期刊文献+
共找到33,403篇文章
< 1 2 250 >
每页显示 20 50 100
Fine-Structure Constant at Low and High Energies
1
作者 Lovemore Mamombe 《Journal of Applied Mathematics and Physics》 2024年第12期4098-4103,共6页
The fine-structure constant (α) at low and high energies is herein computed from control numbers in the theory of the golden section (φ). Countless attempts at deriving, or otherwise explaining the origin of αhave ... The fine-structure constant (α) at low and high energies is herein computed from control numbers in the theory of the golden section (φ). Countless attempts at deriving, or otherwise explaining the origin of αhave so far focused and somewhat succeeded on αat low energy. This manuscript, therefore, provides a more complete solution. That αpermeates even the golden section is not only further confirmation of the ubiquity of this constant of physics, but also leads to the inescapable conclusion that it originates in the golden section, a geometrical constant ubiquitous in physical phenomena. 展开更多
关键词 Alpha () fine-structure constant at Low Energy fine-structure constant at High Energies Mamombe Diagram Golden Section () Origin of the fine-structure constant W-BOSON Z-Boson
在线阅读 下载PDF
Possible Relations of Cosmic Microwave Background with Gravity and Fine-Structure Constant 被引量:2
2
作者 Qinghua Cui 《Journal of Modern Physics》 CAS 2022年第7期1045-1052,共8页
Gravity is the only force that cannot be explained by the Standard Model (SM), the current best theory describing all the known fundamental particles and their forces. Here we reveal that gravitational force can be pr... Gravity is the only force that cannot be explained by the Standard Model (SM), the current best theory describing all the known fundamental particles and their forces. Here we reveal that gravitational force can be precisely given by mass of objects and microwave background (CMB) radiation. Moreover, using the same strategy we reveal a relation by which CMB can also precisely define fine-structure constant α. 展开更多
关键词 GRAVITY Gravitational constant Cosmic Microwave Background fine-structure constant
暂未订购
A Fine-Structure Constant Can Be Explained Using the Electrochemical Method
3
作者 Tomofumi Miyashita 《Journal of Modern Physics》 CAS 2023年第2期160-170,共11页
We proposed an empirical equation for a fine-structure constant: . Then, . where m<sub>p</sub> and m<sub>e</sub> are the rest mass of a proton and the rest mass of an electron, respectively. In... We proposed an empirical equation for a fine-structure constant: . Then, . where m<sub>p</sub> and m<sub>e</sub> are the rest mass of a proton and the rest mass of an electron, respectively. In this report, using the electrochemical method, we proposed an equivalent circuit. Then, we proposed a refined version of our own old empirical equations about the electromagnetic force and gravity. Regarding the factors of 9/2 and π, we used 3.132011447 and 4.488519503, respectively. The calculated values of T<sub>c</sub> and G are 2.726312 K and 6.673778 × 10<sup>-11</sup> (m<sup>3</sup>&sdot;kg<sup>-1</sup>&sdot;s<sup>-2</sup>). 展开更多
关键词 fine-structure constant Electrochemical Method
在线阅读 下载PDF
Empirical Equation for a Fine-Structure Constant with Very High Accuracy
4
作者 Tomofumi Miyashita 《Journal of Modern Physics》 2022年第4期336-346,共11页
We proposed several empirical equations about the electromagnetic force and gravity. The main three equations were connected mathematically. However, these equations have small errors of approximately 10<sup>-3&... We proposed several empirical equations about the electromagnetic force and gravity. The main three equations were connected mathematically. However, these equations have small errors of approximately 10<sup>-3</sup>. Therefore, we attempted to improve the accuracy. Regarding the factors of 9/2 and π, we used 4.48870 and 3.13189, respectively. Then, the errors become smaller than 10<sup>-5</sup>. However, we could not show any reasons for these compensations. We noticed the following equations. , . Then, we can explain the von Klitzing constant Rk=3.131777037×4.488855463×13.5×136.0113077. It is well known that the von Klitzing constant can be measured with very high accuracy. We examined this equation for the von Klitzing constant in detail. Then, we noticed that 136.0113 should be uniquely determined. The von Klitzing constant is highly related to the fine-structure constant. After the examination of the numerical connections, we can explain the value of 137.035999081 as a fine-structure constant with very high accuracy. Then, we attempt to explain this value from Wagner’s equation. 展开更多
