期刊文献+
共找到89,874篇文章
< 1 2 250 >
每页显示 20 50 100
Fine-Grained Classification of Remote Sensing Ship Images Based on Improved VAN
1
作者 Guoqing Zhou Liang Huang Qiao Sun 《Computers, Materials & Continua》 SCIE EI 2023年第11期1985-2007,共23页
The remote sensing ships’fine-grained classification technology makes it possible to identify certain ship types in remote sensing images,and it has broad application prospects in civil and military fields.However,th... The remote sensing ships’fine-grained classification technology makes it possible to identify certain ship types in remote sensing images,and it has broad application prospects in civil and military fields.However,the current model does not examine the properties of ship targets in remote sensing images with mixed multi-granularity features and a complicated backdrop.There is still an opportunity for future enhancement of the classification impact.To solve the challenges brought by the above characteristics,this paper proposes a Metaformer and Residual fusion network based on Visual Attention Network(VAN-MR)for fine-grained classification tasks.For the complex background of remote sensing images,the VAN-MR model adopts the parallel structure of large kernel attention and spatial attention to enhance the model’s feature extraction ability of interest targets and improve the classification performance of remote sensing ship targets.For the problem of multi-grained feature mixing in remote sensing images,the VAN-MR model uses a Metaformer structure and a parallel network of residual modules to extract ship features.The parallel network has different depths,considering both high-level and lowlevel semantic information.The model achieves better classification performance in remote sensing ship images with multi-granularity mixing.Finally,the model achieves 88.73%and 94.56%accuracy on the public fine-grained ship collection-23(FGSC-23)and FGSCR-42 datasets,respectively,while the parameter size is only 53.47 M,the floating point operations is 9.9 G.The experimental results show that the classification effect of VAN-MR is superior to that of traditional CNNs model and visual model with Transformer structure under the same parameter quantity. 展开更多
关键词 fine-grained classification metaformer remote sensing RESIDUAL ship image
在线阅读 下载PDF
Zero-shot Fine-grained Classification by Deep Feature Learning with Semantics 被引量:8
2
作者 Ao-Xue Li Ke-Xin Zhang Li-Wei Wang 《International Journal of Automation and computing》 EI CSCD 2019年第5期563-574,共12页
Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning dis... Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e., zeroshot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical semantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propagation algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot finegrained classification. 展开更多
关键词 fine-grained image classification zero-shot LEARNING DEEP FEATURE LEARNING domain adaptation semantic graph
原文传递
Fine-Grained Classification of Product Images Based on Convolutional Neural Networks 被引量:1
3
作者 Tongtong Liu Rubing Wang +2 位作者 Jikang Chen Shengliang Han Jimin Yang 《Advances in Molecular Imaging》 2018年第4期69-87,共19页
With the rapid development of the Internet of things and e-commerce, feature-based image retrieval and classification have become a serious challenge for shoppers searching websites for relevant product information. T... With the rapid development of the Internet of things and e-commerce, feature-based image retrieval and classification have become a serious challenge for shoppers searching websites for relevant product information. The last decade has witnessed great interest in research on content-based feature extraction techniques. Moreover, semantic attributes cannot fully express the rich image information. This paper designs and trains a deep convolutional neural network that the convolution kernel size and the order of network connection are based on the high efficiency of the filter capacity and coverage. To solve the problem of long training time and high resource share of deep convolutional neural network, this paper designed a shallow convolutional neural network to achieve the similar classification accuracy. The deep and shallow convolutional neural networks have data pre-processing, feature extraction and softmax classification. To evaluate the classification performance of the network, experiments were conducted using a public database Caltech256 and a homemade product image database containing 15 species of garment and 5 species of shoes on a total of 20,000 color images from shopping websites. Compared with the classification accuracy of combining content-based feature extraction techniques with traditional support vector machine techniques from 76.3% to 86.2%, the deep convolutional neural network obtains an impressive state-of-the-art classification accuracy of 92.1%, and the shallow convolutional neural network reached a classification accuracy of 90.6%. Moreover, the proposed convolutional neural networks can be integrated and implemented in other colour image database. 展开更多
