.The findings indicate that the reallocation of misclassified objects based on silhouette width(OPTSIL)with Flexible-β(-0.25)had the highest mean among the tested clustering algorithms with Silhouette width 1(REMOS1)with Flexible-β(-0.25)second.However,model-based clustering performed poorly.Based on these results,it is recommended using OPTSIL with Flexible-β(-0.25)and REMOS1 with Flexible-β(-0.25)for forest vegetation classification instead of model-based clustering particularly for heterogeneous datasets common in forest vegetation community data. 展开更多
关键词 CLASSIFICATION Heuristic clustering finite mixture Forest ecosystems Model-based clustering
在线阅读 下载PDF
Modeling Cyber Loss Severity Using a Spliced Regression Distribution with Mixture Components
7
作者 Meng Sun 《Open Journal of Statistics》 2023年第4期425-452,共28页
Cyber losses in terms of number of records breached under cyber incidents commonly feature a significant portion of zeros, specific characteristics of mid-range losses and large losses, which make it hard to model the... Cyber losses in terms of number of records breached under cyber incidents commonly feature a significant portion of zeros, specific characteristics of mid-range losses and large losses, which make it hard to model the whole range of the losses using a standard loss distribution. We tackle this modeling problem by proposing a three-component spliced regression model that can simultaneously model zeros, moderate and large losses and consider heterogeneous effects in mixture components. To apply our proposed model to Privacy Right Clearinghouse (PRC) data breach chronology, we segment geographical groups using unsupervised cluster analysis, and utilize a covariate-dependent probability to model zero losses, finite mixture distributions for moderate body and an extreme value distribution for large losses capturing the heavy-tailed nature of the loss data. Parameters and coefficients are estimated using the Expectation-Maximization (EM) algorithm. Combining with our frequency model (generalized linear mixed model) for data breaches, aggregate loss distributions are investigated and applications on cyber insurance pricing and risk management are discussed. 展开更多
关键词 Cyber Risk Data Breach Spliced Regression Model finite mixture Distribu-tion Cluster Analysis Expectation-Maximization Algorithm Extreme Value Theory
在线阅读 下载PDF
A Special Weight for Inverse Gaussian Mixing Distribution in Normal Variance Mean Mixture with Application
8
作者 Calvin B. Maina Patrick G. O. Weke +1 位作者 Carolyne A. Ogutu Joseph A. M. Ottieno 《Open Journal of Statistics》 2021年第6期977-992,共16页
<p> <span style="color:#000000;"><span style="color:#000000;">Normal Variance-Mean Mixture (NVMM) provide</span></span><span style="color:#000000;"><... <p> <span style="color:#000000;"><span style="color:#000000;">Normal Variance-Mean Mixture (NVMM) provide</span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">s</span></span></span><span><span><span><span style="color:#000000;"> a general framework for deriving models with desirable properties for modelling financial market variables such as exchange rates, equity prices, and interest rates measured over short time intervals, </span><i><span style="color:#000000;">i.e.</span></i><span style="color:#000000;"> daily or weekly. Such data sets are characterized by non-normality and are usually skewed, fat-tailed and exhibit excess kurtosis. </span><span style="color:#000000;">The Generalised Hyperbolic distribution (GHD) introduced by Barndorff-</span><span style="color:#000000;">Nielsen </span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">(1977)</span></span></span><span><span><span><span style="color:#000000;"> which act as Normal variance-mean mixtures with Generalised Inverse Gaussian (GIG) mixing distribution nest a number of special and limiting case distributions. The Normal Inverse Gaussian (NIG) distribution is obtained when the Inverse Gaussian is the mixing distribution, </span><i><span style="color:#000000;">i.e</span></i></span></span></span><span style="color:#000000;"><span style="color:#000000;"><i><span style="color:#000000;">.