关键词 fine-structure constant Wagner’s Equation
在线阅读 下载PDF
Comment to Guynn’s Fine-Structure Constant Approach 被引量:1
5
作者 Hans Hermann Otto 《Journal of Applied Mathematics and Physics》 2022年第9期2796-2804,共9页
Sommerfeld’s fundamental fine-structure constant α once more gives reason to be amazed. This comment is a Chapter of a publication in preparation dealing mainly with golden ratio signature behind Preston Guynn’s fa... Sommerfeld’s fundamental fine-structure constant α once more gives reason to be amazed. This comment is a Chapter of a publication in preparation dealing mainly with golden ratio signature behind Preston Guynn’s famous matter/space approach. As a result we present a relation of α to the galactic velocity , mediated by the circle constant π, which points to an omnipresent importance of this constant and its intrinsic reciprocity pecularity: α ≈ π<sup>2</sup>|β<sub>g</sub>| respectively . The designation fine-structure constant should be replaced simply by Sommerfeld’s constant. We present golden mean-based approximations for α as well as for electron’s charge and mass and connect the word average value of interaction coupling constant α<sub>s</sub>(m<sub>z</sub>) with |β<sub>g</sub>|. 展开更多
关键词 Structure-Matter Theory Thomas Precession Sommerfeld’ constant Galactic Velocity Reciprocity Relation Goldem Mean Gyromagnetic Factor Unification of Science
在线阅读 下载PDF
Calculation of the Fine-Structure Constant
6
作者 Jesús Sánchez 《Journal of High Energy Physics, Gravitation and Cosmology》 2018年第3期510-518,共9页
The fine-structure constant α [1] is a constant in physics that plays a fundamental role in the electromagnetic interaction. It is a dimensionless constant, defined as: (1) being q the elementary charge, ε0 the vacu... The fine-structure constant α [1] is a constant in physics that plays a fundamental role in the electromagnetic interaction. It is a dimensionless constant, defined as: (1) being q the elementary charge, ε0 the vacuum permittivity, h the Planck constant and c the speed of light in vacuum. The value shown in (1) is according CODATA 2014 [2]. In this paper, it will be explained that the fine-structure constant is one of the roots of the following equation: (2) being e the mathematical constant e (the base of the natural logarithm). One of the solutions of this equation is: (3) This means that it is equal to the CODATA value in nine decimal digits (or the seven most significant ones if you prefer). And therefore, the difference between both values is: (4) This coincidence is higher in orders of magnitude than the commonly accepted necessary to validate a theory towards experimentation. As the cosine function is periodical, the Equation (2) has infinite roots and could seem the coincidence is just by chance. But as it will be shown in the paper, the separation among the different solutions is sufficiently high to disregard this possibility. It will also be shown that another elegant way to show Equation (2) is the following (being i the imaginary unit): (5) having of course the same root (3). The possible meaning of this other representation (5) will be explained. 展开更多
关键词 fine-structure constant Electromagnetism CODATA VALUES ATOM Electron Quantum NUMBERS Trigonometric Functions EXPONENTIAL Function
在线阅读 下载PDF
Studying Cosmological Time Variability of the Fine-Structure Constant from the Analysis of Quasar Spectra
7
作者 Le Duc Thong Nguyen Thi Thu Huong 《Journal of Modern Physics》 2011年第6期533-537,共5页
The article has been retracted due to the investigation of complaints received against it. The substantial portions of the text came from Le Duc Thong’s former article, 'New method of searching for cos-mological ... The article has been retracted due to the investigation of complaints received against it. The substantial portions of the text came from Le Duc Thong’s former article, 'New method of searching for cos-mological time variation of the fine-structure constant', which has also been retraced by Prog. Theor. Phys. because of plagiarism. The scientific community takes a very strong view on this matter and we treat all unethical behavior such as plagiarism seriously. This paper published in Vol.2 No.6 533-537, 2011, has been removed from this site. 展开更多
关键词 Determination of FUNDAMENTAL constantS Observation COSMOLOGY
暂未订购
Spatial and temporal variations of the fine-structure constant in the Finslerian universe
