The continuously collected cores from the Permo-Carboniferous coal-bearing strata of the eastern Ordos Basin are essential for studying the hydrocarbon potential in this region.This study adopted sedimentological and ...The continuously collected cores from the Permo-Carboniferous coal-bearing strata of the eastern Ordos Basin are essential for studying the hydrocarbon potential in this region.This study adopted sedimentological and geochemical methods to analyze the sedimentary environment,material composition,and geochemical characteristics of the coal-bearing strata.The differences in depositional and paleoclimatic conditions were compared;and the factors influencing the organic matter content of fine-grained sediments were explored.The depositional environment of the Benxi and Jinci formations was lagoon to tidal flat with weakly reduced waters with low salinity and dry-hot paleoclimatic conditions;while that of the Taiyuan Formation was a carbonate platform and shallow water delta front,where the water was highly reductive.The xerothermic climate alternated with the warm and humid climate.The period of maximum transgression in the Permo-Carboniferous has the highest water salinity.The Shanxi Formation was deposited in a shallow water delta front with a brackish and fresh water environment and alternative weak reductiveness.And the paleoclimate condition is dry-hot.The TOC content in fine-grained samples was averaging 1.52%.The main controlling mechanism of organic matter in this area was the input conditions according to the analysis on input and preservation of organic matter.展开更多
Fine-grained rocks(FGR) are the important source rocks and reservoirs of shale hydrocarbon which is the prospect hotspot at present. Widely distributed fine-grained sediments(FGS) of the upper fourth member of Sha...Fine-grained rocks(FGR) are the important source rocks and reservoirs of shale hydrocarbon which is the prospect hotspot at present. Widely distributed fine-grained sediments(FGS) of the upper fourth member of Shahejie Formation in Dongying depression are taken as an example to study the space-time evolution and controlling factor of FGS in this paper. Based on the analysis of well cores, thin sections, inorganic and organic geochemistry indicators, FGR are divided into 7 types of lithofacies. Through the study of ‘point-line-plane', this study shows that FGS has the characteristics of rhythum, diversity and succession. The first stage is characterized by clayey FGS(massive claystone). The second stage is characterized by carbonate FGS(low-TOC laminated limestone) and dolomitic FGS(dolomitic-silty shale) formed by transgression. The third stage is characterized by organic-rich carbonate FGS(middle/high-TOC laminated limestone) distributed in cycle. The fourth stage is characterized by FGS mixed carbonate and siliciclastic sediments(calcareous-silty shale). A variety of space-time evolution of FGS are controlled by multiple factors including tectonism, climate and lake conditions.展开更多
For the great amount of organic compounds and the variation of salinity in the Changjiang Estuary, the study on the flocculation process of fine-grained sediments by the combined effect of salinity and humus in the hi...For the great amount of organic compounds and the variation of salinity in the Changjiang Estuary, the study on the flocculation process of fine-grained sediments by the combined effect of salinity and humus in the high-turbid system is of critical significance for the understanding of the mechanism of the formation of the turbidity maximum (TM) . For the great amount of organic compounds and the variation of salinity in the Changjiang Estuary, the study on the flocculation process of fine-grained sediments by the combined effect of salinity and humus in the high-turbid system is of critical significance for the understanding of the mechanism of the formation of the turbidity maximum (TM) . The effects of salinity and humus on the fine-grained sediments have been analyzed through the synthetic study of the aspects of flocculation/coagulation power ( F), diameter (D) and zeta potential (Z). And the microcosmic configuration of the flocs has been analyzed by using a scan electron microscope and Fourier Transform Infrared Spectrometry. The results show that: ( 1 ) with the increase of salinity, F and D become greater and Z becomes smaller, and with the increase of the concentration of humus, F becomes smaller, but D and Z become greater; (2) the microcosmic configuration of the flocculation shows that humus packs on the fine sediments in the form of salt, and the flocculation model of C - P - OM (C stands for clay; P cations; OM organic materials) can successfully demonstrate the mechanism of the formation of the finegrained sediments in the high-turbid area of the Changjiang Estuary.展开更多
A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, ...A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as ‘sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that ‘sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of ‘sediment pump' are determined as hydrodynamics(wave energy), degree of consolidation, index of bioturbation(permeability) and content of fine-grained materials(sedimentary age). This new perspective of ‘sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.展开更多
In debris flow modelling,the viscosity and yield stress of fine-grained sediments should be determined in order to better characterize sediment flow.In particular,it is important to understand the effect of grain size...In debris flow modelling,the viscosity and yield stress of fine-grained sediments should be determined in order to better characterize sediment flow.In particular,it is important to understand the effect of grain size on the rheology of fine-grained sediments associated with yielding.When looking at the relationship between shear stress and shear rate before yielding,a high-viscosity zone(called pseudoNewtonian viscosity) towards the apparent yield stress exists.After yielding,plastic viscosity(called Bingham viscosity) governs the flow.To examine the effect of grain size on the rheological characteristics of fine-grained sediments,clay-rich materials(from the Adriatic Sea,Italy; Cambridge Fjord,Canada; and the Mediterranean Sea,Spain),silt-rich debris flow materials(from La Valette,France) and silt-rich materials(iron tailings from Canada) were compared.Rheological characteristics were examined using a modified Bingham model.The materials examined,including the Canadian inorganic and sensitive clays,exhibit typical shear thinning behavior and strong thixotropy.In the relationships between the liquidity index and rheological values(viscosity and apparent yield stress),the effect of grain size on viscosity and yield stress is significant at a given liquidity index.The viscosity and yield stress of debris flow materials are higher than those of low-activity clays at the same liquid state.However the viscosity and yield stress of the tailings,which are mainly composed of silt-sized particles,are slightly lower than those of low-activity clays.展开更多