关键词 PRODUCT classification FEATURE EXTRACTION Convolutional NEURAL Network (CNN) Softmax
在线阅读 下载PDF
MEET:A Million-Scale Dataset for Fine-Grained Geospatial Scene Classification With Zoom-Free Remote Sensing Imagery 被引量:1
4
作者 Yansheng Li Yuning Wu +9 位作者 Gong Cheng Chao Tao Bo Dang Yu Wang Jiahao Zhang Chuge Zhang Yiting Liu Xu Tang Jiayi Ma Yongjun Zhang 《IEEE/CAA Journal of Automatica Sinica》 2025年第5期1004-1023,共20页
Accurate fine-grained geospatial scene classification using remote sensing imagery is essential for a wide range of applications.However,existing approaches often rely on manually zooming remote sensing images at diff... Accurate fine-grained geospatial scene classification using remote sensing imagery is essential for a wide range of applications.However,existing approaches often rely on manually zooming remote sensing images at different scales to create typical scene samples.This approach fails to adequately support the fixed-resolution image interpretation requirements in real-world scenarios.To address this limitation,we introduce the million-scale fine-grained geospatial scene classification dataset(MEET),which contains over 1.03 million zoom-free remote sensing scene samples,manually annotated into 80 fine-grained categories.In MEET,each scene sample follows a scene-in-scene layout,where the central scene serves as the reference,and auxiliary scenes provide crucial spatial context for fine-grained classification.Moreover,to tackle the emerging challenge of scene-in-scene classification,we present the context-aware transformer(CAT),a model specifically designed for this task,which adaptively fuses spatial context to accurately classify the scene samples.CAT adaptively fuses spatial context to accurately classify the scene samples by learning attentional features that capture the relationships between the center and auxiliary scenes.Based on MEET,we establish a comprehensive benchmark for fine-grained geospatial scene classification,evaluating CAT against 11 competitive baselines.The results demonstrate that CAT significantly outperforms these baselines,achieving a 1.88%higher balanced accuracy(BA)with the Swin-Large backbone,and a notable 7.87%improvement with the Swin-Huge backbone.Further experiments validate the effectiveness of each module in CAT and show the practical applicability of CAT in the urban functional zone mapping.The source code and dataset will be publicly available at https://jerrywyn.github.io/project/MEET.html. 展开更多
关键词 fine-grained geospatial scene classification(FGSC) million-scale dataset remote sensing imagery(RSI) scene-in-scene transformer
在线阅读 下载PDF
Dual networks with hierarchical attention for fine-grained image classification
5
作者 YANG Tao WANG Gaihua 《中国科学院大学学报(中英文)》 北大核心 2025年第6期806-813,共8页
In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hi... In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hierarchical attention feature learning,which are used simultaneously to remove noise and retain salient features.In the loss function,it considers the losses of difference in paired images according to the intra-variance and inter-variance.In addition,we also collect the disaster scene dataset from remote sensing images and apply the proposed method to disaster scene classification,which contains complex scenes and multiple types of disasters.Compared to other methods,experimental results show that the DNet with hierarchical attention is robust to different datasets and performs better. 展开更多
关键词 dual network(DNet) fine-grained image classification hierarchical attention features
在线阅读 下载PDF
Step-by-step to success:Multi-stage learning driven robust audiovisual fusion network for fine-grained bird species classification
6
作者 Shanshan Xie Jiangjian Xie +6 位作者 Yang Liu Lianshuai Sha Ye Tian Jiahua Dong Diwen Liang Kaijun Pan Junguo Zhang 《Avian Research》 2025年第4期818-831,共14页
