In this paper, we first propose the maximum arc problem, normal rational curve conjecture, and extensions of normal rational curves over finite local rings, analogously to the finite geometry over finite fields. We th...In this paper, we first propose the maximum arc problem, normal rational curve conjecture, and extensions of normal rational curves over finite local rings, analogously to the finite geometry over finite fields. We then study the deep hole problem of generalized Reed-Solomon (RS) codes over finite local rings. Several different classes of deep holes are constructed. The relationship between finite geometry and deep holes of RS codes over finite local rings are also studied.展开更多
In this note we study subplanes of order q of the projective plane Π=PG( 2, q 3 ) and the ruled varieties V 2 5 of Σ=PG( 6,q ) using the spatial representation of Π in Σ, by fixing a hyperplane Σ ′ with a regula...In this note we study subplanes of order q of the projective plane Π=PG( 2, q 3 ) and the ruled varieties V 2 5 of Σ=PG( 6,q ) using the spatial representation of Π in Σ, by fixing a hyperplane Σ ′ with a regular spread of planes. First are shown some configurations of the affine q-subplanes. Then to prove that a variety V 2 5 of Σ represents a non-affine subplane of order q of Π, after having shown basic incidence properties of it, such a variety V 2 5 is constructed by choosing appropriately the two directrix curves in two complementary subspaces of Σ. The result can be translated into further incidence properties of the affine points of V 2 5 . Then a maximal bundle of varieties V 2 5 having in common one directrix cubic curve is constructed.展开更多
In this note we consider ruled varieties V22r−1of PG(2r,q), generalizing some results shown for r=2,3in previous papers. By choosing appropriately two directrix curves, a V22r−1represents a non-affine subplane of orde...In this note we consider ruled varieties V22r−1of PG(2r,q), generalizing some results shown for r=2,3in previous papers. By choosing appropriately two directrix curves, a V22r−1represents a non-affine subplane of order qof the projective plane PG(2,qr)represented in PG(2r,q)by a spread of a hyperplane. That proves the conjecture assumed in [1]. Finally, a large family of linear codes dependent on r≥2is associated with projective systems defined both by V22r−1and by a maximal bundle of such varieties with only an r-directrix in common, then are shown their basic parameters.展开更多
The dual-containing (or self-orthogonal) formalism of Calderbank-Shor-Steane (CSS) codes provides a universal connection between a classical linear code and a Quantum Error-Correcting Code (QECC). We propose a novel c...The dual-containing (or self-orthogonal) formalism of Calderbank-Shor-Steane (CSS) codes provides a universal connection between a classical linear code and a Quantum Error-Correcting Code (QECC). We propose a novel class of quantum Low Density Parity Check (LDPC) codes constructed from cyclic classes of lines in Euclidean Geometry (EG). The corresponding constructed parity check matrix has quasi-cyclic structure that can be encoded flexibility, and satisfies the requirement of dual-containing quantum code. Taking the advantage of quasi-cyclic structure, we use a structured approach to construct Generalized Parity Check Matrix (GPCM). This new class of quantum codes has higher code rate, more sparse check matrix, and exactly one four-cycle in each pair of two rows. Ex-perimental results show that the proposed quantum codes, such as EG(2,q)II-QECC, EG(3,q)II-QECC, have better performance than that of other methods based on EG, over the depolarizing channel and decoded with iterative decoding based on the sum-product decoding algorithm.展开更多
This paper studies the nonsystematic Low-Density Parity-Check(LDPC)codes based onSymmetric Balanced Incomplete Block Design(SBIBD).First,it is concluded that the performancedegradation of nonsystematic linear block co...This paper studies the nonsystematic Low-Density Parity-Check(LDPC)codes based onSymmetric Balanced Incomplete Block Design(SBIBD).First,it is concluded that the performancedegradation of nonsystematic linear block codes is bounded by the average row weight of generalizedinverses of their generator matrices and code rate.Then a class of nonsystematic LDPC codes con-structed based on SBIBD is presented.Their characteristics include:both generator matrices andparity-check matrices are sparse and cyclic,which are simple to encode and decode;and almost arbi-trary rate codes can be easily constructed,so they are rate-compatible codes.Because there aresparse generalized inverses of generator matrices,the performance of the proposed codes is only0.15dB away from that of the traditional systematic LDPC codes.展开更多
The weight hierarchy of a binary linear [n, k] code C is the sequence (d 1, d 2, . . . , d k ), where d r is the smallest support of an r-dimensional subcode of C. The codes of dimension 4 are collected in classes and...The weight hierarchy of a binary linear [n, k] code C is the sequence (d 1, d 2, . . . , d k ), where d r is the smallest support of an r-dimensional subcode of C. The codes of dimension 4 are collected in classes and the possible weight hierarchies in each class is determined by finite projective geometries. The possible weight hierarchies in class A, B, C, D are determined in Part (I). The possible weight hierarchies in class E, F, G, H, I are determined in Part (II).展开更多
By taking as blocks certain subspace-pairs of an orthogonal geometry over a finite field with characteristic≠2 we construct some new types of BIB designs and PBIB designs whose parameters are also given.