We used the X-ray diffraction method to determine systematically the mineral phases in bulk sediment samples and acid undissolved residuals of the fine-grained fraction of the surface sediments from the 49.6°E hy...We used the X-ray diffraction method to determine systematically the mineral phases in bulk sediment samples and acid undissolved residuals of the fine-grained fraction of the surface sediments from the 49.6°E hydrothermal field at the Southwest Indian Ridge(SWIR)and discussed the mineral sources of the surface sediments.The results showed that the surface sediments in this region were composed of calcareous ooze,and calcite was the dominant mineral.The sediments also contained quartz,feldspar,clay minerals,pyroxene,sphalerite,barite,serpentine,and magnetite.The quartz,feldspar,and clay minerals were exogenous minerals that mainly originated from the Namib and Kalahari deserts in southern Africa.The pyroxene,serpentine,magnetite,sphalerite,calcite,and barite were endogenous minerals from weathering of seafloor basement rocks and seafloor hydrothermal activities.The sulfide particles in the sediments were mainly deposited from upwelling plumes.展开更多
The global carbon cycle has played a key role in mitigating global warming and climate change.Long-term natural and anthropogenic processes influence the composition,sources,burial rates,and fluxes of carbon in sedime...The global carbon cycle has played a key role in mitigating global warming and climate change.Long-term natural and anthropogenic processes influence the composition,sources,burial rates,and fluxes of carbon in sediments on the continental shelf of China.In this study,the rates,fluxes,and amounts of carbon storage at the centennial scale were estimated and demonstrated using the case study of three fine-grained sediment cores from the central South Yellow Sea area(SYSA) and Min-Zhe belt(MZB),East China Sea.Based on the high-resolution temporal sequences of total carbon(TC)and total organic carbon(TOC)contents,we reconstructed the annual variations of historical marine carbon storage,and explored the influence of terrestrial and marine sources on carbon burial at the centennial scale.The estimated TC storage over 100 years was 1.18×10~8 t in the SYSA and 1.45×10~9 t in the MZB.The corrected TOC storage fluxes at the centennial scale ranged from 17 to 28 t/(km^2·a)in the SYSA and from 56 to 148 t/(km^2·a)in the MZB.The decrease of terrestrial materials and the increase of marine primary production suggest that the TOC buried in the sediments in the SYSA and MZB was mainly derived from the marine autogenetic source.In the MZB,two depletion events occurred in TC and TOC storage from 1985 to 1987 and 2003 to 2006,which were coeval with the water impoundment in the Gezhouba and Three Gorges dams,respectively.The high-resolution records of the carbon storage rates and fluxes in the SYSA and MZB reflect the synchronous responses to human activities and provide an important reference for assessing the carbon sequestration capacity of the marginal seas of China.展开更多
Achieving a thorough understanding of how primary sedimentary granularity drives considerable heterogeneity in internal reservoir attributes of terrigenous fine-grained deposits is of great significance.We investigate...Achieving a thorough understanding of how primary sedimentary granularity drives considerable heterogeneity in internal reservoir attributes of terrigenous fine-grained deposits is of great significance.We investigated the quantitative differentiation and its corresponding driving forces of physical reservoir properties and pore-structure characteristics of silty-mud sediments in the Upper Triassic Xujiahe Formation(SW China)using a multi-method approach.The results show that the micro-mesopore volume and surface area of mudstones/shales are apparently higher than those of silty mudstones and a remarkable threefold rise in average permeability also presents.Extensively distributed bitumen pores occurring mostly along brittle mineral grains or forming clay-organic complexes make considerable contributions to shrinking microcracks.Furthermore,an evidently higher concentration of clay minerals in mudstone/shale reservoirs is primarily responsible for development of the two types of clay intercrystalline pores distributed along grain aggregates and between well-oriented platelets.These two major causes facilitate the formation of micro-bedding fractures/non-bedding micro fractures and connected fracture and pore-fracture networks,and also high-quality argillaceous reservoirs by strongly enhancing storage spaces and seepage capacities.Finally,a conceptual model is established for interpreting a differential reservoir-forming mechanism and corresponding two-sided effects on petrophysical and reservoir quality properties for continental silty-mud sediments.展开更多
Fine-grained sediments are Quaternary sediments with grain sizes of not more than 2 mm.They startfirst when meeting water,their stability is related to the initial water volume triggering debrisflow,and thus plays an ...Fine-grained sediments are Quaternary sediments with grain sizes of not more than 2 mm.They startfirst when meeting water,their stability is related to the initial water volume triggering debrisflow,and thus plays an important role in debrisflow hazards early warning.The permeability coefficient is the inter-controlled factor offine-grained sediment stability.However,there is no hyperspectral model for detecting thefine-grained sediment permeability coefficient in large areas,which seriously affects the progress of debrisflow hazards early warning.Therefore,it is of great significance to establish a hyperspectral detection model for the permeability coefficient offine-grained sediments.Taking Beichuan County,Southwestern China as the case,a permeability coefficient hyperspectral detection model was established.The results show that eight bands are sensitive to the permeability coefficient with correlation coefficient(R)of 0.6343.T-test on the model shows that P-a values for sensitive bands are all less than 0.05,indicating the established model has a good prediction ability with a precision of 85.83%.These sensitive bands also indicate the spectral characteristics of the permeability coefficient.Therefore,it provides a scientific basis forfine-grained sediment stability detection in large areas and lays a theoretical foundation for debrisflow hazards’early warning.展开更多
