期刊文献+
共找到175篇文章
< 1 2 9 >
每页显示 20 50 100
Text-Image Feature Fine-Grained Learning for Joint Multimodal Aspect-Based Sentiment Analysis
1
作者 Tianzhi Zhang Gang Zhou +4 位作者 Shuang Zhang Shunhang Li Yepeng Sun Qiankun Pi Shuo Liu 《Computers, Materials & Continua》 SCIE EI 2025年第1期279-305,共27页
Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimo... Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features.Given this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for JMASA.First,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect terms.Then,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature learning.Thereby,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and enhanced.Experiments on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods. 展开更多
关键词 Multimodal sentiment analysis aspect-based sentiment analysis feature fine-grained learning graph convolutional network adjective-noun pairs
在线阅读 下载PDF
Rate effects of cylindrical cavity expansion in fine-grained soil
2
作者 Cheng Chen Yong Wang +3 位作者 Zhonghua Sun XunWu Xiaowei Geng Xianwei Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4604-4617,共14页
Soil responds to cavity expansion is inherently rate-dependent,especially in the case of fine-grained soils.To better understand such rate effects,self-boring pressuremeter tests were conducted on Kunming peaty soil w... Soil responds to cavity expansion is inherently rate-dependent,especially in the case of fine-grained soils.To better understand such rate effects,self-boring pressuremeter tests were conducted on Kunming peaty soil within a strain rate range of 0.1%/min to 5.0%/min.The results showed a clear dependence of cavity pressure and excess pore pressure(EPP)on strain ratesdboth increased with higher rates for a given radial displacement.In light of the experimental results,three cases of cylindrical cavity expansion were investigated using the finite element method and analytical method,partially drained expansion in Modified Cam-Clay(MCC)soil,and undrained and partially drained expansion in elastoviscoplastic(EVP)soil.The EVP behavior was and modeled using the MCC model and the overstress viscoplastic theory.The results indicated that over the strain rate range of 0.0001%/min and 50%/min,the rate response of cavity pressure for the case of partially drained expansion in MCC soil(permeability coefficient ranging from 5×10^(-6) m/s to 2.5×10^(-11) m/s)is not obvious,while the EPP response during undrained expansion in EVP soil shows rate-independent.Only the partially drained solution for cavity expansion in EVP soil captured the rate-sensitive responses of both cavity pressure and EPP,confirmed by the pressuremeter tests on the Kunming peaty soil,Saint-Herblain clay,and Burswood clay.This suggests that the rate effect results from a combination of drainage-related and time-dependent soil behavior.Parametric studies further demonstrated that both viscous behavior and the overconsolidation ratio significantly influence cylindrical cavity expansion response,and the drainage conditions during expansion can be assessed using a nondimensional velocity. 展开更多
关键词 Pressuremeter test VISCOPLASTICITY Partial drainage Loading rate fine-grained soil
在线阅读 下载PDF
Evolution of Deformation Substructure and Mg_(x)Zn_(y)Ca_(z) Metastable Phase in Fine-Grained Mg Alloys
3
作者 Zhen-Liang Li Xin-Lei Zhang 《Acta Metallurgica Sinica(English Letters)》 2025年第1期71-85,共15页
The spray-deposition was used to produce billets of Mg-4Al-1.5Zn-3Ca-1Nd(A alloy)and Mg-13Al-3Zn-3Ca-1Nd(B alloy),and evolution of deformation substructure and Mg_(x)Zn_(y)Ca_(z)metastable phase in fine-grained(3μm)M... The spray-deposition was used to produce billets of Mg-4Al-1.5Zn-3Ca-1Nd(A alloy)and Mg-13Al-3Zn-3Ca-1Nd(B alloy),and evolution of deformation substructure and Mg_(x)Zn_(y)Ca_(z)metastable phase in fine-grained(3μm)Mg alloys was investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),and electron backscattered diffraction(EBSD).It was found that different dislocation configurations were formed in A and B alloys.Redundant free dislocations(RFDs)and dislocation tangles were the ways to form deformation substructure in A alloy,no RFDs except dislocation tangles were found in B alloy.The interaction between nano-scale second phase particles(nano-scale C15 andβ-Mg_(17)(Al,Zn)_(12)phase)and different dislocation configurations had a significant effect on the deformation substructures formation.The mass transfer of Mg_(x)Zn_(y)Ca_(z)metastable phases and the stacking order of stacking faults were conducive to the Mg-Nd-Zn typed long period stacking ordered(LPSO)phases formation.Nano-scale C15 phases,Mg-Nd-Zn typed LPSO phases,c/a ratio,β-Mg_(17)(Al,Zn)_(12)phases were the key factors influencing the formation of textures.Different textures and grain boundary features(GB features)had a significant effect on k-value.The non-basal textures were the main factor affecting k-value in A alloy,while the high-angle grain boundary(HAGB)was the main factor affecting k-value in B alloy. 展开更多
关键词 Deformation substructures Metastable phase Textures K-VALUE fine-grained Mg alloys
原文传递
Mechanisms of fine-grained sedimentation and reservoir characteristics of shale oil in continental freshwater lacustrine basin:A case study from Chang 7_(3) sub-member of Triassic Yanchang Formation in southwestern Ordos Basin,NW China
4