8
作者 李昕 林海南 《Chinese Physics C》 SCIE CAS CSCD 2017年第6期110-114,共5页
Recent observations show that the electromagnetic fine-structure constant, αe, may vary with space and time. In the framework of Finsler spacetime, we propose here an anisotropic cosmological model, in which both spa... Recent observations show that the electromagnetic fine-structure constant, αe, may vary with space and time. In the framework of Finsler spacetime, we propose here an anisotropic cosmological model, in which both spatial and temporal variations of αe are allowed. Our model naturally leads to the dipole structure of αe, and predicts that the dipole amplitude increases with time. We fit our model to the most up-to-date measurements of αe from the quasar absorption lines. It is found that the dipole direction points towards(l, b) =(330.2°±7.3°,-13.0°±5.6°)in galactic coordinates, and the anisotropic parameter is b_0 =(0.47±0.09)×10^-5, which corresponds to a dipole amplitude(7.2±1.4)×10^-8 at redshift z = 0.015. This is consistent with the upper limit of the variation of αe measured in the Milky Way. We also fit our model to Union2.1 type Ia supernovae, and find that the preferred direction of Union2.1 is consistent with the dipole direction of αe. 展开更多
关键词 Finsler spacetime fine-structure constant anisotropy of the Universe
原文传递
Shear behaviors of intermittent joints subjected to shearing cycles under constant normal stiffness conditions:Effects of loading parameters 被引量:1
9
作者 Bin Wang Yujing Jiang +1 位作者 Qiangyong Zhang Hongbin Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2695-2712,共18页
A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that th... A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior. 展开更多
关键词 Intermittent joint Cyclic shear Loading parameter constant normal stiffness(CNS)
在线阅读 下载PDF
The Gravitational Constant G May Decrease between Millimetre-Sized Masses
10
作者 Qinghua Cui 《Journal of Modern Physics》 2025年第1期133-139,共7页
The Newtonian gravitational constant G is one of the most important fundamental constants of nature, but still remains resistant to the standard model of physics and disconnected from quantum theory. During the past &... The Newtonian gravitational constant G is one of the most important fundamental constants of nature, but still remains resistant to the standard model of physics and disconnected from quantum theory. During the past >100 years, hundreds of G values have been measured to be ranging around 6.66 to 6.7559 × 10−11 m3·kg−1·s−2 using macroscopic masses. More recently, however, a G value ((6.04 ± 0.06) × 10−11 m3·kg−1·s−2) measured using millimetre-sized masses shows significant deviation (by ~9%) from the reference G value, which the authors explained is resulted from “the known systematic uncertainties”. However, based on the observation of historical G values and the protocol of the millimetre-sized masses based experiment, here we proposed a theory that this deviation is not from “systematic uncertainties” but actually G will rapidly decrease when masses sphere diameter is less than 0.02 metres. Moreover, this theory predicted the G value will be 5.96 × 10−11 m3·kg−1·s−2 between masses whose diameter are 2 millimetres (0.002 metres), which matches the measured G value very well. 展开更多
关键词 GRAVITY Gravitational constant Cosmic Microwave Background DIFFRACTION
在线阅读 下载PDF
On the Best Constant in Poincaré Inequality over Simple Geometric Domains
11
作者 CHEN Hong-ru MA Gao-chao ZHANG Bei 《Chinese Quarterly Journal of Mathematics》 2025年第2期148-157,共10页
In this paper,we explicitly establish Poincaréinequality for 1≤p<∞ over simple geometric domains,such as segment,rectangle,triangle or tetrahedron.We obtain sharper bounds of the constant in Poincaré in... In this paper,we explicitly establish Poincaréinequality for 1≤p<∞ over simple geometric domains,such as segment,rectangle,triangle or tetrahedron.We obtain sharper bounds of the constant in Poincaré inequality and,in particular,the explicit relation between the constant and the geometric characters of the domain. 展开更多
关键词 Poincaréinequality Poincaréconstant Bound of constant
在线阅读 下载PDF
A trace formula for the vector Sturm-Liouville operator with a constant delay
12
作者 LI Dan YANG Chuan-fu 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第1期213-222,共10页
In this work,the vector differential operator with a delay variable is studied and the regularized trace formula of the operator is obtained.