Based on recent advancements in shale oil exploration within the Ordos Basin,this study presents a comprehensive investigation of the paleoenvironment,lithofacies assemblages and distribution,depositional mechanisms,a...Based on recent advancements in shale oil exploration within the Ordos Basin,this study presents a comprehensive investigation of the paleoenvironment,lithofacies assemblages and distribution,depositional mechanisms,and reservoir characteristics of shale oil of fine-grained sediment deposition in continental freshwater lacustrine basins,with a focus on the Chang 7_(3) sub-member of Triassic Yanchang Formation.The research integrates a variety of exploration data,including field outcrops,drilling,logging,core samples,geochemical analyses,and flume simulation.The study indicates that:(1)The paleoenvironment of the Chang 7_(3) deposition is characterized by a warm and humid climate,frequent monsoon events,and a large water depth of freshwater lacustrine basin.The paleogeomorphology exhibits an asymmetrical pattern,with steep slopes in the southwest and gentle slopes in the northeast,which can be subdivided into microgeomorphological units,including depressions and ridges in lakebed,as well as ancient channels.(2)The Chang 7_(3) sub-member is characterized by a diverse array of fine-grained sediments,including very fine sandstone,siltstone,mudstone and tuff.These sediments are primarily distributed in thin interbedded and laminated arrangements vertically.The overall grain size of the sandstone predominantly falls below 62.5μm,with individual layer thicknesses of 0.05–0.64 m.The deposits contain intact plant fragments and display various sedimentary structure,such as wavy bedding,inverse-to-normal grading sequence,and climbing ripple bedding,which indicating a depositional origin associated with density flows.(3)Flume simulation experiments have successfully replicated the transport processes and sedimentary characteristics associated with density flows.The initial phase is characterized by a density-velocity differential,resulting in a thicker,coarser sediment layer at the flow front,while the upper layers are thinner and finer in grain size.During the mid-phase,sliding water effects cause the fluid front to rise and facilitate rapid forward transport.This process generates multiple“new fronts”,enabling the long-distance transport of fine-grained sandstones,such as siltstone and argillaceous siltstone,into the center of the lake basin.(4)A sedimentary model primarily controlled by hyperpynal flows was established for the southwestern part of the basin,highlighting that the frequent occurrence of flood events and the steep slope topography in this area are primary controlling factors for the development of hyperpynal flows.(5)Sandstone and mudstone in the Chang 7_(3) sub-member exhibit micro-and nano-scale pore-throat systems,shale oil is present in various lithologies,while the content of movable oil varies considerably,with sandstone exhibiting the highest content of movable oil.(6)The fine-grained sediment complexes formed by multiple episodes of sandstones and mudstones associated with density flow in the Chang 7_(3) formation exhibit characteristics of“overall oil-bearing with differential storage capacity”.The combination of mudstone with low total organic carbon content(TOC)and siltstone is identified as the most favorable exploration target at present.展开更多
Fine-grained sediments are widely distributed and constitute the most abundant component in sedi-mentary systems,thus the research on their genesis and distribution is of great significance.In recent years,fine-graine...Fine-grained sediments are widely distributed and constitute the most abundant component in sedi-mentary systems,thus the research on their genesis and distribution is of great significance.In recent years,fine-grained sediment gravity-flows(FGSGF)have been recognized as an important transportation and depositional mechanism for accumulating thick successions of fine-grained sediments.Through a comprehensive review and synthesis of global research on FGSGF deposition,the characteristics,depositional mechanisms,and distribution patterns of fine-grained sediment gravity-flow deposits(FGSGFD)are discussed,and future research prospects are clarified.In addition to the traditionally recognized low-density turbidity current and muddy debris flow,wave-enhanced gravity flow,low-density muddy hyperpycnal flow,and hypopycnal plumes can all form widely distributed FGSGFD.At the same time,the evolution of FGSGF during transportation can result in transitional and hybrid gravity-flow deposits.The combination of multiple triggering mechanisms promotes the widespread develop-ment of FGSGFD,without temporal and spatial limitations.Different types and concentrations of clay minerals,organic matters,and organo-clay complexes are the keys to controlling the flow transformation of FGSGF from low-concentration turbidity currents to high-concentration muddy debris flows.Further study is needed on the interaction mechanism of FGSGF caused by different initiations,the evolution of FGSGF with the effect of organic-inorganic synergy,and the controlling factors of the distribution pat-terns of FGSGFD.The study of FGSGFD can shed some new light on the formation of widely developed thin-bedded siltstones within shales.At the same time,these insights may broaden the exploration scope of shale oil and gas,which have important geological significances for unconventional shale oil and gas.展开更多
Accurate quantification of the gas hydrate content in the deep sea is useful for assessing the resource potential and understanding the role of gas hydrates in the global carbon cycle.Resistivity logging data combined...Accurate quantification of the gas hydrate content in the deep sea is useful for assessing the resource potential and understanding the role of gas hydrates in the global carbon cycle.Resistivity logging data combined with Archie’s equation are often used to calculate gas hydrate saturation,but the reliability is dependent on the rationality of the empirical parameter cementation factor and saturation index.At present,an increasing number of fine-grained hydrate-rich sediment regions have been discovered worldwide through drilling efforts,and the reservoir types and hydrate distribution are diverse,which differs greatly from that of coarse-grained reservoirs of hydrate-bearing sediment.This results in vertical variations in m and n through stratigraphy.At present,the saturation evaluation effect of these reservoirs cannot be improved.In this work,a theory for the determination of the cementation factor and saturation index was first proposed to obtain reliable and variable values of the empirical parameters.Then,a hydrate saturation evaluation technique with variables m and n was formed based on the well logging data.This technique was used to evaluate complex fine-grained hydrate-bearing reservoirs in several regions worldwide.It was found that the highest n could be 16,and the log calculation results were more consistent with the core hydrate saturation.Additionally,the cause of the excessively high n values was explained from physical principles,and the result was verified with actually well log data.In future evaluations of the amount of hydrate resources in fine-grained sediment reservoirs worldwide,new saturation estimation methods should be taken into account to advance hydrate research.展开更多