Bird monitoring and protection are essential for maintaining biodiversity,and fine-grained bird classification has become a key focus in this field.Audio-visual modalities provide critical cues for this task,but robus... Bird monitoring and protection are essential for maintaining biodiversity,and fine-grained bird classification has become a key focus in this field.Audio-visual modalities provide critical cues for this task,but robust feature extraction and efficient fusion remain major challenges.We introduce a multi-stage fine-grained audiovisual fusion network(MSFG-AVFNet) for fine-grained bird species classification,which addresses these challenges through two key components:(1) the audiovisual feature extraction module,which adopts a multi-stage finetuning strategy to provide high-quality unimodal features,laying a solid foundation for modality fusion;(2) the audiovisual feature fusion module,which combines a max pooling aggregation strategy with a novel audiovisual loss function to achieve effective and robust feature fusion.Experiments were conducted on the self-built AVB81and the publicly available SSW60 datasets,which contain data from 81 and 60 bird species,respectively.Comprehensive experiments demonstrate that our approach achieves notable performance gains,outperforming existing state-of-the-art methods.These results highlight its effectiveness in leveraging audiovisual modalities for fine-grained bird classification and its potential to support ecological monitoring and biodiversity research. 展开更多
关键词 Audiovisual modality Bird species classification Feature fusion fine-grained
在线阅读 下载PDF
ET-Net:A Novel Framework for Fine-Grained Traffic Classification in Intelligent Vehicle Applications
7
作者 Wei Wenjie Ji Nan +1 位作者 Gao Feiran Lin Fuhong 《China Communications》 2025年第1期265-276,共12页
Intelligent vehicle applications provide convenience but raise privacy and security concerns.Misuse of sensitive data,including vehicle location,and facial recognition information,poses a threat to user privacy.Hence,... Intelligent vehicle applications provide convenience but raise privacy and security concerns.Misuse of sensitive data,including vehicle location,and facial recognition information,poses a threat to user privacy.Hence,traffic classification is vital for promptly overseeing and controlling applications with sensitive information.In this paper,we propose ETNet,a framework that combines multiple features and leverages self-attention mechanisms to learn deep relationships between packets.ET-Net employs a multisimilarity triplet network to extract features from raw bytes,and exploits self-attention to capture long-range dependencies within packets in a session and contextual information features.Additionally,we utilizing the loss function to more effectively integrate information acquired from both byte sequences and their corresponding lengths.Through simulated evaluations on datasets with similar attributes,ET-Net demonstrates the ability to finely distinguish between nine categories of applications,achieving superior results compared to existing methods. 展开更多
关键词 attention mechanism encrypted traffic classification intelligent vehicles privacy and security
在线阅读 下载PDF
A new dataset of dog breed images and a benchmark for fine-grained classification 被引量:3
8
作者 Ding-Nan Zou Song-Hai Zhang +1 位作者 Tai-Jiang Mu Min Zhang 《Computational Visual Media》 EI CSCD 2020年第4期477-487,共11页
In this paper, we introduce an image dataset for fine-grained classification of dog breeds: the Tsinghua Dogs Dataset. It is currently the largest dataset for fine-grained classification of dogs, including 130 dog bre... In this paper, we introduce an image dataset for fine-grained classification of dog breeds: the Tsinghua Dogs Dataset. It is currently the largest dataset for fine-grained classification of dogs, including 130 dog breeds and 70,428 real-world images. It has only one dog in each image and provides annotated bounding boxes for the whole body and head. In comparison to previous similar datasets, it contains more breeds and more carefully chosen images for each breed. The diversity within each breed is greater,with between 200 and 7000+ images for each breed.Annotation of the whole body and head makes the dataset not only suitable for the improvement of finegrained image classification models based on overall features, but also for those locating local informative parts. We show that dataset provides a tough challenge by benchmarking several state-of-the-art deep neural models. The dataset is available for academic purposes at https://cg.cs.tsinghua.edu.cn/ThuDogs/. 展开更多
关键词 fine-grained classification DOG DATASET BENCHMARK
原文传递
Fine-grained classification of grape leaves via a pyramid residual convolution neural network 被引量:2
9
作者 Hanghao Li Yana Wei +2 位作者 Hongming Zhang Huan Chen Jiangfei Meng 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第2期197-203,共7页
