期刊文献+
共找到2,246篇文章
< 1 2 113 >
每页显示 20 50 100
An Inner-Element Edge-Based Smoothed Finite Element Method
1
作者 Zhigang Pei Wei Xie +1 位作者 Tao Suo Zhimin Xu 《Acta Mechanica Solida Sinica》 2025年第5期815-824,共10页
A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FE... A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FEM is described and compared with ES-FEM.A practical modification of IES-FEM is then introduced that used the technique employed by ES-FEM for the nodal strain calculation.The differences in the strain computation among ES-FEM,IES-FEM,and FEM are then discussed.The modified IES-FEM exhibited superior performance in displacement and a slight advantage in stress compared to FEM using the same mesh according to the results obtained from both the regular and irregular elements.The robustness of the IES-FEM to severely deformed meshes was also verified. 展开更多
关键词 Smoothed finite element method(S-FEM) Edge-based smoothed finite element method(ES-FEM) User-defined element(UEL) Stress analysis Displacement analysis
原文传递
3D slope stability analysis considering strength anisotropy by a microstructure tensor enhanced elasto-plastic finite element method 被引量:1
2
作者 Wencheng Wei Hongxiang Tang +1 位作者 Xiaoyu Song Xiangji Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1664-1684,共21页
This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is e... This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model. 展开更多
关键词 Strength anisotropy Elasto-plastic finite element method(FEM) Three-dimensional(3D)soil slope Gravity increase method(GIM) Stability analysis Case study
在线阅读 下载PDF
Fast 2D forward modeling of electromagnetic propagation well logs using finite element method and data-driven deep learning
3
作者 A.M.Petrov A.R.Leonenko +1 位作者 K.N.Danilovskiy O.V.Nechaev 《Artificial Intelligence in Geosciences》 2025年第1期85-96,共12页
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to... We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation. 展开更多
关键词 PETROPHYSICS Electromagnetic propagation logging Forward modeling finite element method Residual neural networks
在线阅读 下载PDF
Coupling Magneto-Electro-Elastic Multiscale Finite Element Method for Transient Responses of Heterogeneous MEE Structures
4
作者 Xiaolin Li Xinyue Li +2 位作者 Liming Zhou Hangran Yang Xiaoqing Yuan 《Computers, Materials & Continua》 2025年第3期3821-3841,共21页
Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant i... Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant importance.The traditional finite element method(FEM)remains one of the primary approaches for addressing such issues.However,the application of FEM typically necessitates the use of a fine finite element mesh to accurately capture the heterogeneous properties of the materials and meet the required computational precision,which inevitably leads to a reduction in computational efficiency.To enhance the computational accuracy and efficiency of the FEM for heterogeneous multi-field coupling problems,this study presents the coupling magneto-electro-elastic multiscale finite element method(CM-MsFEM)for heterogeneous MEE structures.Unlike the conventional multiscale FEM(MsFEM),the proposed algorithm simultaneously constructs displacement,electric,and magnetic potential multiscale basis functions to address the heterogeneity of the corresponding parameters.The macroscale formulation of CM-MsFEM was derived,and the macroscale/microscale responses of the problems were obtained through up/downscaling calculations.Evaluation using numerical examples analyzing the transient behavior of heterogeneous MEE structures demonstrated that the proposed method outperforms traditional FEM in terms of both accuracy and computational efficiency,making it an appropriate choice for numerically modeling the dynamics of heterogeneous MEE structures. 展开更多
关键词 Multiscale finite element method heterogeneous materials transient responses MAGNETO-ELECTRO-ELASTIC multiscale basis function
在线阅读 下载PDF
A straightforward 3D polycrystal plasticity finite element method for dynamic/static recrystallization simulation
5
作者 Guowei Zhou Yuanzhe Hu +2 位作者 Ronghui Hu Peidong Wu Dayong Li 《Journal of Materials Science & Technology》 2025年第17期180-198,共19页
The microstructure and related property evolution induced by dynamic recrystallization(DRX)and static recrystallization(SRX)in thermo-mechanical process are two critical factors for the metal forming.The DRX and SRX a... The microstructure and related property evolution induced by dynamic recrystallization(DRX)and static recrystallization(SRX)in thermo-mechanical process are two critical factors for the metal forming.The DRX and SRX are determined by the grain level deformation and sequentially coupled.In order to fully capture the microstructure and mechanical property evolution,a crystal plasticity finite element based modelling method for DRX and SRX is proposed in the current work.The grain level deformation is calculated with crystal plasticity which is coupled with the recrystallization model straightforwardly,and both the grain deformation and microstructure evolution are updated simultaneously.The proposed method is validated with discontinuous DRX experiments and the effects of initial deformation conditions are well-captured.Two controversial mechanisms for recrystallization microstructure evolution,i.e.oriented nucleation and growth selection,are discussed in the current framework with the advantages of accurate grain level deformation and interaction predictions.Furthermore,the sequentially coupled DRX and SRX are modelled seamlessly in the current work which provides a critical method for fully integrated thermo-mechanical processes analysis. 展开更多