Mineralogical and geochemical characteristics of stream sediments collected from 30 stations in the Dahab-Wadi Kid area(southeastern Sinai,Egypt)are presented.The studied sediments contain considerable amounts of heav...Mineralogical and geochemical characteristics of stream sediments collected from 30 stations in the Dahab-Wadi Kid area(southeastern Sinai,Egypt)are presented.The studied sediments contain considerable amounts of heavy minerals,including abundant Fe–Ti oxides,with up to 25.94%index figure that measures the relative abundance of heavy minerals to light minerals.Immaturity of the sediments and nature of Fe–Ti oxide intergrowths,in addition to some non-opaque heavy minerals,indicate multiple provenances with contributions from a variety of Neoproterozoic mafic to felsic intrusions.Appreciable amounts of heavy minerals are derived from schists that belong to the so-called Wadi Kid volcanosedimentary group.Owing to the considerable contribution of the felsic intrusions represented by within-plate granites,the sediments are enriched in REE-bearing minerals(e.g.,monazite,cerianite,La-cerianite and allanite),V-bearing thorite,zircon,and a ZrO_(2) phase.The majority of Fe–Ti oxides are derived from the mafic intrusions,and they show evidence of pre-,syn-and post-depositional phases of alteration and formation of intergrowths.As to the geochemical signature of the bulk silt fraction,there is remarkable enrichment of LREEs with distinct negative Eu anomaly,and this supports dominance of a provenance dominated by felsic intrusions(i.e.,the A-type within-plate granite and associated pegmatites).Also,the felsic provenance is responsible for slight abnormality of ∑PU+Th content(up to~37 ppm)and few anomalous samples bear uraniferous zircon and Ce-type monazite.The present paper sheds light on the fertility of the Dahab stream sediments in some economic minerals for possible future exploitation,not for gold only,but for potential REEbearing minerals that are needed for a wide spectrum of modern technological industries.展开更多
According to the theory of sequence stratigraphy based on continental transgressive-regressive(T-R)cycles,a 500 m continuous core taken from the second member of Kongdian Formation(Kong 2 Member)of Paleogene in Well G...According to the theory of sequence stratigraphy based on continental transgressive-regressive(T-R)cycles,a 500 m continuous core taken from the second member of Kongdian Formation(Kong 2 Member)of Paleogene in Well G108-8 in the Cangdong Sag,Bohai Bay Basin,was tested and analyzed to clarify the high-frequency cycles of deep-water fine-grained sedimentary rocks in lacustrine basins.A logging vectorgraph in red pattern was plotted,and then a sequence stratigraphic framework with five-order high-frequency cycles was formed for the fine-grained sedimentary rocks in the Kong 2 Member.The high-frequency cycles of fine-grained sedimentary rocks were characterized by using different methods and at different scales.It is found that the fifth-order T cycles record a high content of terrigenous clastic minerals,a low paleosalinity,a relatively humid paleoclimate and a high density of laminae,while the fifth-order R cycles display a high content of carbonate minerals,a high paleosalinity,a dry paleoclimate and a low density of laminae.The changes in high-frequency cycles controlled the abundance and type of organic matter.The T cycles exhibit relatively high TOC and abundant endogenous organic matters in water in addition to terrigenous organic matters,implying a high primary productivity of lake for the generation and enrichment of shale oil.展开更多
Fine-grained lacustrine sedimentation controlled by astronomical cycles remains a research weakness in sedimentology studies,as most studies have concentrated on how astronomical cycles affect the normal lacustrine fi...Fine-grained lacustrine sedimentation controlled by astronomical cycles remains a research weakness in sedimentology studies,as most studies have concentrated on how astronomical cycles affect the normal lacustrine fine-grained sedimentation,but how they affect the lacustrine fine-grained event sedimen-tation has been rarely studied.Therefore,this work researched the characteristics of event sedimentation by systematically observing the cores from 30 cored wells in the Shahejie Formation of the Dongying Sag at a depth of over 1800 m,with more than 4000 thin sections being authenticated and over 1000 whole rocks being analyzed by X-ray diffraction(XRD).The research object was the Chunshang Sub-member of Upper Es_(4) in the Fanye 1 well,as it had the most comprehensive analysis data and underwent the most continuous coring.We divided astronomical cycles into different orders and made corresponding curves using the gamma-ray(GR)curve,spectral analysis,power spectrum estimation,and module extreme values,there were 6 long eccentricity periods,22 short eccentricity periods,65.5 obliquity cycles,and 110.5 precession cycles in this sub-member.On this basis,this study analyzed the control of astronomical cycles on the lacustrine fine-grained event sedimentation,and the research shows deposits were developed by slide-slump,turbidities,hyperpycnites,and tempestites in the Chunshang Sub-member of the Upper Es_(4),with higher long eccentricity,the monsoon climate contributes to the formation of storm currents,while with lower long eccentricity,the surface deposits are severely eroded by rivers and rainfalls,thus developing the slide-slump,turbidities,and hyperpycnites.The relationship between the lacustrine fine-grained event sedimentation and astronomical cycles was studied in this case study,which can promote research on fine-grained sedimentary rocks in genetic dynamics and boost the theoretical and disciplinary development in fine-grained sedimentology.展开更多