The isomorphism of polynomials (IP), one of the hard problems in multivariate public key cryptography induces an equivalence relation on a set of systems of polynomials. Then the enumeration problem of IP consists o...The isomorphism of polynomials (IP), one of the hard problems in multivariate public key cryptography induces an equivalence relation on a set of systems of polynomials. Then the enumeration problem of IP consists of counting the numbers of different classes and counting the cardinality of each class that is highly related to the scale of key space for a multivariate publi9 key cryptosystem. In this paper we show the enumeration of the equivalence classes containing ∑n-1 i=0 aiX^2qi when char(Fq) = 2, which implies that these polynomials are all weak IP instances. Moreover, we study the cardinality of an equivalence class containing the binomial aX2qi + bX2qj (i ≠ j) over Fqn without the restriction that char(Fq) = 2, which gives us a deeper understanding of finite geometry as a tool to investigate the enumeration problem of IP.展开更多
The weight hierarchy of a [n, k; q] linear code C over Fq is the sequence (d1,…, dr,… , dk), where dr is the smallest support weight of an r-dimensional subcode of C. In this paper, by using the finite projective ...The weight hierarchy of a [n, k; q] linear code C over Fq is the sequence (d1,…, dr,… , dk), where dr is the smallest support weight of an r-dimensional subcode of C. In this paper, by using the finite projective geometry method, we research a class of weight hierarchy of linear codes with dimension 5. We first find some new pre- conditions of this class. Then we divide its weight hierarchies into six subclasses, and research one subclass to determine nearly all the weight hierarchies of this subclass of weight hierarchies of linear codes with dimension 5.展开更多
基金The research of Jun Zhang was supported by the National Natural Science Foundation of China(Grant No.11971321)by National Key Research and Development Program of China(Grant No.2018YFA0704703)The research of Haiyan Zhou was supported by the National Natural Science Foundation of China(Grant No.12071221).
文摘In this paper, we first propose the maximum arc problem, normal rational curve conjecture, and extensions of normal rational curves over finite local rings, analogously to the finite geometry over finite fields. We then study the deep hole problem of generalized Reed-Solomon (RS) codes over finite local rings. Several different classes of deep holes are constructed. The relationship between finite geometry and deep holes of RS codes over finite local rings are also studied.
文摘In this note we study subplanes of order q of the projective plane Π=PG( 2, q 3 ) and the ruled varieties V 2 5 of Σ=PG( 6,q ) using the spatial representation of Π in Σ, by fixing a hyperplane Σ ′ with a regular spread of planes. First are shown some configurations of the affine q-subplanes. Then to prove that a variety V 2 5 of Σ represents a non-affine subplane of order q of Π, after having shown basic incidence properties of it, such a variety V 2 5 is constructed by choosing appropriately the two directrix curves in two complementary subspaces of Σ. The result can be translated into further incidence properties of the affine points of V 2 5 . Then a maximal bundle of varieties V 2 5 having in common one directrix cubic curve is constructed.
文摘In this note we consider ruled varieties V22r−1of PG(2r,q), generalizing some results shown for r=2,3in previous papers. By choosing appropriately two directrix curves, a V22r−1represents a non-affine subplane of order qof the projective plane PG(2,qr)represented in PG(2r,q)by a spread of a hyperplane. That proves the conjecture assumed in [1]. Finally, a large family of linear codes dependent on r≥2is associated with projective systems defined both by V22r−1and by a maximal bundle of such varieties with only an r-directrix in common, then are shown their basic parameters.