</span></i></span></span><span><span><span><span style="color:#000000;">, the index parameter of the GIG is</span><span style="color:red;"> <img src="Edit_721a4317-7ef5-4796-9713-b9057bc426fc.bmp" alt="" /></span><span style="color:#000000;">. The NIG is very popular because of its analytical tractability. In the mixing mechanism</span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">,</span></span></span><span><span><span><span><span style="color:#000000;"> the mixing distribution characterizes the prior information of the random variable of the conditional distribution. Therefore, considering finite mixture models is one way of extending the work. The GIG is a three parameter distribution denoted by </span><img src="Edit_d21f2e1e-d426-401e-bf8b-f56d268dddb6.bmp" alt="" /></span><span><span style="color:#000000;"> and nest several special and limiting cases. When </span><img src="Edit_ffee9824-2b75-4ea6-a3d2-e048d49b553f.bmp" alt="" /></span><span><span style="color:#000000;">, we have </span><img src="Edit_654ea565-9798-4435-9a59-a0a1a7c282df.bmp" alt="" /></span><span style="color:#000000;"> which is called an Inverse Gaussian (IG) distribution. </span><span><span><span style="color:#000000;">When </span><img src="Edit_b15daf3d-849f-440a-9e4f-7b0c78d519e5.bmp" alt="" /></span><span style="color:red;"><span style="color:#000000;">, </span><img src="Edit_08a2088c-f57e-401c-8fb9-9974eec5947a.bmp" alt="" /><span style="color:#000000;">, </span><img src="Edit_130f4d7c-3e27-4937-b60f-6bf6e41f1f52.bmp" alt="" /><span style="color:#000000;">,</span></span><span><span style="color:#000000;"> we have </span><img src="Edit_215e67cb-b0d9-44e1-88d1-a2598dea05af.bmp" alt="" /></span><span style="color:red;"><span style="color:#000000;">, </span><img src="Edit_6bf9602b-a9c9-4a9d-aed0-049c47fe8dfe.bmp" alt="" /></span></span><span style="color:red;"><span style="color:#000000;"> </span><span><span style="color:#000000;">and </span><img src="Edit_d642ba7f-8b63-4830-aea1-d6e5fba31cc8.bmp" alt="" /></span></span><span><span style="color:#000000;"> distributions respectively. These distributions are related to </span><img src="Edit_0ca6658e-54cb-4d4d-87fa-25eb3a0a8934.bmp" alt="" /></span><span style="color:#000000;"> and are called weighted inverse Gaussian distributions. In this</span> <span style="color:#000000;">work</span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">,</span></span></span><span><span><span><span style="color:#000000;"> we consider a finite mixture of </span><img src="Edit_30ee74b7-0bfc-413d-b4d6-43902ec6c69d.bmp" alt="" /></span></span></span><span><span><span><span><span style="color:#000000;"> and </span><img src="Edit_ba62dff8-eb11-48f9-8388-68f5ee954c00.bmp" alt="" /></span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;"> and show that the mixture is also a weighted Inverse Gaussian distribution and use it to construct a NVMM. Due to the complexity of the likelihood, direct maximization is difficult. An EM type algorithm is provided for the Maximum Likelihood estimation of the parameters of the proposed model. We adopt an iterative scheme which is not based on explicit solution to the normal equations. This subtle approach reduces the computational difficulty of solving the complicated quantities involved directly to designing an iterative scheme based on a representation of the normal equation. The algorithm is easily programmable and we obtained a monotonic convergence for the data sets used.</span></span></span> </p> 展开更多
关键词 finite mixture Weighted Distribution Mixed Model EM-ALGORITHM
在线阅读 下载PDF
MULTITARGET STATE AND TRACK ESTIMATION FOR THE PROBABILITY HYPOTHESES DENSITY FILTER 被引量:3
9
作者 Liu Weifeng Han Chongzhao +2 位作者 Lian Feng Xu Xiaobin Wen Chenglin 《Journal of Electronics(China)》 2009年第1期2-12,共11页
The particle Probability Hypotheses Density (particle-PHD) filter is a tractable approach for Random Finite Set (RFS) Bayes estimation, but the particle-PHD filter can not directly derive the target track. Most existi... The particle Probability Hypotheses Density (particle-PHD) filter is a tractable approach for Random Finite Set (RFS) Bayes estimation, but the particle-PHD filter can not directly derive the target track. Most existing approaches combine the data association step to solve this problem. This paper proposes an algorithm which does not need the association step. Our basic ideal is based on the clustering algorithm of Finite Mixture Models (FMM). The intensity distribution is first derived by the particle-PHD filter, and then the clustering algorithm is applied to estimate the multitarget states and tracks jointly. The clustering process includes two steps: the prediction and update. The key to the proposed algorithm is to use the prediction as the initial points and the convergent points as the es- timates. Besides, Expectation-Maximization (EM) and Markov Chain Monte Carlo (MCMC) ap- proaches are used for the FMM parameter estimation. 展开更多