Two depositional processes controlled the muddy sediments in the South China Sea Basin. Bathyal sediments depositional rate was 7.66 cm/la in the northern continental slope of the Basin where turbidity current was alm...Two depositional processes controlled the muddy sediments in the South China Sea Basin. Bathyal sediments depositional rate was 7.66 cm/la in the northern continental slope of the Basin where turbidity current was almost nonexistent. In the northern margin of the Basin, abyssal sediment depositional rate was 5.05cm/ka and turbidity current occurrence averaged 0.22 per 1000 years. Turbidite was found in the middle of the Basin. Over half of the muddy sediments in the deep sea basin were deposited by turbidity currents, and had typically graded bedding, and contents of organic matter, calcareous material and micropaleontologic species inconsistent with the environment.展开更多
Core,thin section,conventional and image logs are used to provide insights into distribution of fractures in fine grained sedimentary rocks of Permian Lucaogou Formation in Jimusar Sag.Bedding parallel fractures are c...Core,thin section,conventional and image logs are used to provide insights into distribution of fractures in fine grained sedimentary rocks of Permian Lucaogou Formation in Jimusar Sag.Bedding parallel fractures are common in fine grained sedimentary rocks which are characterized by layered structures.Core and thin section analysis reveal that fractures in Lucaogou Formation include tectonic inclined fracture,bedding parallel fracture,and abnormal high pressure fracture.Bedding parallel fractures are abundant,but only minor amounts of them remain open,and most of them are partly to fully sealed by carbonate minerals(calcite)and bitumen.Bedding parallel fractures result in a rapid decrease in resistivity,and they are recognized on image logs to extend along bedding planes and have discontinuous surfaces due to partly-fully filled resistive carbonate minerals as well as late stage dissolution.A comprehensive interpretation of distribution of bedding parallel fractures is performed with green line,red line,yellow line and blue line representing bedding planes,induced fractures,resistive fractures,and open(bedding and inclined)fractures,respectively.The strike of bedding parallel fractures is coinciding with bedding planes.Bedding parallel fractures are closely associated with the amounts of bedding planes,and high density of bedding planes favor the formation of bedding parallel fractures.Alternating dark and bright layers have the most abundant bedding parallel fractures on the image logs,and the bedding parallel fractures are always associated with low resistivity zones.The results above may help optimize sweet spots in fine grained sedimentary rocks,and improve future fracturing design and optimize well spacing.展开更多
Based on various test data, the composition, texture, structure and lamina types of gas-bearing shale were determined based on Well Wuxi 2 of the Silurian Longmaxi Formation in the Sichuan Basin. Four types of lamina,...Based on various test data, the composition, texture, structure and lamina types of gas-bearing shale were determined based on Well Wuxi 2 of the Silurian Longmaxi Formation in the Sichuan Basin. Four types of lamina, namely organic-rich lamina, organic-bearing lamina, clay lamina and silty lamina, are developed in the Longmaxi Formation of Well Wuxi 2, and they form 2 kinds of lamina set and 5 kinds of beds. Because of increasing supply of terrigenous clasts and enhancing hydrodynamics and associated oxygen levels, the contents of TOC and brittle mineral reduce and content of clay mineral increases gradually as the depth becomes shallow. Organic-rich lamina, organic-rich + organic-bearing lamina set and organic-rich bed dominate the small layers 1-3 of Member 1 of the Longmaxi Formation, suggesting anoxic and weak hydraulic depositional setting. Organic-rich lamina, along with organic-bearing lamina and silty lamina, appear in small layer 4, suggesting increased oxygenated and hydraulic level. Small layers 1-3 are the best interval and drilling target of shale gas exploration and development.展开更多
Fine-grained carbonate rocks, which extensively occur in the Eocene strata in the Shulu sag, Bohai Bay Basin, North China, represent an unconventional, fine-grained carbonate reservoir. However, previous studies have ...Fine-grained carbonate rocks, which extensively occur in the Eocene strata in the Shulu sag, Bohai Bay Basin, North China, represent an unconventional, fine-grained carbonate reservoir. However, previous studies have ignored the complexity of the lithofacies components and their formation mechanisms. Fine-grained carbonate rocks are typical reservoirs in which hydrocarbons form and gather. A better understanding of the nature of these rocks is extremely important for evaluating the quality of unconventional, fine-grained carbonate reservoirs. Various lithofacies components were discriminated in this study with a combination of petrographic observations and carbon isotope analyses. These finegrained carbonate rocks comprise terrigenous, biogenic and diagenetic materials. Terrigenous input and biologically induced precipitation are the main sources of the materials in the lake. Five lithofacies were identified based on the observations of sedimentary features(core and thin section) and mineralogical data:(1) varve-like laminated calcilutite,(2) graded laminated calcilutite,(3) interlaminated calcisiltitecalcilutite,(4) massive calcilutite, and(5) massive calcisiltite-calcarenite. Their origins were recorded by various lithofacies components, which are controlled by the interactions of physical, chemical and biological processes. This study indicated that the lithology of the bedrocks was the key factor controlling carbonate accumulation. The tectonics and climate can influence the weathering and types of lithofacies. Primary productivity controlled the precipitation of the endogenic calcite. These factors jointly determined the abundant fine-grained carbonate rocks that have accumulated in the Shulu sag.展开更多