基金Supported by the National Natural Science Foundation ofChina (No. 61071145,41074090)the Specialized Research Fund for the Doctoral Program of Higher Education (200802880014)
文摘The dual-containing (or self-orthogonal) formalism of Calderbank-Shor-Steane (CSS) codes provides a universal connection between a classical linear code and a Quantum Error-Correcting Code (QECC). We propose a novel class of quantum Low Density Parity Check (LDPC) codes constructed from cyclic classes of lines in Euclidean Geometry (EG). The corresponding constructed parity check matrix has quasi-cyclic structure that can be encoded flexibility, and satisfies the requirement of dual-containing quantum code. Taking the advantage of quasi-cyclic structure, we use a structured approach to construct Generalized Parity Check Matrix (GPCM). This new class of quantum codes has higher code rate, more sparse check matrix, and exactly one four-cycle in each pair of two rows. Ex-perimental results show that the proposed quantum codes, such as EG(2,q)II-QECC, EG(3,q)II-QECC, have better performance than that of other methods based on EG, over the depolarizing channel and decoded with iterative decoding based on the sum-product decoding algorithm.
基金the National Natural Science Foundation of China(No.60272009,No.60472045,and No.60496313).
文摘This paper studies the nonsystematic Low-Density Parity-Check(LDPC)codes based onSymmetric Balanced Incomplete Block Design(SBIBD).First,it is concluded that the performancedegradation of nonsystematic linear block codes is bounded by the average row weight of generalizedinverses of their generator matrices and code rate.Then a class of nonsystematic LDPC codes con-structed based on SBIBD is presented.Their characteristics include:both generator matrices andparity-check matrices are sparse and cyclic,which are simple to encode and decode;and almost arbi-trary rate codes can be easily constructed,so they are rate-compatible codes.Because there aresparse generalized inverses of generator matrices,the performance of the proposed codes is only0.15dB away from that of the traditional systematic LDPC codes.
基金supported by The Norwegian Research Councilthe National Science Foundation of China(10271116)
文摘The weight hierarchy of a binary linear [n, k] code C is the sequence (d 1, d 2, . . . , d k ), where d r is the smallest support of an r-dimensional subcode of C. The codes of dimension 4 are collected in classes and the possible weight hierarchies in each class is determined by finite projective geometries. The possible weight hierarchies in class A, B, C, D are determined in Part (I). The possible weight hierarchies in class E, F, G, H, I are determined in Part (II).
文摘By taking as blocks certain subspace-pairs of an orthogonal geometry over a finite field with characteristic≠2 we construct some new types of BIB designs and PBIB designs whose parameters are also given.
基金supported by National Basic Research Program of China (973 Program)(Grant No. 2011CB302400)National Natural Science Foundation of China (Grant No. 60970152)Grand Project of Institute of Software (Grant No. YOCX285056)
文摘The isomorphism of polynomials (IP), one of the hard problems in multivariate public key cryptography induces an equivalence relation on a set of systems of polynomials. Then the enumeration problem of IP consists of counting the numbers of different classes and counting the cardinality of each class that is highly related to the scale of key space for a multivariate publi9 key cryptosystem. In this paper we show the enumeration of the equivalence classes containing ∑n-1 i=0 aiX^2qi when char(Fq) = 2, which implies that these polynomials are all weak IP instances. Moreover, we study the cardinality of an equivalence class containing the binomial aX2qi + bX2qj (i ≠ j) over Fqn without the restriction that char(Fq) = 2, which gives us a deeper understanding of finite geometry as a tool to investigate the enumeration problem of IP.
基金supported by the National Natural Science Foundation of China (Nos. 61303212 and 61170080)the State Key Program of the National Natural Science of China (Nos. 61332019 and U1135004)the Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (No. CZY14019)
文摘The weight hierarchy of a [n, k; q] linear code C over Fq is the sequence (d1,…, dr,… , dk), where dr is the smallest support weight of an r-dimensional subcode of C. In this paper, by using the finite projective geometry method, we research a class of weight hierarchy of linear codes with dimension 5. We first find some new pre- conditions of this class. Then we divide its weight hierarchies into six subclasses, and research one subclass to determine nearly all the weight hierarchies of this subclass of weight hierarchies of linear codes with dimension 5.