作者 LIU Xianyang LIU Jiangyan +6 位作者 WANG Xiujuan GUO Qiheng Lv Qiqi YANG Zhi ZHANG Yan ZHANG Zhongyi ZHANG Wenxuan 《Petroleum Exploration and Development》 2025年第1期95-111,共17页
Based on recent advancements in shale oil exploration within the Ordos Basin,this study presents a comprehensive investigation of the paleoenvironment,lithofacies assemblages and distribution,depositional mechanisms,a... Based on recent advancements in shale oil exploration within the Ordos Basin,this study presents a comprehensive investigation of the paleoenvironment,lithofacies assemblages and distribution,depositional mechanisms,and reservoir characteristics of shale oil of fine-grained sediment deposition in continental freshwater lacustrine basins,with a focus on the Chang 7_(3) sub-member of Triassic Yanchang Formation.The research integrates a variety of exploration data,including field outcrops,drilling,logging,core samples,geochemical analyses,and flume simulation.The study indicates that:(1)The paleoenvironment of the Chang 7_(3) deposition is characterized by a warm and humid climate,frequent monsoon events,and a large water depth of freshwater lacustrine basin.The paleogeomorphology exhibits an asymmetrical pattern,with steep slopes in the southwest and gentle slopes in the northeast,which can be subdivided into microgeomorphological units,including depressions and ridges in lakebed,as well as ancient channels.(2)The Chang 7_(3) sub-member is characterized by a diverse array of fine-grained sediments,including very fine sandstone,siltstone,mudstone and tuff.These sediments are primarily distributed in thin interbedded and laminated arrangements vertically.The overall grain size of the sandstone predominantly falls below 62.5μm,with individual layer thicknesses of 0.05–0.64 m.The deposits contain intact plant fragments and display various sedimentary structure,such as wavy bedding,inverse-to-normal grading sequence,and climbing ripple bedding,which indicating a depositional origin associated with density flows.(3)Flume simulation experiments have successfully replicated the transport processes and sedimentary characteristics associated with density flows.The initial phase is characterized by a density-velocity differential,resulting in a thicker,coarser sediment layer at the flow front,while the upper layers are thinner and finer in grain size.During the mid-phase,sliding water effects cause the fluid front to rise and facilitate rapid forward transport.This process generates multiple“new fronts”,enabling the long-distance transport of fine-grained sandstones,such as siltstone and argillaceous siltstone,into the center of the lake basin.(4)A sedimentary model primarily controlled by hyperpynal flows was established for the southwestern part of the basin,highlighting that the frequent occurrence of flood events and the steep slope topography in this area are primary controlling factors for the development of hyperpynal flows.(5)Sandstone and mudstone in the Chang 7_(3) sub-member exhibit micro-and nano-scale pore-throat systems,shale oil is present in various lithologies,while the content of movable oil varies considerably,with sandstone exhibiting the highest content of movable oil.(6)The fine-grained sediment complexes formed by multiple episodes of sandstones and mudstones associated with density flow in the Chang 7_(3) formation exhibit characteristics of“overall oil-bearing with differential storage capacity”.The combination of mudstone with low total organic carbon content(TOC)and siltstone is identified as the most favorable exploration target at present. 展开更多
关键词 fine-grained sedimentation density flow mode flume simulation experiments reservoir characteristics Chang 7_(3)sub-member Triassic Yanchang Formation shale oil Ordos Basin
在线阅读 下载PDF
Experimental Study on the Desiccation Cracking Dynamic Evolution Law of Fine-Grained Coral Soil
5
作者 FANG Hua-qiang DING Xuan-ming +4 位作者 LUO Zhao-gang JIANG Chun-yong LI Yi-fu WANG Hong REN Jun-yu 《China Ocean Engineering》 2025年第4期728-743,共16页
Coralline soils,specialized materials found extensively in the South China Sea,are playing an increasingly vital role in engineering projects.However,like most terrigenous soils,fine-grained coral soil is prone to shr... Coralline soils,specialized materials found extensively in the South China Sea,are playing an increasingly vital role in engineering projects.However,like most terrigenous soils,fine-grained coral soil is prone to shrinkage and cracking,which can significantly affect its engineering properties and ultimately jeopardize engineering safety.This paper presents a desiccation cracking test of fine-grained coral soil,with a particular focus on the thickness effect.The study involved measuring the water content and recording the evolution of desiccation cracking.Advanced image processing technology is employed to analyze the variations in crack parameters,clod parameters,fractal dimensions,frequency distributions,and desiccation cracking propagation velocities of fine-grained coral soil.Furthermore,the dynamic evolution of desiccation cracking under the influence of layer thickness is analyzed.A comprehensive crack evolution model is proposed,encompassing both top-down and bottom-up crack propagation,as well as internal tensile cracking.This work introduces novel metrics for the propagation velocity of the total crack area,the characteristic propagation velocities of desiccation cracks,and the acceleration of crack propagation.Through data fitting,theoretical formulas for soil water evaporation,propagation velocities of desiccation cracks,and crack propagation acceleration are derived,laying a foundation for future soil cracking theories. 展开更多