The geological conditions and processes of fine-grained gravity flow sedimentation in continental lacustrine basins in China are analyzed to construct the model of fine-grained gravity flow sedimentation in lacustrine...The geological conditions and processes of fine-grained gravity flow sedimentation in continental lacustrine basins in China are analyzed to construct the model of fine-grained gravity flow sedimentation in lacustrine basin,reveal the development laws of fine-grained deposits and source-reservoir,and identify the sweet sections of shale oil.The results show that fine-grained gravity flow is one of the important sedimentary processes in deep lake environment,and it can transport fine-grained clasts and organic matter in shallow water to deep lake,forming sweet sections and high-quality source rocks of shale oil.Fine-grained gravity flow deposits in deep waters of lacustrine basins in China are mainly fine-grained high-density flow,fine-grained turbidity flow(including surge-like turbidity flow and fine-grained hyperpycnal flow),fine-grained viscous flow(including fine-grained debris flow and mud flow),and fine-grained transitional flow deposits.The distribution of fine-grained gravity flow deposits in the warm and humid unbalanced lacustrine basins are controlled by lake-level fluctuation,flooding events,and lakebed paleogeomorphology.During the lake-level rise,fine-grained hyperpycnal flow caused by flooding formed fine-grained channel–levee–lobe system in the flat area of the deep lake.During the lake-level fall,the sublacustrine fan system represented by unconfined channel was developed in the flexural slope breaks and sedimentary slopes of depressed lacustrine basins,and in the steep slopes of faulted lacustrine basins;the sublacustrine fan system with confined or unconfined channel was developed on the gentle slopes and in axial direction of faulted lacustrine basins,with fine-grained gravity flow deposits possibly existing in the lower fan.Within the fourth-order sequences,transgression might lead to organic-rich shale and fine-grained hyperpycnal flow deposits,while regression might cause fine-grained high-density flow,surge-like turbidity flow,fine-grained debris flow,mud flow,and fine-grained transitional flow deposits.Since the Permian,in the shale strata of lacustrine basins in China,multiple transgression-regression cycles of fourth-order sequences have formed multiple source-reservoir assemblages.Diverse fine-grained gravity flow sedimentation processes have created sweet sections of thin siltstone consisting of fine-grained high-density flow,fine-grained hyperpycnal flow and surge-like turbidity flow deposits,sweet sections with interbeds of mudstone and siltstone formed by fine-grained transitional flows,and sweet sections of shale containing silty and muddy clasts and with horizontal bedding formed by fine-grained debris flow and mud flow.The model of fine-grained gravity flow sedimentation in lacustrine basin is significant for the scientific evaluation of sweet shale oil reservoir and organic-rich source rock.展开更多
基金founded by the National Natural Science Foundation of China(Grant No.41772130)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_2602)+1 种基金the Graduate Innovation Program of China University of Mining and Technology(Grant No.2022WLKXJ035)the Fundamental Research Program of Shanxi Province(Grant No.202103021223283)。
文摘The continuously collected cores from the Permo-Carboniferous coal-bearing strata of the eastern Ordos Basin are essential for studying the hydrocarbon potential in this region.This study adopted sedimentological and geochemical methods to analyze the sedimentary environment,material composition,and geochemical characteristics of the coal-bearing strata.The differences in depositional and paleoclimatic conditions were compared;and the factors influencing the organic matter content of fine-grained sediments were explored.The depositional environment of the Benxi and Jinci formations was lagoon to tidal flat with weakly reduced waters with low salinity and dry-hot paleoclimatic conditions;while that of the Taiyuan Formation was a carbonate platform and shallow water delta front,where the water was highly reductive.The xerothermic climate alternated with the warm and humid climate.The period of maximum transgression in the Permo-Carboniferous has the highest water salinity.The Shanxi Formation was deposited in a shallow water delta front with a brackish and fresh water environment and alternative weak reductiveness.And the paleoclimate condition is dry-hot.The TOC content in fine-grained samples was averaging 1.52%.The main controlling mechanism of organic matter in this area was the input conditions according to the analysis on input and preservation of organic matter.
基金supported by the National Science and Technology Special Grant of China (No. 2017zx05036-004)
文摘Fine-grained rocks(FGR) are the important source rocks and reservoirs of shale hydrocarbon which is the prospect hotspot at present. Widely distributed fine-grained sediments(FGS) of the upper fourth member of Shahejie Formation in Dongying depression are taken as an example to study the space-time evolution and controlling factor of FGS in this paper. Based on the analysis of well cores, thin sections, inorganic and organic geochemistry indicators, FGR are divided into 7 types of lithofacies. Through the study of ‘point-line-plane', this study shows that FGS has the characteristics of rhythum, diversity and succession. The first stage is characterized by clayey FGS(massive claystone). The second stage is characterized by carbonate FGS(low-TOC laminated limestone) and dolomitic FGS(dolomitic-silty shale) formed by transgression. The third stage is characterized by organic-rich carbonate FGS(middle/high-TOC laminated limestone) distributed in cycle. The fourth stage is characterized by FGS mixed carbonate and siliciclastic sediments(calcareous-silty shale). A variety of space-time evolution of FGS are controlled by multiple factors including tectonism, climate and lake conditions.
文摘For the great amount of organic compounds and the variation of salinity in the Changjiang Estuary, the study on the flocculation process of fine-grained sediments by the combined effect of salinity and humus in the high-turbid system is of critical significance for the understanding of the mechanism of the formation of the turbidity maximum (TM) . For the great amount of organic compounds and the variation of salinity in the Changjiang Estuary, the study on the flocculation process of fine-grained sediments by the combined effect of salinity and humus in the high-turbid system is of critical significance for the understanding of the mechanism of the formation of the turbidity maximum (TM) . The effects of salinity and humus on the fine-grained sediments have been analyzed through the synthetic study of the aspects of flocculation/coagulation power ( F), diameter (D) and zeta potential (Z). And the microcosmic configuration of the flocs has been analyzed by using a scan electron microscope and Fourier Transform Infrared Spectrometry. The results show that: ( 1 ) with the increase of salinity, F and D become greater and Z becomes smaller, and with the increase of the concentration of humus, F becomes smaller, but D and Z become greater; (2) the microcosmic configuration of the flocculation shows that humus packs on the fine sediments in the form of salt, and the flocculation model of C - P - OM (C stands for clay; P cations; OM organic materials) can successfully demonstrate the mechanism of the formation of the finegrained sediments in the high-turbid area of the Changjiang Estuary.