关键词 Dynamic recrystallization Static recrystallization Crystal plasticity finite element method MICROSTRUCTURE Growth selection
原文传递
A stochastic energy finite element method for predicting the high-frequency dynamic response of panels under aero-thermo-acoustic loads
6
作者 Zhaolin CHEN Yueming DU +1 位作者 Yingsong GU Zhichun YANG 《Chinese Journal of Aeronautics》 2025年第8期367-387,共21页
Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the stru... Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the structural safety of supersonic vehicles,but it has been rarely investigated.Given that existing methods are inefficient for high-frequency dynamic analysis in multi-physics fields,the present work addresses this challenge by proposing a Stochastic Energy Finite Element Method(SEFEM).SEFEM uses energy density instead of displacement to describe the dynamic response,thereby significantly enhancing its efficiency.In SEFEM,the effects of aerodynamic and thermal loads on the energy propagation characteristics are studied analytically and incorporated into the energy density governing equation.These effects are also considered when calculating the input power generated by the acoustic load,and two effective approaches named Frequency Response Function Method(FRFM)and Mechanical Impedance Method(MIM)are developed accordingly and integrated into SEFEM.The good accuracy,applicability,and high efficiency of the proposed SEFEM are demonstrated through numerical simulations performed on a two-dimensional panel under aero-thermoacoustic loads.Additionally,the effects and underlying mechanisms of aero-thermo-acoustic loads on the high-frequency response are explored.This work not only presents an efficient approach for predicting high-frequency dynamic response of panels subjected to aero-thermo-acoustic loads,but also provides insights into the high-frequency dynamic characteristics in multi-physics fields. 展开更多
关键词 Aero-thermo-acoustic loads High frequency Multi-physics field Stochastic energy finite element method Vibration analysis
原文传递
Computational method for analytical solution with finite elements(CMAS-FE):Deriving approximate analytical solution for an isotropic homogeneous elastic medium with linear finite element method
7
作者 Jiajia Yue Zifeng Yuan 《Theoretical & Applied Mechanics Letters》 2025年第6期540-550,共11页
This study presents a novel methodology to obtain an approximate analytical solution for an isotropic homo-geneous elastic medium with displacement and traction boundary conditions.The solution is derived through solv... This study presents a novel methodology to obtain an approximate analytical solution for an isotropic homo-geneous elastic medium with displacement and traction boundary conditions.The solution is derived through solving a specific numerical problem under the scope of the linear finite element method(LFEM),so the method is termed computational method for analytical solutions with finite elements(CMAS-FE).The primary objective of the CMAS-FE is to construct analytical expressions for displacements and reaction forces at nodes,as well as for strains and stresses at elemental quadrature points,all of which are formulated as infinite series solutions of various orders of Poisson’s ratios.Like the conventional LFEM,the CMAS-FE forms global sparse linear equations,but the Young’s modulus and Poisson’s ratio remain variables(or symbols).By employing a direct inverse method to solve these symbolic linear systems,an analytical expression of the displacement field can be constructed.The CMAS-FE is validated via patch and bending tests,which demonstrate convergence with mesh and term refine-ment.Furthermore,the CMAS-FE is applied to obtain the bending stiffness of a beam structure and to estimate an approximate stress intensity factor for a straight crack within a square-shaped plate. 展开更多
关键词 CMAS-FE finite element method Linear elastic problem Analytical solution
在线阅读 下载PDF
Effects of spatial heterogeneity on pseudo-static stability of coal mine overburden dump slope,using random limit equilibrium and random finite element methods:A comparative study
8
作者 Madhumita Mohanty Rajib Sarkar Sarat Kumar Das 《Earthquake Engineering and Engineering Vibration》 2025年第1期83-99,共17页
Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump mate... Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1. 展开更多
关键词 coal mine overburden dump slope random limit equilibrium method random finite element method seismic slope stability spatial heterogeneity
在线阅读 下载PDF
Optimal Error Estimates of Multiphysics Finite Element Method for a Nonlinear Poroelasticity Model with Nonlinear Stress-Strain Relation
9
作者 GE Zhi-hao LI Hai-run LI Ting-ting 《Chinese Quarterly Journal of Mathematics》 2025年第3期271-294,共24页