关键词 vector differential operator constant delay TRACE
在线阅读 下载PDF
THE CONVEX SETS OF CONSTANT WIDTH CONSTRUCTED FROM OPPOSITE SECTORS
13
作者 Fengfan XIE Yong YANG 《Acta Mathematica Scientia》 2025年第1期118-125,共8页
This paper presents a method for constructing a convex set of constant width from opposite sectors.
关键词 convex set constant width opposite sectors
在线阅读 下载PDF
A New Geometric Constant Based on Isosceles Orthogonality
14
作者 Yuxin WANG Qi LIU +2 位作者 Yuan WANG Qian LI Yongjin LI 《Journal of Mathematical Research with Applications》 2025年第5期677-688,共12页
In this paper,we introduce a new geometric constant R_(X)(κ)based on isosceles orthogonality.First,we explore some basic properties of this new constant and then provide several examples to estimate its exact values ... In this paper,we introduce a new geometric constant R_(X)(κ)based on isosceles orthogonality.First,we explore some basic properties of this new constant and then provide several examples to estimate its exact values in certain specific Banach spaces.Next,we investigate the relationships between this new constant and other classical constants.Specifically,we establish an inequality relationship between it and the J(X)constant,as well as an identity relationship between it and theρX(t)constant.Furthermore,we characterize some geometric properties of Banach spaces by means of this new constant.Finally,by restricting the above-mentioned constant to the unit sphere,we introduce another new constant,calculate its upper and lower bounds,and present a relevant example. 展开更多
关键词 Banach spaces isosceles orthogonality geometric constants uniformly non-square
原文传递
Development of a Buck Converter for Efficient Energy Storage Integration Using Constant Voltage(CV)Methods
15
作者 Ricky Alfian Dita Sudirman Palaloi +6 位作者 Rezi Delfianti Catur Harsito Muhammad Nevandra Fithra Pangestu Deo Ferdi Ramadhan Tovva Firdansyah Amijaya Farhan Mudzaffar Dimas Raka Buana Putra 《Energy Engineering》 2025年第6期2355-2370,共16页
Efficient battery charging requires a power conversion system capable of providing precise voltage regulation tailored to the battery’s needs.This study develops a buck converter with a 36 V input for charging a 14 V... Efficient battery charging requires a power conversion system capable of providing precise voltage regulation tailored to the battery’s needs.This study develops a buck converter with a 36 V input for charging a 14 V battery using the Constant Voltage(CV)method.The system is designed to ensure safe and efficient charging while protecting the battery from overcharging and extending its lifespan.In the proposed design,the converter maintains a constant output voltage while the charging current decreases as the battery approaches full capacity.Pulse Width Modulation(PWM)is used as a control strategy to modify the duty cycle of the converter.This keeps the voltage output stable whenever the load changes.The design process involves simulation and experimental validation to evaluate the system’s performance and efficiency.The test results show the significant impact of Proportional-Integral-Derivative(PID)control on the stability of the output voltage to meet the requirements for 14 V battery charging and the efficiency of the battery charging process.The output voltage becomes more stable,with reduced oscillation and minimal steadystate error.The State of Charge(SOC)increases more stably,controllably,and efficiently thanks to the PID controller’s ability to adjust the duty cycle in real time based on system feedback.This dynamic adjustment ensures that the output current and voltage remain within the optimal range,which directly improves the battery charging process.In addition,PID control significantly improves the dynamic response of the system,reducing overshoot and settling time while maintaining precise voltage regulation.This speeds up the battery charging process and contributes to better energy efficiency,reduced power loss,and extended battery life.This research provides a reliable and cost-effective solution for applications in electric vehicles,renewable energy systems,and other battery-powered devices. 展开更多
关键词 Battery charging buck converter constant voltage energy storage system
在线阅读 下载PDF
Grating pitch comparison measurement based on Cr atomic transition frequency and Si lattice constant