The value of grape cultivars varies.The use of a mixture of cultivars can negate the benefits of improved cultivars and hamper the protection of genetic resources and the identification of new hybrid cultivars.Classif... The value of grape cultivars varies.The use of a mixture of cultivars can negate the benefits of improved cultivars and hamper the protection of genetic resources and the identification of new hybrid cultivars.Classifying cultivars based on their leaves is therefore highly practical.Transplanted grape seedlings take years to bear fruit,but leaves mature in months.Foliar morphology differs among cultivars,so identifying cultivars based on leaves is feasible.Different cultivars,however,can be bred from the same parents,so the leaves of some cultivars can have similar morphologies.In this work,a pyramid residual convolution neural network was developed to classify images of eleven grape cultivars.The model extracts multi-scale feature maps of the leaf images through the convolution layer and enters them into three residual convolution neural networks.Features are fused by adding the value of the convolution kernel feature matrix to enhance the attention on the edge and center regions of the leaves and classify the images.The results indicated that the average accuracy of the model was 92.26%for the proposed leaf dataset.The proposed model is superior to previous models and provides a reliable method for the fine-grained classification and identification of plant cultivars. 展开更多
关键词 fine-grained classification grape cultivars identification pyramid residual network convolution neural network
原文传递
Taxonomic classification of 80 near-Earth asteroids
10
作者 Fan Mo Bin Li +9 位作者 HaiBin Zhao Jian Chen Yan Jin MengHui Tang Igor Molotov A.M.Abdelaziz A.Takey S.K.Tealib Ahmed.Shokry JianYang Li 《Earth and Planetary Physics》 2026年第1期196-204,共9页
Near-Earth objects are important not only in studying the early formation of the Solar System,but also because they pose a serious hazard to humanity when they make close approaches to the Earth.Study of their physica... Near-Earth objects are important not only in studying the early formation of the Solar System,but also because they pose a serious hazard to humanity when they make close approaches to the Earth.Study of their physical properties can provide useful information on their origin,evolution,and hazard to human beings.However,it remains challenging to investigate small,newly discovered,near-Earth objects because of our limited observational window.This investigation seeks to determine the visible colors of near-Earth asteroids(NEAs),perform an initial taxonomic classification based on visible colors and analyze possible correlations between the distribution of taxonomic classification and asteroid size or orbital parameters.Observations were performed in the broadband BVRI Johnson−Cousins photometric system,applied to images from the Yaoan High Precision Telescope and the 1.88 m telescope at the Kottamia Astronomical Observatory.We present new photometric observations of 84 near-Earth asteroids,and classify 80 of them taxonomically,based on their photometric colors.We find that nearly half(46.3%)of the objects in our sample can be classified as S-complex,26.3%as C-complex,6%as D-complex,and 15.0%as X-complex;the remaining belong to the A-or V-types.Additionally,we identify three P-type NEAs in our sample,according to the Tholen scheme.The fractional abundances of the C/X-complex members with absolute magnitude H≥17.0 were more than twice as large as those with H<17.0.However,the fractions of C-and S-complex members with diameters≤1 km and>1 km are nearly equal,while X-complex members tend to have sub-kilometer diameters.In our sample,the C/D-complex objects are predominant among those with a Jovian Tisserand parameter of T_(J)<3.1.These bodies could have a cometary origin.C-and S-complex members account for a considerable proportion of the asteroids that are potentially hazardous. 展开更多
关键词 near-Earth asteroids optical telescope photometric observation taxonomic classification
在线阅读 下载PDF
A Novel Unsupervised Structural Attack and Defense for Graph Classification
11
作者 Yadong Wang Zhiwei Zhang +2 位作者 Pengpeng Qiao Ye Yuan Guoren Wang 《Computers, Materials & Continua》 2026年第1期1761-1782,共22页
Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.Howev... Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.However,despite their success,GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy.Existing adversarial attack strategies primarily rely on label information to guide the attacks,which limits their applicability in scenarios where such information is scarce or unavailable.This paper introduces an innovative unsupervised attack method for graph classification,which operates without relying on label information,thereby enhancing its applicability in a broad range of scenarios.Specifically,our method first leverages a graph contrastive learning loss to learn high-quality graph embeddings by comparing different stochastic augmented views of the graphs.To effectively perturb the graphs,we then introduce an implicit estimator that measures the impact of various modifications on graph structures.The proposed strategy identifies and flips edges with the top-K highest scores,determined by the estimator,to maximize the degradation of the model’s performance.In addition,to defend against such attack,we propose a lightweight regularization-based defense mechanism that is specifically tailored to mitigate the structural perturbations introduced by our attack strategy.It enhances model robustness by enforcing embedding consistency and edge-level smoothness during training.We conduct experiments on six public TU graph classification datasets:NCI1,NCI109,Mutagenicity,ENZYMES,COLLAB,and DBLP_v1,to evaluate the effectiveness of our attack and defense strategies.Under an attack budget of 3,the maximum reduction in model accuracy reaches 6.67%on the Graph Convolutional Network(GCN)and 11.67%on the Graph Attention Network(GAT)across different datasets,indicating that our unsupervised method induces degradation comparable to state-of-the-art supervised attacks.Meanwhile,our defense achieves the highest accuracy recovery of 3.89%(GCN)and 5.00%(GAT),demonstrating improved robustness against structural perturbations. 展开更多
关键词 Graph classification graph neural networks adversarial attack
在线阅读 下载PDF
Graph Attention Networks for Skin Lesion Classification with CNN-Driven Node Features
12
作者 Ghadah Naif Alwakid Samabia Tehsin +3 位作者 Mamoona Humayun Asad Farooq Ibrahim Alrashdi Amjad Alsirhani 《Computers, Materials & Continua》 2026年第1期1964-1984,共21页
Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ... Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems. 展开更多
关键词 Graph neural network image classification DermaMNIST dataset graph representation
在线阅读 下载PDF
A Survey on Deep Learning-based Fine-grained Object Classification and Semantic Segmentation 被引量:47
13
作者 Bo Zhao Jiashi Feng +1 位作者 Xiao Wu Shuicheng Yan 《International Journal of Automation and computing》 EI CSCD 2017年第2期119-135,共17页
The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning technique... The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories, such as bird species or dog breeds. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we review four types of deep learning based fine-grained image classification approaches, including the general convolutional neural networks (CNNs), part detection based, ensemble of networks based and visual attention based fine-grained image classification approaches. Besides, the deep learning based semantic segmentation approaches are also covered in this paper. The region proposal based and fully convolutional networks based approaches for semantic segmentation are introduced respectively. 展开更多
关键词 Deep learning fine-grained image classification semantic segmentation convolutional neural network (CNN) recurrentneural network (RNN)
原文传递
Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends
14
作者 Ameer Hamza Robertas Damaševicius 《Computers, Materials & Continua》 2026年第1期132-172,共41页
This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 20... This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 2025.The primary objective is to evaluate methodological advancements,model performance,dataset usage,and existing challenges in developing clinically robust AI systems.We included peer-reviewed journal articles and highimpact conference papers published between 2022 and 2025,written in English,that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification.Excluded were non-open-access publications,books,and non-English articles.A structured search was conducted across Scopus,Google Scholar,Wiley,and Taylor&Francis,with the last search performed in August 2025.Risk of bias was not formally quantified but considered during full-text screening based on dataset diversity,validation methods,and availability of performance metrics.We used narrative synthesis and tabular benchmarking to compare performance metrics(e.g.,accuracy,Dice score)across model types(CNN,Transformer,Hybrid),imaging modalities,and datasets.A total of 49 studies were included(43 journal articles and 6 conference papers).These studies spanned over 9 public datasets(e.g.,BraTS,Figshare,REMBRANDT,MOLAB)and utilized a range of imaging modalities,predominantly MRI.Hybrid models,especially ResViT and UNetFormer,consistently achieved high performance,with classification accuracy exceeding 98%and segmentation Dice scores above 0.90 across multiple studies.Transformers and hybrid architectures showed increasing adoption post2023.Many studies lacked external validation and were evaluated only on a few benchmark datasets,raising concerns about generalizability and dataset bias.Few studies addressed clinical interpretability or uncertainty quantification.Despite promising results,particularly for hybrid deep learning models,widespread clinical adoption remains limited due to lack of validation,interpretability concerns,and real-world deployment barriers. 展开更多