关键词 fine-grained coral soil desiccation crack layer thickness crack dynamic evolution crack propagation acceleration
在线阅读 下载PDF
Advancing Acer phenology monitoring:fine-grained identification and analysis by deep learning RESformer
6
作者 Weipeng Jing Huiming Xu +3 位作者 Weitao Zou Wenjun Zhang Chao Li Juntao Gu 《Journal of Forestry Research》 2025年第4期55-66,共12页
Climate change is a global phenomenon that has profound impacts on ecological dynamics and biodiversity,shaping the interactions between species and their environment.To gain a deeper understanding of the mechanisms d... Climate change is a global phenomenon that has profound impacts on ecological dynamics and biodiversity,shaping the interactions between species and their environment.To gain a deeper understanding of the mechanisms driving climate change,phenological monitoring is essential.Traditional methods of defining phenological phases often rely on fixed thresholds.However,with the development of technology,deep learning-based classification models are now able to more accurately delineate phenological phases from images,enabling phenological monitoring.Despite the significant advancements these models have made in phenological monitoring,they still face challenges in fully capturing the complexity of biotic-environmental interactions,which can limit the fine-grained accuracy of phenological phase identification.To address this,we propose a novel deep learning model,RESformer,designed to monitor tree phenology at a fine-grained level using PhenoCam images.RESformer features a lightweight structure,making it suitable for deployment in resource-constrained environments.It incorporates a dual-branch routing mechanism that considers both global and local information,thereby improving the accuracy of phenological monitoring.To validate the effectiveness of RESformer,we conducted a case study involving 82,118 images taken over two years from four different locations in Wisconsin,focusing on the phenology of Acer.The images were classified into seven distinct phenological stages,with RESformer achieving an overall monitoring accuracy of 96.02%.Furthermore,we compared RESformer with a phenological monitoring approach based on the Green Chromatic Coordinate(GCC)index and ten popular classification models.The results showed that RESformer excelled in fine-grained monitoring,effectively capturing and identifying changes in phenological stages.This finding not only provides strong support for monitoring the phenology of Acer species but also offers valuable insights for understanding ecological trends and developing more effective ecosystem conservation and management strategies. 展开更多
关键词 fine-grained phenological period Acer phenological monitoring Green chromatic coordinate PhenoCam
在线阅读 下载PDF
Step-by-step to success:Multi-stage learning driven robust audiovisual fusion network for fine-grained bird species classification
7
作者 Shanshan Xie Jiangjian Xie +6 位作者 Yang Liu Lianshuai Sha Ye Tian Jiahua Dong Diwen Liang Kaijun Pan Junguo Zhang 《Avian Research》 2025年第4期818-831,共14页
Bird monitoring and protection are essential for maintaining biodiversity,and fine-grained bird classification has become a key focus in this field.Audio-visual modalities provide critical cues for this task,but robus... Bird monitoring and protection are essential for maintaining biodiversity,and fine-grained bird classification has become a key focus in this field.Audio-visual modalities provide critical cues for this task,but robust feature extraction and efficient fusion remain major challenges.We introduce a multi-stage fine-grained audiovisual fusion network(MSFG-AVFNet) for fine-grained bird species classification,which addresses these challenges through two key components:(1) the audiovisual feature extraction module,which adopts a multi-stage finetuning strategy to provide high-quality unimodal features,laying a solid foundation for modality fusion;(2) the audiovisual feature fusion module,which combines a max pooling aggregation strategy with a novel audiovisual loss function to achieve effective and robust feature fusion.Experiments were conducted on the self-built AVB81and the publicly available SSW60 datasets,which contain data from 81 and 60 bird species,respectively.Comprehensive experiments demonstrate that our approach achieves notable performance gains,outperforming existing state-of-the-art methods.These results highlight its effectiveness in leveraging audiovisual modalities for fine-grained bird classification and its potential to support ecological monitoring and biodiversity research. 展开更多
关键词 Audiovisual modality Bird species classification Feature fusion fine-grained
在线阅读 下载PDF
DWDet:A Fine-Grained Object DetectionAlgorithm for Remote Sensing Aircraft
8
作者 Meijing Gao Yonghao Yan +5 位作者 Xiangrui Fan Huanyu Sun Sibo Chen Xu Chen Bingzhou Sun Ning Guan 《Journal of Beijing Institute of Technology》 2025年第4期337-349,共13页