基金jointly supported by five projects which are respectively funded by the National Natural Science Foundation of China(Nos.41402253,41272316,41372287)the Postdoctoral Science Foundation of China(Nos.2014M561963,2016T90653)
文摘A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as ‘sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that ‘sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of ‘sediment pump' are determined as hydrodynamics(wave energy), degree of consolidation, index of bioturbation(permeability) and content of fine-grained materials(sedimentary age). This new perspective of ‘sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.
基金funded by the Natural Sciences and Engineering Research Council,Canada,via the COSTA(Continental Slope Stability)-Canada projectsupported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea(NRF)+1 种基金funded by the Ministry of Science,ICT&Future Planning(Grant No.2012M3A2A1050983)the Research Project (11-7622,13-3212)of the Korea Institute of Geoscience and Mineral Resources(KIGAM)
文摘In debris flow modelling,the viscosity and yield stress of fine-grained sediments should be determined in order to better characterize sediment flow.In particular,it is important to understand the effect of grain size on the rheology of fine-grained sediments associated with yielding.When looking at the relationship between shear stress and shear rate before yielding,a high-viscosity zone(called pseudoNewtonian viscosity) towards the apparent yield stress exists.After yielding,plastic viscosity(called Bingham viscosity) governs the flow.To examine the effect of grain size on the rheological characteristics of fine-grained sediments,clay-rich materials(from the Adriatic Sea,Italy; Cambridge Fjord,Canada; and the Mediterranean Sea,Spain),silt-rich debris flow materials(from La Valette,France) and silt-rich materials(iron tailings from Canada) were compared.Rheological characteristics were examined using a modified Bingham model.The materials examined,including the Canadian inorganic and sensitive clays,exhibit typical shear thinning behavior and strong thixotropy.In the relationships between the liquidity index and rheological values(viscosity and apparent yield stress),the effect of grain size on viscosity and yield stress is significant at a given liquidity index.The viscosity and yield stress of debris flow materials are higher than those of low-activity clays at the same liquid state.However the viscosity and yield stress of the tailings,which are mainly composed of silt-sized particles,are slightly lower than those of low-activity clays.
基金supported by the China Ocean Mineral Resources Research and Development Association (No. DY 125-11-R-04)
文摘We used the X-ray diffraction method to determine systematically the mineral phases in bulk sediment samples and acid undissolved residuals of the fine-grained fraction of the surface sediments from the 49.6°E hydrothermal field at the Southwest Indian Ridge(SWIR)and discussed the mineral sources of the surface sediments.The results showed that the surface sediments in this region were composed of calcareous ooze,and calcite was the dominant mineral.The sediments also contained quartz,feldspar,clay minerals,pyroxene,sphalerite,barite,serpentine,and magnetite.The quartz,feldspar,and clay minerals were exogenous minerals that mainly originated from the Namib and Kalahari deserts in southern Africa.The pyroxene,serpentine,magnetite,sphalerite,calcite,and barite were endogenous minerals from weathering of seafloor basement rocks and seafloor hydrothermal activities.The sulfide particles in the sediments were mainly deposited from upwelling plumes.
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB956004)the Fundamental Research Funds for the Central Universities(No.16lgjc22)
文摘The global carbon cycle has played a key role in mitigating global warming and climate change.Long-term natural and anthropogenic processes influence the composition,sources,burial rates,and fluxes of carbon in sediments on the continental shelf of China.In this study,the rates,fluxes,and amounts of carbon storage at the centennial scale were estimated and demonstrated using the case study of three fine-grained sediment cores from the central South Yellow Sea area(SYSA) and Min-Zhe belt(MZB),East China Sea.Based on the high-resolution temporal sequences of total carbon(TC)and total organic carbon(TOC)contents,we reconstructed the annual variations of historical marine carbon storage,and explored the influence of terrestrial and marine sources on carbon burial at the centennial scale.The estimated TC storage over 100 years was 1.18×10~8 t in the SYSA and 1.45×10~9 t in the MZB.The corrected TOC storage fluxes at the centennial scale ranged from 17 to 28 t/(km^2·a)in the SYSA and from 56 to 148 t/(km^2·a)in the MZB.The decrease of terrestrial materials and the increase of marine primary production suggest that the TOC buried in the sediments in the SYSA and MZB was mainly derived from the marine autogenetic source.In the MZB,two depletion events occurred in TC and TOC storage from 1985 to 1987 and 2003 to 2006,which were coeval with the water impoundment in the Gezhouba and Three Gorges dams,respectively.The high-resolution records of the carbon storage rates and fluxes in the SYSA and MZB reflect the synchronous responses to human activities and provide an important reference for assessing the carbon sequestration capacity of the marginal seas of China.
基金supported by the Science Foundation for Distinguished Young Scholars of China University of Petroleum,Beijing(No.2462020QNXZ004)the National Natural Science and Technology Major Project(No.2016ZX05034-001 and 2017ZX05035-002)。
文摘Achieving a thorough understanding of how primary sedimentary granularity drives considerable heterogeneity in internal reservoir attributes of terrigenous fine-grained deposits is of great significance.We investigated the quantitative differentiation and its corresponding driving forces of physical reservoir properties and pore-structure characteristics of silty-mud sediments in the Upper Triassic Xujiahe Formation(SW China)using a multi-method approach.The results show that the micro-mesopore volume and surface area of mudstones/shales are apparently higher than those of silty mudstones and a remarkable threefold rise in average permeability also presents.Extensively distributed bitumen pores occurring mostly along brittle mineral grains or forming clay-organic complexes make considerable contributions to shrinking microcracks.Furthermore,an evidently higher concentration of clay minerals in mudstone/shale reservoirs is primarily responsible for development of the two types of clay intercrystalline pores distributed along grain aggregates and between well-oriented platelets.These two major causes facilitate the formation of micro-bedding fractures/non-bedding micro fractures and connected fracture and pore-fracture networks,and also high-quality argillaceous reservoirs by strongly enhancing storage spaces and seepage capacities.Finally,a conceptual model is established for interpreting a differential reservoir-forming mechanism and corresponding two-sided effects on petrophysical and reservoir quality properties for continental silty-mud sediments.