关键词 Brain tumor segmentation brain tumor classification deep learning vision transformers hybrid models
在线阅读 下载PDF
HCL Net: Deep Learning for Accurate Classification of Honeycombing Lung and Ground Glass Opacity in CT Images
15
作者 Hairul Aysa Abdul Halim Sithiq Liyana Shuib +1 位作者 Muneer Ahmad Chermaine Deepa Antony 《Computers, Materials & Continua》 2026年第1期999-1023,共25页
Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal... Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal lung tissue,honeycombing lungs,and Ground Glass Opacity(GGO)in CT images is often challenging for radiologists and may lead to misinterpretations.Although earlier studies have proposed models to detect and classify HCL,many faced limitations such as high computational demands,lower accuracy,and difficulty distinguishing between HCL and GGO.CT images are highly effective for lung classification due to their high resolution,3D visualization,and sensitivity to tissue density variations.This study introduces Honeycombing Lungs Network(HCL Net),a novel classification algorithm inspired by ResNet50V2 and enhanced to overcome the shortcomings of previous approaches.HCL Net incorporates additional residual blocks,refined preprocessing techniques,and selective parameter tuning to improve classification performance.The dataset,sourced from the University Malaya Medical Centre(UMMC)and verified by expert radiologists,consists of CT images of normal,honeycombing,and GGO lungs.Experimental evaluations across five assessments demonstrated that HCL Net achieved an outstanding classification accuracy of approximately 99.97%.It also recorded strong performance in other metrics,achieving 93%precision,100%sensitivity,89%specificity,and an AUC-ROC score of 97%.Comparative analysis with baseline feature engineering methods confirmed the superior efficacy of HCL Net.The model significantly reduces misclassification,particularly between honeycombing and GGO lungs,enhancing diagnostic precision and reliability in lung image analysis. 展开更多
关键词 Deep learning honeycombing lung ground glass opacity Resnet50v2 multiclass classification
在线阅读 下载PDF
An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning
16
作者 Kemahyanto Exaudi Deris Stiawan +4 位作者 Bhakti Yudho Suprapto Hanif Fakhrurroja MohdYazid Idris Tami AAlghamdi Rahmat Budiarto 《Computers, Materials & Continua》 2026年第1期2062-2085,共24页
Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstruc... Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstructions,and substantial computational demands,especially in complex forest terrains.To address these challenges,this study proposes a novel forest fire detection model utilizing audio classification and machine learning.We developed an audio-based pipeline using real-world environmental sound recordings.Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network(CNN),enabling the capture of distinctive fire acoustic signatures(e.g.,crackling,roaring)that are minimally impacted by visual or weather conditions.Internet of Things(IoT)sound sensors were crucial for generating complex environmental parameters to optimize feature extraction.The CNN model achieved high performance in stratified 5-fold cross-validation(92.4%±1.6 accuracy,91.2%±1.8 F1-score)and on test data(94.93%accuracy,93.04%F1-score),with 98.44%precision and 88.32%recall,demonstrating reliability across environmental conditions.These results indicate that the audio-based approach not only improves detection reliability but also markedly reduces computational overhead compared to traditional image-based methods.The findings suggest that acoustic sensing integrated with machine learning offers a powerful,low-cost,and efficient solution for real-time forest fire monitoring in complex,dynamic environments. 展开更多
关键词 Audio classification convolutional neural network(CNN) environmental science forest fire detection machine learning spectrogram analysis IOT
在线阅读 下载PDF
A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images
17
作者 Ghadah Naif Alwakid 《Computers, Materials & Continua》 2026年第1期797-821,共25页
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru... Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice. 展开更多
关键词 Alzheimer’s disease deep learning MRI images MobileNetV2 contrast-limited adaptive histogram equalization(CLAHE) enhanced super-resolution generative adversarial networks(ESRGAN) multi-class classification