In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a ge... In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a generalized nonlinear Stokes problem of displacement vector field related to pseudo pressure and a diffusion problem of other pseudo pressure fields.Secondly,a fully discrete multiphysics finite element method is performed to solve the reformulated system numerically.Thirdly,existence and uniqueness of the weak solution of the reformulated model and stability analysis and optimal convergence order for the multiphysics finite element method are proven theoretically.Lastly,numerical tests are given to verify the theoretical results. 展开更多
关键词 Nonlinear poroelasticity model Multiphysics finite element method Back-ward Euler method
在线阅读 下载PDF
A program for modeling the RF wave propagation of ICRF antennas utilizing the finite element method
10
作者 Lei-Yu Zhang Yi-Xuan Li +1 位作者 Ming-Yue Han Quan-Zhi Zhang 《Chinese Physics B》 2025年第4期154-160,共7页
Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.T... Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.This study primarily presents a self-developed 2D ion cyclotron resonance antenna electromagnetic field solver(ICRAEMS)code implemented on the MATLAB platform,which solves the electric field wave equation by using the finite element method,establishing perfectly matched layer(PML)boundary conditions,and post-processing the electromagnetic field data.This code can be utilized to facilitate the design and optimization processes of antennas for ICRF heating technology.Furthermore,this study examines the electric field distribution and power spectrum associated with various antenna phases to investigate how different antenna configurations affect the electromagnetic field propagation and coupling characteristics. 展开更多
关键词 ion cyclotron range of frequency(ICRF)antennas finite element method perfect matching layer
原文传递
NUMERICAL SIMULATION OF UNSTEADY-STATE UNDEREXPANDED JET USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:3
11
作者 陈二云 李志刚 +3 位作者 马大为 乐贵高 赵改平 任杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期89-93,共5页
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex... A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet. 展开更多
关键词 jets computational fluid dynamics multiple Mach disks vortex ring discontinuous Galerkin finite element method
在线阅读 下载PDF
NONLINEAR BUCKLING ANALYSIS OF TUBING IN DEVIATED WELLS BY FINITE ELEMENT METHOD 被引量:9
12
作者 刘峰 王鑫伟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第1期36-42,共7页
The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite ... The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite element method. The effects of gravity and torques on the buckling are included in the analyses and the calculated results are well compared with existing solutions. It is shown that the buckling only occurs at the lower portion of the tubing where the axial load is the largest, and the contact force of the well, the bending moment of the tubing and the buckling displacement of this portion vary periodically. The buckling spreads upwards from the bit with the increase of axial load. There is no buckling at the upper portion of the tubing where the bending moment is zero. And the contact force of this section increases only slightly with the increase of the axial load. With the increase of the deviation angle, the length of buckling portion and buckling displacement amplitude decrease, the contact force increases with the increase of load at the upper portion and its amplitude decreases at the lower buckling section, the bending moment remains zero at the upper portion and its amplitude decreases at the lower buckling portion. The buckling displacement increases with the increase of the torque, but the increment is very small. 展开更多
关键词 deviated wells drill-tubing BUCKLING non-linearity finite element method
在线阅读 下载PDF
Phase-field modeling of dendritic growth under forced flow based on adaptive finite element method 被引量:2
13
作者 朱昶胜 雷鹏 +1 位作者 肖荣振 冯力 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期241-248,共8页
A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr... A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain. 展开更多
关键词 dendritic growth phase-field model forced flow adaptive finite element method
在线阅读 下载PDF
NUMERICAL INVESTIGATION OF TOROIDAL SHOCK WAVES FOCUSING USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:2
14
作者 陈二云 赵改平 +1 位作者 卓文涛 杨爱玲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期9-15,共7页
A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations.... A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations. For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2.0 to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres- sure with different grid scales is compared. 展开更多
关键词 shock wave focusing spherical double Math reflection discontinuous galerkin finite element method
在线阅读 下载PDF
INTERVAL ARITHMETIC AND STATIC INTERVAL FINITE ELEMENT METHOD 被引量:2
15
作者 GUO Shu-xiang(郭书祥) +1 位作者 LU Zhen-zhou(吕震宙) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第12期1390-1396,共7页