Fine-grained aircraft target detection in remote sensing holds significant research valueand practical applications,particularly in military defense and precision strikes.Given the complex-ity of remote sensing images... Fine-grained aircraft target detection in remote sensing holds significant research valueand practical applications,particularly in military defense and precision strikes.Given the complex-ity of remote sensing images,where targets are often small and similar within categories,detectingthese fine-grained targets is challenging.To address this,we constructed a fine-grained dataset ofremotely sensed airplanes;for the problems of remote sensing fine-grained targets with obvious head-to-tail distributions and large variations in target sizes,we proposed the DWDet fine-grained tar-get detection and recognition algorithm.First,for the problem of unbalanced category distribution,we adopt an adaptive sampling strategy.In addition,we construct a deformable convolutional blockand improve the decoupling head structure to improve the detection effect of the model ondeformed targets.Then,we design a localization loss function,which is used to improve the model’slocalization ability for targets of different scales.The experimental results show that our algorithmimproves the overall accuracy of the model by 4.1%compared to the baseline model,and improvesthe detection accuracy of small targets by 12.2%.The ablation and comparison experiments alsoprove the effectiveness of our algorithm. 展开更多
关键词 remote sensing fine-grained recognition aircraft remote-sensing datasets multi-scaletarget detection
在线阅读 下载PDF
A teacher-student based attention network for fine-grainedimage recognition
9
作者 Ang Li Xueyi Zhang +1 位作者 Peilin Li Bin Kang 《Digital Communications and Networks》 2025年第1期52-59,共8页
Fine-grained Image Recognition(FGIR)task is dedicated to distinguishing similar sub-categories that belong to the same super-category,such as bird species and car types.In order to highlight visual differences,existin... Fine-grained Image Recognition(FGIR)task is dedicated to distinguishing similar sub-categories that belong to the same super-category,such as bird species and car types.In order to highlight visual differences,existing FGIR works often follow two steps:discriminative sub-region localization and local feature representation.However,these works pay less attention on global context information.They neglect a fact that the subtle visual difference in challenging scenarios can be highlighted through exploiting the spatial relationship among different subregions from a global view point.Therefore,in this paper,we consider both global and local information for FGIR,and propose a collaborative teacher-student strategy to reinforce and unity the two types of information.Our framework is implemented mainly by convolutional neural network,referred to Teacher-Student Based Attention Convolutional Neural Network(T-S-ACNN).For fine-grained local information,we choose the classic Multi-Attention Network(MA-Net)as our baseline,and propose a type of boundary constraint to further reduce background noises in the local attention maps.In this way,the discriminative sub-regions tend to appear in the area occupied by fine-grained objects,leading to more accurate sub-region localization.For fine-grained global information,we design a graph convolution based Global Attention Network(GA-Net),which can combine extracted local attention maps from MA-Net with non-local techniques to explore spatial relationship among subregions.At last,we develop a collaborative teacher-student strategy to adaptively determine the attended roles and optimization modes,so as to enhance the cooperative reinforcement of MA-Net and GA-Net.Extensive experiments on CUB-200-2011,Stanford Cars and FGVC Aircraft datasets illustrate the promising performance of our framework. 展开更多
关键词 fine-grained image recognition Collaborative teacher-student strategy Multi-attention Global attention
在线阅读 下载PDF
Improving creep strength of the fine-grained heat-affected zone of novel 9Cr martensitic heat-resistant steel via modified thermo-mechanical treatment 被引量:2
10
作者 Jingwen Zhang Liming Yu +6 位作者 Yongchang Liu Ran Ding Chenxi Liu Zongqing Ma Huijun Li Qiuzhi Gao Hui Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1037-1047,共11页
The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional the... The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants. 展开更多
关键词 G115 steel fine-grained heat-affected zone creep strength element segregation nano-sized precipitates
在线阅读 下载PDF
Organic matter enrichment model of fine-grained rocks in volcanic rift lacustrine basin:A case study of lower submember of second member of Lower Cretaceous Shahezi Formation in Lishu rift depression of Songliao Basin,NE China
11
作者 XIE Huanyu JIANG Zaixing +1 位作者 WANG Li XUE Xinyu 《Petroleum Exploration and Development》 SCIE 2024年第5期1232-1246,共15页
Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of or... Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of organic petrology,analysis of major and trace elements as well as biological marker compound,the enrichment conditions and enrichment model of organic matter in the fine-grained sedimentary rocks in volcanic rift lacustrine basin are investigated.The change of sedimentary paleoenvironment controls the vertical distribution of different lithofacies types in the K_(1)sh_(2)^(L)and divides it into the upper and lower parts.The lower part contains massive siliceous mudstone with bioclast-bearing siliceous mudstone,whereas the upper part is mostly composed of laminated siliceous shale and laminated fine-grained mixed shale.The kerogen types of organic matter in the lower and upper parts are typesⅡ_(2)–Ⅲand typesⅠ–Ⅱ_(1),respectively.The organic carbon content in the upper part is higher than that in the lower part generally.The enrichment of organic matter in volcanic rift lacustrine basin is subjected to three favorable conditions.First,continuous enhancement of rifting is the direct factor increasing the paleo-water depth,and the rise of base level leads to the expansion of deep-water mudstone/shale deposition range.Second,relatively strong underwater volcanic eruption and rifting are simultaneous,and such event can provide a lot of nutrients for the lake basin,which is conducive to the bloom of algae,resulting in higher productivity of typesⅠ–Ⅱ_(1)kerogen.Third,the relatively dry paleoclimate leads to a decrease in input of fresh water and terrestrial materials,including TypeⅢkerogen from terrestrial higher plants,resulting in a water body with higher salinity and anoxic stratification,which is more favorable for preservation of organic matter.The organic matter enrichment model of fine-grained sedimentary rocks of volcanic rift lacustrine basin is established,which is of reference significance to the understanding of the organic matter enrichment mechanism of fine-grained sedimentary rocks of Shahezi Formation in Songliao Basin and even in the northeast China. 展开更多
关键词 fine-grained sedimentary rocks organic matter sources RIFTING volcanic activity Lower Cretaceous Shahezi Formation Lishu rift depression Songliao Basin
在线阅读 下载PDF
Fine-grained grid computing model for Wi-Fi indoor localization in complex environments
12
作者 Yan Liang Song Chen +1 位作者 Xin Dong Tu Liu 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期42-52,共11页
The fingerprinting-based approach using the wireless local area network(WLAN)is widely used for indoor localization.However,the construction of the fingerprint database is quite time-consuming.Especially when the posi... The fingerprinting-based approach using the wireless local area network(WLAN)is widely used for indoor localization.However,the construction of the fingerprint database is quite time-consuming.Especially when the position of the access point(AP)or wall changes,updating the fingerprint database in real-time is difficult.An appropriate indoor localization approach,which has a low implementation cost,excellent real-time performance,and high localization accuracy and fully considers complex indoor environment factors,is preferred in location-based services(LBSs)applications.In this paper,we proposed a fine-grained grid computing(FGGC)model to achieve decimeter-level localization accuracy.Reference points(RPs)are generated in the grid by the FGGC model.Then,the received signal strength(RSS)values at each RP are calculated with the attenuation factors,such as the frequency band,three-dimensional propagation distance,and walls in complex environments.As a result,the fingerprint database can be established automatically without manual measurement,and the efficiency and cost that the FGGC model takes for the fingerprint database are superior to previous methods.The proposed indoor localization approach,which estimates the position step by step from the approximate grid location to the fine-grained location,can achieve higher real-time performance and localization accuracy simultaneously.The mean error of the proposed model is 0.36 m,far lower than that of previous approaches.Thus,the proposed model is feasible to improve the efficiency and accuracy of Wi-Fi indoor localization.It also shows high-accuracy performance with a fast running speed even under a large-size grid.The results indicate that the proposed method can also be suitable for precise marketing,indoor navigation,and emergency rescue. 展开更多
关键词 fine-grained grid computing (FGGC) Indoor localization Path loss Random forest Reference points(RPs)
在线阅读 下载PDF
Fine-Grained Ship Recognition Based on Visible and Near-Infrared Multimodal Remote Sensing Images: Dataset,Methodology and Evaluation
13
作者 Shiwen Song Rui Zhang +1 位作者 Min Hu Feiyao Huang 《Computers, Materials & Continua》 SCIE EI 2024年第6期5243-5271,共29页
Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security.Currently,with the emergence of massive high-resolution multi... Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security.Currently,with the emergence of massive high-resolution multi-modality images,the use of multi-modality images for fine-grained recognition has become a promising technology.Fine-grained recognition of multi-modality images imposes higher requirements on the dataset samples.The key to the problem is how to extract and fuse the complementary features of multi-modality images to obtain more discriminative fusion features.The attention mechanism helps the model to pinpoint the key information in the image,resulting in a significant improvement in the model’s performance.In this paper,a dataset for fine-grained recognition of ships based on visible and near-infrared multi-modality remote sensing images has been proposed first,named Dataset for Multimodal Fine-grained Recognition of Ships(DMFGRS).It includes 1,635 pairs of visible and near-infrared remote sensing images divided into 20 categories,collated from digital