在线阅读 下载PDF
Classification of Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks 被引量:5
18
作者 Zaixing Jiang Hongjie Duan +3 位作者 Chao Liang Jing Wu Wenzhao Zhang Jianguo Zhang 《Journal of Earth Science》 SCIE CAS CSCD 2017年第6期963-976,共14页
Fine-grained sedimentary rocks are defined as rocks which mainly compose of fine grains(〈62.5 μm). The detailed studies on these rocks have revealed the need of a more unified, comprehensive and inclusive classifi... Fine-grained sedimentary rocks are defined as rocks which mainly compose of fine grains(〈62.5 μm). The detailed studies on these rocks have revealed the need of a more unified, comprehensive and inclusive classification. The study focuses on fine-grained rocks has turned from the differences of inorganic mineral components to the significance of organic matter and microorganisms. The proposed classification is based on mineral composition, and it is noted that organic matters have been taken as a very important parameter in this classification scheme. Thus, four parameters, the TOC content, silica(quartz plus feldspars), clay minerals and carbonate minerals, are considered to divide the fine-grained sedimentary rocks into eight categories, and the further classification within every category is refined depending on subordinate mineral composition. The nomenclature consists of a root name preceded by a primary adjective. The root names reflect mineral constituent of the rock, including low organic(TOC〈2%), middle organic(2%4%) claystone, siliceous mudstone, limestone, and mixed mudstone. Primary adjectives convey structure and organic content information, including massive or limanited. The lithofacies are closely related to the reservoir storage space, porosity, permeability, hydrocarbon potential and shale oil/gas sweet spot, and are the key factor for the shale oil and gas exploration. The classification helps to systematically and practicably describe variability within fine-grained sedimentary rocks, what's more, it helps to guide the hydrocarbon exploration. 展开更多
关键词 fine-grained sedimentary rocks classification mineral composition TOC content shale oil and gas.
原文传递
Discussion on classification and naming scheme of fine-grained sedimentary rocks 被引量:3
19
作者 PENG Jun ZENG Yao +2 位作者 YANG Yiming YU Ledan XU Tianyu 《Petroleum Exploration and Development》 CSCD 2022年第1期121-132,共12页
Based on reviews and summaries of the naming schemes of fine-grained sedimentary rocks, and analysis of characteristics of fine-grained sedimentary rocks, the problems existing in the classification and naming of fine... Based on reviews and summaries of the naming schemes of fine-grained sedimentary rocks, and analysis of characteristics of fine-grained sedimentary rocks, the problems existing in the classification and naming of fine-grained sedimentary rocks are discussed. On this basis, following the principle of three-level nomenclature, a new scheme of rock classification and naming for fine-grained sedimentary rocks is determined from two perspectives: First, fine-grained sedimentary rocks are divided into 12 types in two major categories, mudstone and siltstone, according to particle size(sand, silt and mud). Second,fine-grained sedimentary rocks are divided into 18 types in four categories, carbonate rock, fine-grained felsic sedimentary rock,clay rock and mixed fine-grained sedimentary rock according to mineral composition(carbonate minerals, felsic detrital minerals and clay minerals as three end elements). Considering the importance of organic matter in unconventional oil and gas generation and evaluation, organic matter is taken as the fourth element in the scheme. Taking the organic matter contents of 0.5% and 2% as dividing points, fine grained sedimentary rocks are divided into three categories, organic-poor, organic-bearing,and organic-rich ones. The new scheme meets the requirement of unconventional oil and gas exploration and development today and solves the problem of conceptual confusion in fine-grained sedimentary rocks, providing a unified basic term system for the research of fine-grained sedimentology. 展开更多
关键词 fine-grained sedimentary rock rock classification three-level nomenclature particle size mineral composition
在线阅读 下载PDF
Urban tree species classification based on multispectral airborne LiDAR 被引量:1
20
作者 HU Pei-Lun CHEN Yu-Wei +3 位作者 Mohammad Imangholiloo Markus Holopainen WANG Yi-Cheng Juha Hyyppä 《红外与毫米波学报》 北大核心 2025年第2期211-216,共6页
Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services... Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy. 展开更多
关键词 multispectral airborne LiDAR machine learning tree species classification
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部