When the uncertainties of structures may be bounded in intervals, through some suitable discretization, interval finite element method can be constructed by combining the interval analysis with the traditional finite ... When the uncertainties of structures may be bounded in intervals, through some suitable discretization, interval finite element method can be constructed by combining the interval analysis with the traditional finite element method (FEM). The two parameters, median and deviation, were used to represent the uncertainties of interval variables. Based on the arithmetic rules of intervals, some properties and arithmetic rules of interval variables were demonstrated. Combining the procedure of interval analysis with FEM, a static linear interval finite element method was presented to solve the non-random uncertain structures. ne solving of the characteristic parameters of n-freedom uncertain displacement field of the static governing equation was transformed into 2 n-order linear equations. It is shown by a numerical example that the proposed method is practical and effective. 展开更多
关键词 interval variable interval arithmetic finite element method interval finite element method
在线阅读 下载PDF
Mixed time discontinuous space-time finite element method for convection diffusion equations 被引量:1
16
作者 刘洋 李宏 何斯日古楞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第12期1579-1586,共8页
A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order... A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method. 展开更多
关键词 convection diffusion equations mixed finite element method time discontinuous space-time finite element method CONVERGENCE
在线阅读 下载PDF
FUZZY ARITHMETIC AND SOLVING OF THE STATIC GOVERNING EQUATIONS OF FUZZY FINITE ELEMENT METHOD 被引量:1
17
作者 郭书祥 吕震宙 冯立富 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第9期1054-1061,共8页
The key component of finite element analysis of structures with fuzzy parameters, which is associated with handling of some fuzzy information and arithmetic relation of fuzzy variables, was the solving of the governin... The key component of finite element analysis of structures with fuzzy parameters, which is associated with handling of some fuzzy information and arithmetic relation of fuzzy variables, was the solving of the governing equations of fuzzy finite element method. Based on a given interval representation of fuzzy numbers, some arithmetic rules of fuzzy numbers and fuzzy variables were developed in terms of the properties of interval arithmetic. According to the rules and by the theory of interval finite element method, procedures for solving the static governing equations of fuzzy finite element method of structures were presented. By the proposed procedure, the possibility distributions of responses of fuzzy structures can be generated in terms of the membership functions of the input fuzzy numbers. It is shown by a numerical example that the computational burden of the presented procedures is low and easy to implement. The effectiveness and usefulness of the presented procedures are also illustrated. 展开更多
关键词 fuzzy variable fuzzy arithmetic fuzzy finite element method interval finite element method
在线阅读 下载PDF
INFINITE ELEMENT METHOD FOR PROBLEMS ON UNBOUNDED AND MULTIPLY CONNECTED DOMAINS 被引量:1
18
作者 应隆安 《Acta Mathematica Scientia》 SCIE CSCD 2001年第4期440-452,共13页
The author studies the infinite element method for the boundary value problems of second order elliptic equations on unbounded and multiply connected domains. The author makes a partition of the domain into infinite n... The author studies the infinite element method for the boundary value problems of second order elliptic equations on unbounded and multiply connected domains. The author makes a partition of the domain into infinite number of elements. Without dividing the domain, as usual, into a bounded one and an exterior one, he derives an initial value problem of an ordinary differential equation for the combined stiffness matrix, then obtains the approximate solution with a small amount of computer work. Numerical examples are given. 展开更多
关键词 finite element method infinite element method unbounded domain multiply connected domain
在线阅读 下载PDF
IMPLICIT-EXPLICIT MULTISTEP FINITE ELEMENT-MIXED FINITE ELEMENT METHODS FOR THE TRANSIENT BEHAVIOR OF A SEMICONDUCTOR DEVICE
19
作者 陈蔚 《Acta Mathematica Scientia》 SCIE CSCD 2003年第3期386-398,共13页
The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density. The electric potential equ... The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density. The electric potential equation is discretized by a mixed finite element method. The electron and hole density equations are treated by implicit-explicit multistep finite element methods. The schemes are very efficient. The optimal order error estimates both in time and space are derived. 展开更多
关键词 Semiconductor device strongly A(0)-stable multistep methods finite element methods mixed finite element methods
在线阅读 下载PDF
HIGH-ORDER RUNGE-KUTTA DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR 2-D RESONATOR PROBLEM 被引量:2
20
作者 刘梅林 刘少斌 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第3期208-213,共6页
The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and ... The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases. 展开更多
关键词 Runge-Kutta methods finite element methods resonators basis function of high-order polynomial
在线阅读 下载PDF
上一页 1 2 113 下一页 到第
使用帮助 返回顶部