关键词 Probability Hypotheses Density (PHD) Particle-PHD filter State and track estimation finite mixture models
在线阅读 下载PDF
EXPLICIT EXPRESSIONS FOR SOME DISTRIBUTIONS RELATED TO RUIN PROBLEMS
10
作者 党兰芬 杨丽明 《Acta Mathematica Scientia》 SCIE CSCD 2003年第1期53-60,共8页
The classical risk process that is perturbed by diffusion is studied. The explicit expressions for the ruin probability and the surplus distribution of the risk process at the time of ruin are obtained when the claim ... The classical risk process that is perturbed by diffusion is studied. The explicit expressions for the ruin probability and the surplus distribution of the risk process at the time of ruin are obtained when the claim amount distribution is a finite mixture of exponential distributions or a Gamma (2, α) distribution. 展开更多
关键词 Ruin probability surplus distribution at the time of ruin finite mixture of exponential distributions Gamma distribution
在线阅读 下载PDF
A Normal Weighted Inverse Gaussian Distribution for Skewed and Heavy-Tailed Data
11
作者 Calvin B. Maina Patrick G. O. Weke +1 位作者 Carolyne A. Ogutu Joseph A. M. Ottieno 《Applied Mathematics》 2022年第2期163-177,共15页
High frequency financial data is characterized by non-normality: asymmetric, leptokurtic and fat-tailed behaviour. The normal distribution is therefore inadequate in capturing these characteristics. To this end, vario... High frequency financial data is characterized by non-normality: asymmetric, leptokurtic and fat-tailed behaviour. The normal distribution is therefore inadequate in capturing these characteristics. To this end, various flexible distributions have been proposed. It is well known that mixture distributions produce flexible models with good statistical and probabilistic properties. In this work, a finite mixture of two special cases of Generalized Inverse Gaussian distribution has been constructed. Using this finite mixture as a mixing distribution to the Normal Variance Mean Mixture we get a Normal Weighted Inverse Gaussian (NWIG) distribution. The second objective, therefore, is to construct and obtain properties of the NWIG distribution. The maximum likelihood parameter estimates of the proposed model are estimated via EM algorithm and three data sets are used for application. The result shows that the proposed model is flexible and fits the data well. 展开更多
关键词 Inverse Gaussian finite mixture Weighted Distribution Mixed Model EM-ALGORITHM
在线阅读 下载PDF
From Sequential to Parallel Growth of Cities: Theory and Evidence from Canada
12
作者 SHENG Kerong FAN Jie +1 位作者 SUN Wei MA Hailong 《Chinese Geographical Science》 SCIE CSCD 2016年第3期377-388,共12页
This paper examines city growth patterns and the corresponding city size distribution evolution over long periods of time using a simple New Economic Geography(NEG) model and urban population data from Canada. The mai... This paper examines city growth patterns and the corresponding city size distribution evolution over long periods of time using a simple New Economic Geography(NEG) model and urban population data from Canada. The main findings are twofold. First, there is a transition from sequential to parallel growth of cities over long periods of time: city growth shows a sequential mode in the stage of rapid urbanization, i.e., the cities with the best development conditions will take the lead in growth, after which the cities with higher ranks will become the fastest-growing cities; in the late stage of urbanization, city growth converges according to Gibrat′s law, and exhibits a parallel growth pattern. Second, city size distribution is found to have persistent structural characteristics: the city system is self-organized into multiple discrete size groups; city growth shows club convergence characteristics, and the cities with similar development conditions eventually converge to a similar size. The results will not only enhance our understanding of urbanization process, but will also provide a timely and clear policy reference for promoting the healthy urbanization of developing countries. 展开更多
关键词 sequential city growth Gibrta′s law finite mixture model convergence club Canada
在线阅读 下载PDF
Local component based principal component analysis model for multimode process monitoring 被引量:5
13
作者 Yuan Li Dongsheng Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第6期116-124,共9页