orthophotos model provided by commercial remote sensing satellites.DMFGRS provides two types of annotation format files,as well as segmentation mask images corresponding to the ship targets.Then,a Multimodal Information Cross-Enhancement Network(MICE-Net)fusing features of visible and near-infrared remote sensing images,has been proposed.In the network,a dual-branch feature extraction and fusion module has been designed to obtain more expressive features.The Feature Cross Enhancement Module(FCEM)achieves the fusion enhancement of the two modal features by making the channel attention and spatial attention work cross-functionally on the feature map.A benchmark is established by evaluating state-of-the-art object recognition algorithms on DMFGRS.MICE-Net conducted experiments on DMFGRS,and the precision,recall,mAP0.5 and mAP0.5:0.95 reached 87%,77.1%,83.8%and 63.9%,respectively.Extensive experiments demonstrate that the proposed MICE-Net has more excellent performance on DMFGRS.Built on lightweight network YOLO,the model has excellent generalizability,and thus has good potential for application in real-life scenarios. 展开更多
关键词 Multi-modality dataset ship recognition fine-grained recognition attention mechanism
在线阅读 下载PDF
Integrating Ontology-Based Approaches with Deep Learning Models for Fine-Grained Sentiment Analysis
14
作者 Longgang Zhao Seok-Won Lee 《Computers, Materials & Continua》 SCIE EI 2024年第10期1855-1877,共23页
Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these cha... Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these challenges by integrating ontology-based methods with deep learning models,thereby enhancing sentiment analysis accuracy in complex domains such as film reviews and restaurant feedback.The framework comprises explicit topic recognition,followed by implicit topic identification to mitigate topic interference in subsequent sentiment analysis.In the context of sentiment analysis,we develop an expanded sentiment lexicon based on domainspecific corpora by leveraging techniques such as word-frequency analysis and word embedding.Furthermore,we introduce a sentiment recognition method based on both ontology-derived sentiment features and sentiment lexicons.We evaluate the performance of our system using a dataset of 10,500 restaurant reviews,focusing on sentiment classification accuracy.The incorporation of specialized lexicons and ontology structures enables the framework to discern subtle sentiment variations and context-specific expressions,thereby improving the overall sentiment-analysis performance.Experimental results demonstrate that the integration of ontology-based methods and deep learning models significantly improves sentiment analysis accuracy. 展开更多
关键词 Deep learning ONTOLOGY fine-grained sentiment analysis online reviews
在线阅读 下载PDF
Control and prediction of bedding-parallel fractures in fine-grained sedimentary rocks:A case from the Permian Lucaogou Formation in Jimusar Sag,Junggar Basin,Western China
15
作者 Zhao-Hui Zhang Teng Zhang +2 位作者 Hua-Qing Liu Xiang-Bo Li Duo-Nian Xu 《Petroleum Science》 CSCD 2024年第6期3815-3838,共24页
The fine-grained sedimentary rocks have numerous bedding-parallel fractures that are essential for the migration,enrichment,and efficient development of oil and gas.However,because of their variety and the complexity ... The fine-grained sedimentary rocks have numerous bedding-parallel fractures that are essential for the migration,enrichment,and efficient development of oil and gas.However,because of their variety and the complexity of the factors that affect them,their spatial prediction by the industrial community becomes challenging.Based on sample cores,thin sections,and well-logging and seismic data,this study employed a multi-scale data matching approach to quantitatively predict the development of bedding-parallel fractures and investigate their spatial distribution.Bedding-parallel fractures in the Lucaogou Formation in Jimusar Sag frequently occur along preexisting bedding planes and lithological interfaces.Unfilled bedding-parallel fractures inside or near source-rocks exhibit enhanced oil-bearing capacity.They were identified on micro-resistivity scanning images by the presence of regularly continuous black or nearly black sinusoidal curves.Overall,the developmental degree of bedding-parallel fractures was positively related to the brittle mineral and total organic carbon contents and negatively related to single reservoir interval thickness.The maintained porosity of the reservoir matrix contributed to a thorough response to factors affecting the development of bedding-parallel fractures.Here,an effective and objective method was proposed for predicting the development and distribution of bedding-parallel fractures in the fine-grained sedimentary rocks.The method was based on the matched reservoir interval density,reservoir interval density,and matched sweet spot density of bedding-parallel fractures.The prediction method integrated the significant advantages of high vertical resolution from logging curves and strong lateral continuity from seismic data.The average relative prediction error was 8%in the upper sweet spot in the Lucaogou Formation,indicating that the evaluation parameters for bedding-parallel fractures in fine-grained sedimentary rocks were reasonable and reliable and that the proposed prediction method has a stronger adaptability than the previously reported methods.The workflow based on multi-scale matching and stepwise progression can be applied in similar fine-grained sedimentary rocks,providing reliable technological support for the exploration and development of hydrocarbons. 展开更多