16
作者 Jingtong Feng Rao Xu +9 位作者 Ziruo Wu Lihua Lei Yingfan Xiong Zhaohui Tang Guangxu Xiao Yuying Xie Dongbai Xue Xiao Deng Xinbin Cheng Tongbao Li 《Chinese Physics B》 2025年第2期82-88,共7页
Traceability is the fundamental premise of all metrological activities. The establishment of a traceability chain characterized by a shortened structure, while simultaneously enabling on-site traceability, represents ... Traceability is the fundamental premise of all metrological activities. The establishment of a traceability chain characterized by a shortened structure, while simultaneously enabling on-site traceability, represents a key trend in the advancement of metrology. This study explores the periodic accuracy and overall uniformity of self-traceable gratings, employing multilayer film gratings with a nominal period of 25.00 nm as the medium. We present a comparative analysis of measurement capabilities in a self-traceable grating calibration system characterized by a ‘top-down’ calibration approach and a Si lattice constant calibration system characterized by a ‘bottom-up’ calibration approach. The results indicate that the values obtained for the multilayer film grating periods, calibrated using the self-traceable grating system, are 24.40 nm with a standard deviation of 0.11 nm. By comparing with the values derived from the Si lattice constant, which yield 24.34 nm with a standard deviation of 0.14 nm, the validity and feasibility of the self-traceable calibration system are confirmed. This system extends and complements existing metrological frameworks, offering a precise pathway for traceability in precision engineering and nanotechnology research. 展开更多
关键词 NANOMETROLOGY self-traceable standard material Si lattice constant
原文传递
Spectroscopic Constants and Anharmonic Force Field of Thiocarbonyl Thioketen and its Isomers:a Theoretical Study
17
作者 Weixiu Pang Yunbin Sun +2 位作者 Jianjun Zhao Xiaomin Song Meishan Wang 《Chinese Journal of Chemical Physics》 2025年第4期457-470,I0028-I0057,I0105,共45页
The interstellar medium molecule thiocarbonyl thioketen,H_(2)CCS,has several stable isomers and has received considerable attention of as-tronomical observation in recent years.The positions of H,C,and S atoms of thre... The interstellar medium molecule thiocarbonyl thioketen,H_(2)CCS,has several stable isomers and has received considerable attention of as-tronomical observation in recent years.The positions of H,C,and S atoms of three isomers lead to di-verse dipole moments and spectro-scopic constants.The anharmonic force field and spectroscopic con-stants of thiocarbonyl thioketen and its isomers are calculated using MP2,B3LYP,and CCSD(T)methods employing correlation consistent basis sets.Molecule structures,rotational spectroscopic constants,and fundamental frequencies are compared with the available experimental data for thiocarbonyl thioketen.Ro-vibrational interaction constants,anharmonic constants,cubic and quartic force constants are predicted for thiocarbonyl thioketen.In addition,some rotational and vibrational spectroscopic parameters are predict-ed with the same level of theory for thioacetylene,HCCSH,and thiirene,(CH)_(2)S.The predic-tions of these spectroscopic constants are expected to guide the future astronomical observa-tion and high resolution experimental work for C_(2)H_(2)S isomers. 展开更多
关键词 Anharmonic force field Spectroscopic constants Molecular structures Thiocar-bonyl thioketen
在线阅读 下载PDF
Effect of loading rate on the mechanical response and energy evolution of skarn rock subjected to constant-amplitude cyclic loading
18
作者 WU Yun-feng WANG Yu +5 位作者 LI Chang-hong ZHOU Bao-kun LI Peng CAI Mei-feng SUN Chang-kun TIAN Zi-cheng 《Journal of Central South University》 2025年第3期1117-1140,共24页