For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component b... For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component based principal component analysis(LCPCA)approach for monitoring the status of a multimode process.In LCPCA,the process prior knowledge of mode division is not required and it purely based on the process data.Firstly,LCPCA divides the processes data into multiple local components using finite Gaussian mixture model mixture(FGMM).Then,calculating the posterior probability is applied to determine each sample belonging to which local component.After that,the local component information(such as mean and standard deviation)is used to standardize each sample of local component.Finally,the standardized samples of each local component are combined to train PCA monitoring model.Based on the PCA monitoring model,two monitoring statistics T^(2) and SPE are used for monitoring multimode processes.Through a numerical example and the Tennessee Eastman(TE)process,the monitoring result demonstrates that LCPCA outperformed conventional PCA and LNS-PCA in the fault detection rate. 展开更多
关键词 Principal component analysis finite Gaussian mixture model Process monitoring Tennessee Eastman(TE)process
在线阅读 下载PDF
Consistency of the penalized MLE for two-parameter gamma mixture models 被引量:1
14
作者 CHEN JiaHua LI ShaoTing TAN XianMing 《Science China Mathematics》 SCIE CSCD 2016年第12期2301-2318,共18页
Two-parameter gamma distributions are widely used in liability theory, lifetime data analysis, financial statistics, and other areas. Finite mixtures of gamma distributions are their natural extensions, and they are p... Two-parameter gamma distributions are widely used in liability theory, lifetime data analysis, financial statistics, and other areas. Finite mixtures of gamma distributions are their natural extensions, and they are particularly useful when the population is suspected of heterogeneity. These distributions are successfully employed in various applications, but many researchers falsely believe that the maximum likelihood estimator of the mixing distribution is consistent. Similarly to finite mixtures of normal distributions, the likelihood function under finite gamma mixtures is unbounded. Because of this, each observed value leads to a global maximum that is irrelevant to the true distribution. We apply a seemingly negligible penalty to the likelihood according to the shape parameters in the fitted model. We show that this penalty restores the consistency of the likelihoodbased estimator of the mixing distribution under finite gamma mixture models. We present simulation results to validate the consistency conclusion, and we give an example to illustrate the key points. 展开更多
关键词 constrained MLE identifiability finite mixture penalized likelihood Stirling formula
原文传递
Performance monitoring of non-gaussian chemical processes with modes-switching using globality-locality preserving projection 被引量:3
15
作者 Xin Peng Yang Tang +1 位作者 Wenli Du Feng Qian 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2017年第3期429-439,共11页
In this paper, we propose a novel performance monitoring and fault detection method, which is based on modified structure analysis and globality and locality preserving (MSAGL) projection, for non-Gaussian processes... In this paper, we propose a novel performance monitoring and fault detection method, which is based on modified structure analysis and globality and locality preserving (MSAGL) projection, for non-Gaussian processes with multiple operation conditions. By using locality preserving projection to analyze the embedding geometrical manifold and extracting the non-Gaussian features by independent component analysis, MSAGL preserves both the global and local structures of the data simultaneously. Furthermore, the tradeoff parameter of MSAGL is tuned adaptively in order to find the projection direction optimal for revealing the hidden structural information. The validity and effectiveness of this approach are illustrated by applying the proposed technique to the Tennessee Eastman process simulation under multiple operation conditions. The results demonstrate the advantages of the proposed method over conventional eigendecomposition-based monitoring methotis. 展开更多
关键词 non-Gaussian processes subspace projection independent component analysis locality preserving projection finite mixture model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部