关键词 Bedding-parallel fractures fine-grained sedimentary rocks Multiscale matching Quantitative prediction Lucaogou formation Junggar Basin
原文传递
Evolution of deformation mechanisms and their orientation dependence in fine-grained Mg-3Gd during tension
16
作者 Faping Hu Tianbo Yu +5 位作者 Hao Chen Fang Han Keshun Dai Fangcheng Qiu Weidong Xie Xiaoxu Huang 《Journal of Magnesium and Alloys》 CSCD 2024年第12期5095-5107,共13页
Magnesium alloys usually exhibit poor ductility attributed to their intrinsic hexagonal close-packed(hcp)structure,which fails to provide sufficient independent slip systems for homogeneous deformation.Here we demonst... Magnesium alloys usually exhibit poor ductility attributed to their intrinsic hexagonal close-packed(hcp)structure,which fails to provide sufficient independent slip systems for homogeneous deformation.Here we demonstrate that multiple deformation mechanisms can be activated with increasing tensile strain in a fine-grained Mg-3Gd with a weak basal texture.<c+a>slip,tension twinning and compression/double twinning exhibit a high orientation dependence at an early stage of deformation,whereas the orientation dependence becomes less obvious with further increasing strain.The high work hardening rate at the strain of 2%–5%is accompanied by the significant increase of<c+a>slip and tension twinning activities.The fine microstructure strongly restricts the activation and growth of twinning,resulting in a slow exhaust of tension twinning and thin compression twins.The restriction of twinning and the activation of profuse<c+a>slip near grain/twin boundaries,relaxing the stress concentration,sustain the homogeneous deformation to a high strain. 展开更多
关键词 fine-grained Mg alloy Deformation mechanisms Orientation dependence Mechanical property
在线阅读 下载PDF
A survey of fine-grained visual categorization based on deep learning
17
作者 XIE Yuxiang GONG Quanzhi +2 位作者 LUAN Xidao YAN Jie ZHANG Jiahui 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1337-1356,共20页
Deep learning has achieved excellent results in various tasks in the field of computer vision,especially in fine-grained visual categorization.It aims to distinguish the subordinate categories of the label-level categ... Deep learning has achieved excellent results in various tasks in the field of computer vision,especially in fine-grained visual categorization.It aims to distinguish the subordinate categories of the label-level categories.Due to high intra-class variances and high inter-class similarity,the fine-grained visual categorization is extremely challenging.This paper first briefly introduces and analyzes the related public datasets.After that,some of the latest methods are reviewed.Based on the feature types,the feature processing methods,and the overall structure used in the model,we divide them into three types of methods:methods based on general convolutional neural network(CNN)and strong supervision of parts,methods based on single feature processing,and meth-ods based on multiple feature processing.Most methods of the first type have a relatively simple structure,which is the result of the initial research.The methods of the other two types include models that have special structures and training processes,which are helpful to obtain discriminative features.We conduct a specific analysis on several methods with high accuracy on pub-lic datasets.In addition,we support that the focus of the future research is to solve the demand of existing methods for the large amount of the data and the computing power.In terms of tech-nology,the extraction of the subtle feature information with the burgeoning vision transformer(ViT)network is also an important research direction. 展开更多
关键词 deep learning fine-grained visual categorization convolutional neural network(CNN) visual attention
在线阅读 下载PDF
Experimental Study on the Effect of Fine-Grained Soil Content on the Freezing Strength of Aeolian Sand-Cement Interface
18
作者 Junhui Hu Honghuan Cui Zhishu Xie 《Journal of World Architecture》 2024年第2期43-48,共6页
In cold regions,understanding the freezing strength of the interface between soil and structure is crucial for designing frost-resistant foundations.To investigate how the content of cement powder in aeolian sand affe... In cold regions,understanding the freezing strength of the interface between soil and structure is crucial for designing frost-resistant foundations.To investigate how the content of cement powder in aeolian sand affects this strength,we conducted direct shear tests under various conditions such as different fine-grained soil content,normal stress,and initial moisture content of the soil.By analyzing parameters like soil properties,and volume of ice content,and using the Mohr-Coulomb strength theory to define interface strength,we aimed to indirectly measure the cementation strength of the interface.Our findings revealed that as the particle content increased,the interface stress-strain curves became noticeably stiffer.We also observed a positive linear relationship between freezing strength and silt content,while the initial moisture content of the soil did not significantly impact the strengthening effect of fine-grained soil on freezing strength.Moreover,we discovered that as the powder content increased,the force binding the ice to the interface decreased,while the friction angle at the interface increased.However,the cohesion force at the interface remained relatively unchanged.Overall,our analysis suggests that the increase in freezing strength due to fine-grained soil content is primarily due to the heightened friction between aeolian sand and the interface. 展开更多