This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain... This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain responses,deformation,energy dissipation and fracture morphology are all impacted by the loading rate.A pronounced influence of the loading rate on rock deformation is found,with slower loading rate eliciting enhanced strain development,alongside augmented energy absorption and dissipation.In addition,it is revealed that the loading rate and cyclic loading amplitude jointly influence the phase shift distribution,with accelerated rates leading to a narrower phase shift duration.It is suggested that lower loading rate leads to more significant energy dissipation.Finally,the tensile or shear failure modes were intrinsically linked to loading strategy,with cyclic loading predominantly instigating shear damage,as manifest in the increased presence of pulverized grain particles.This work would give new insights into the fortification of mining structures and the optimization of mining methodologies. 展开更多
关键词 cyclic loading loading rate constant amplitude deformation characteristics energy dissipation
在线阅读 下载PDF
Constant-potential simulation of electrocatalytic N_(2) reduction over atomic metal-N-graphene catalysts
19
作者 Sanmei Wang Yong Zhou +3 位作者 Hengxin Fang Chunyang Nie Chang Q Sun Biao Wang 《Chinese Chemical Letters》 2025年第3期439-443,共5页
Charge-neutral method(CNM)is extensively used in investigating the performance of catalysts and the mechanism of N_(2)electrochemical reduction(NRR).However,disparities remain between the predicted potentials required... Charge-neutral method(CNM)is extensively used in investigating the performance of catalysts and the mechanism of N_(2)electrochemical reduction(NRR).However,disparities remain between the predicted potentials required for NRR by the CNM methods and those observed experimentally,as the CNM method neglects the charge effect from the electrode potential.To address this issue,we employed the constant electrode potential(CEP)method to screen atomic transition metal-N-graphene(M_(1)/N-graphene)as NRR electrocatalysts and systematically investigated the underlying catalytic mechanism.Among eight types of M_(1)/N-graphene(M_(1)=Mo,W,Fe,Re,Ni,Co,V,Cr),W_(1)/N-graphene emerges as the most promising NRR electrocatalyst with a limiting potential as low as−0.13 V.Additionally,the W_(1)/N-graphene system consistently maintains a positive charge during the reaction due to its Fermi level being higher than that of the electrode.These results better match with the actual circumstances compared to those calculated by conventional CNM method.Thus,our work not only develops a promising electrocatalyst for NRR but also deepens the understanding of the intrinsic electrocatalytic mechanism. 展开更多
关键词 N_(2) reduction Single-atom catalysts constant potential GRAPHENE DFT
原文传递
Optimization of a Perforator Nozzle Based on the Constant Velocity of Jet Core
20
作者 Aihua Tao Chao Li +3 位作者 Zhijun Jie Yong Zhang Xing Chen Weili Liu 《Fluid Dynamics & Materials Processing》 2025年第3期645-656,共12页
Hydraulic sandblasting perforation plays a crucial role in the fracturing and reconstruction of unconventional oil and gas reservoirs.The jet nozzle is an essential part of the hydraulic perforation tool.Insufficient ... Hydraulic sandblasting perforation plays a crucial role in the fracturing and reconstruction of unconventional oil and gas reservoirs.The jet nozzle is an essential part of the hydraulic perforation tool.Insufficient penetration depth,caused by excessive jet distances,presents challenges during the perforation process.To overcome this,an optimization design of the nozzle structure is required to enhance the perforation efficiency.In this paper,a computational fluid-dynamic model for conical-cylindrical nozzles has been elaborated.To further improve the rock-breaking efficiency of the jet nozzle,a fillet design is introduced at the nozzle inlet section.The SST k-ωmodel is employed to account for turbulent flow effects in submerged conditions.The results indicate that the nozzle’s geometric parameters greatly influence the flow characteristics.The orthogonal experimental method is employed to optimize the flow channel structure of the nozzle,taking the length of constant velocity core as the evaluation index.The following optimized geometric parameters for the conical-cylindrical nozzle have been determined accordingly:a cylindrical segment diameter of 3.2 mm,a contraction angle of 12°,a contraction segment length of 8 mm,a cylindrical segment length of 6.4 mm,and a fillet radius of 2 mm. 展开更多
关键词 Perforator nozzle field characteristics orthogonal experiment nozzle parameters jet constant velocity core
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部