关键词 fine-grained soil content Contact area Freezing strength Influencing factors
在线阅读 下载PDF
Fine-grained gravity flow sedimentation and its influence on development of shale oil sweet sections in lacustrine basins in China 被引量:2
19
作者 ZOU Caineng FENG Youliang +6 位作者 YANG Zhi JIANG Wenqi ZHANG Tianshu ZHANG Hong WANG Xiaoni ZHU Jichang WEI Qizhao 《Petroleum Exploration and Development》 SCIE 2023年第5期1013-1029,共17页
The geological conditions and processes of fine-grained gravity flow sedimentation in continental lacustrine basins in China are analyzed to construct the model of fine-grained gravity flow sedimentation in lacustrine... The geological conditions and processes of fine-grained gravity flow sedimentation in continental lacustrine basins in China are analyzed to construct the model of fine-grained gravity flow sedimentation in lacustrine basin,reveal the development laws of fine-grained deposits and source-reservoir,and identify the sweet sections of shale oil.The results show that fine-grained gravity flow is one of the important sedimentary processes in deep lake environment,and it can transport fine-grained clasts and organic matter in shallow water to deep lake,forming sweet sections and high-quality source rocks of shale oil.Fine-grained gravity flow deposits in deep waters of lacustrine basins in China are mainly fine-grained high-density flow,fine-grained turbidity flow(including surge-like turbidity flow and fine-grained hyperpycnal flow),fine-grained viscous flow(including fine-grained debris flow and mud flow),and fine-grained transitional flow deposits.The distribution of fine-grained gravity flow deposits in the warm and humid unbalanced lacustrine basins are controlled by lake-level fluctuation,flooding events,and lakebed paleogeomorphology.During the lake-level rise,fine-grained hyperpycnal flow caused by flooding formed fine-grained channel–levee–lobe system in the flat area of the deep lake.During the lake-level fall,the sublacustrine fan system represented by unconfined channel was developed in the flexural slope breaks and sedimentary slopes of depressed lacustrine basins,and in the steep slopes of faulted lacustrine basins;the sublacustrine fan system with confined or unconfined channel was developed on the gentle slopes and in axial direction of faulted lacustrine basins,with fine-grained gravity flow deposits possibly existing in the lower fan.Within the fourth-order sequences,transgression might lead to organic-rich shale and fine-grained hyperpycnal flow deposits,while regression might cause fine-grained high-density flow,surge-like turbidity flow,fine-grained debris flow,mud flow,and fine-grained transitional flow deposits.Since the Permian,in the shale strata of lacustrine basins in China,multiple transgression-regression cycles of fourth-order sequences have formed multiple source-reservoir assemblages.Diverse fine-grained gravity flow sedimentation processes have created sweet sections of thin siltstone consisting of fine-grained high-density flow,fine-grained hyperpycnal flow and surge-like turbidity flow deposits,sweet sections with interbeds of mudstone and siltstone formed by fine-grained transitional flows,and sweet sections of shale containing silty and muddy clasts and with horizontal bedding formed by fine-grained debris flow and mud flow.The model of fine-grained gravity flow sedimentation in lacustrine basin is significant for the scientific evaluation of sweet shale oil reservoir and organic-rich source rock. 展开更多
关键词 fine-grained deposit hyperpycnal flow deposit fine-grained debris flow deposit muddy flow deposit fine-grained transitional flow deposit reservoir sweet section organic-rich source rock shale oil
在线阅读 下载PDF
A Survey on Deep Learning-based Fine-grained Object Classification and Semantic Segmentation 被引量:46
20
作者 Bo Zhao Jiashi Feng +1 位作者 Xiao Wu Shuicheng Yan 《International Journal of Automation and computing》 EI CSCD 2017年第2期119-135,共17页
The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning technique... The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories, such as bird species or dog breeds. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we review four types of deep learning based fine-grained image classification approaches, including the general convolutional neural networks (CNNs), part detection based, ensemble of networks based and visual attention based fine-grained image classification approaches. Besides, the deep learning based semantic segmentation approaches are also covered in this paper. The region proposal based and fully convolutional networks based approaches for semantic segmentation are introduced respectively. 展开更多
关键词 Deep learning fine-grained image classification semantic segmentation convolutional neural network (CNN) recurrentneural network (RNN)
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部