基金funded in part by the Innovative Research Program of the International Research Center of Big Data for Sustainable Development Goals[grant number CBAS2022IRP03]the National Natural Science Foundation of China[grant number 42071312]the Hainan Hundred Special Project[grant number 31,JTT[2018]].
文摘Fine-grained sediments are Quaternary sediments with grain sizes of not more than 2 mm.They startfirst when meeting water,their stability is related to the initial water volume triggering debrisflow,and thus plays an important role in debrisflow hazards early warning.The permeability coefficient is the inter-controlled factor offine-grained sediment stability.However,there is no hyperspectral model for detecting thefine-grained sediment permeability coefficient in large areas,which seriously affects the progress of debrisflow hazards early warning.Therefore,it is of great significance to establish a hyperspectral detection model for the permeability coefficient offine-grained sediments.Taking Beichuan County,Southwestern China as the case,a permeability coefficient hyperspectral detection model was established.The results show that eight bands are sensitive to the permeability coefficient with correlation coefficient(R)of 0.6343.T-test on the model shows that P-a values for sensitive bands are all less than 0.05,indicating the established model has a good prediction ability with a precision of 85.83%.These sensitive bands also indicate the spectral characteristics of the permeability coefficient.Therefore,it provides a scientific basis forfine-grained sediment stability detection in large areas and lays a theoretical foundation for debrisflow hazards’early warning.
基金Supported by the CNPC Major Science and Technology Project(2021DJ1806).
文摘Based on recent advancements in shale oil exploration within the Ordos Basin,this study presents a comprehensive investigation of the paleoenvironment,lithofacies assemblages and distribution,depositional mechanisms,and reservoir characteristics of shale oil of fine-grained sediment deposition in continental freshwater lacustrine basins,with a focus on the Chang 7_(3) sub-member of Triassic Yanchang Formation.The research integrates a variety of exploration data,including field outcrops,drilling,logging,core samples,geochemical analyses,and flume simulation.The study indicates that:(1)The paleoenvironment of the Chang 7_(3) deposition is characterized by a warm and humid climate,frequent monsoon events,and a large water depth of freshwater lacustrine basin.The paleogeomorphology exhibits an asymmetrical pattern,with steep slopes in the southwest and gentle slopes in the northeast,which can be subdivided into microgeomorphological units,including depressions and ridges in lakebed,as well as ancient channels.(2)The Chang 7_(3) sub-member is characterized by a diverse array of fine-grained sediments,including very fine sandstone,siltstone,mudstone and tuff.These sediments are primarily distributed in thin interbedded and laminated arrangements vertically.The overall grain size of the sandstone predominantly falls below 62.5μm,with individual layer thicknesses of 0.05–0.64 m.The deposits contain intact plant fragments and display various sedimentary structure,such as wavy bedding,inverse-to-normal grading sequence,and climbing ripple bedding,which indicating a depositional origin associated with density flows.(3)Flume simulation experiments have successfully replicated the transport processes and sedimentary characteristics associated with density flows.The initial phase is characterized by a density-velocity differential,resulting in a thicker,coarser sediment layer at the flow front,while the upper layers are thinner and finer in grain size.During the mid-phase,sliding water effects cause the fluid front to rise and facilitate rapid forward transport.This process generates multiple“new fronts”,enabling the long-distance transport of fine-grained sandstones,such as siltstone and argillaceous siltstone,into the center of the lake basin.(4)A sedimentary model primarily controlled by hyperpynal flows was established for the southwestern part of the basin,highlighting that the frequent occurrence of flood events and the steep slope topography in this area are primary controlling factors for the development of hyperpynal flows.(5)Sandstone and mudstone in the Chang 7_(3) sub-member exhibit micro-and nano-scale pore-throat systems,shale oil is present in various lithologies,while the content of movable oil varies considerably,with sandstone exhibiting the highest content of movable oil.(6)The fine-grained sediment complexes formed by multiple episodes of sandstones and mudstones associated with density flow in the Chang 7_(3) formation exhibit characteristics of“overall oil-bearing with differential storage capacity”.The combination of mudstone with low total organic carbon content(TOC)and siltstone is identified as the most favorable exploration target at present.
基金supported by National Natural Science Foundation of China(Grant Nos.42072126,42372139)the Natural Science Foundation of Sichuan Province(Grant Nos.2022NSFSC0990).
文摘Fine-grained sediments are widely distributed and constitute the most abundant component in sedi-mentary systems,thus the research on their genesis and distribution is of great significance.In recent years,fine-grained sediment gravity-flows(FGSGF)have been recognized as an important transportation and depositional mechanism for accumulating thick successions of fine-grained sediments.Through a comprehensive review and synthesis of global research on FGSGF deposition,the characteristics,depositional mechanisms,and distribution patterns of fine-grained sediment gravity-flow deposits(FGSGFD)are discussed,and future research prospects are clarified.In addition to the traditionally recognized low-density turbidity current and muddy debris flow,wave-enhanced gravity flow,low-density muddy hyperpycnal flow,and hypopycnal plumes can all form widely distributed FGSGFD.At the same time,the evolution of FGSGF during transportation can result in transitional and hybrid gravity-flow deposits.The combination of multiple triggering mechanisms promotes the widespread develop-ment of FGSGFD,without temporal and spatial limitations.Different types and concentrations of clay minerals,organic matters,and organo-clay complexes are the keys to controlling the flow transformation of FGSGF from low-concentration turbidity currents to high-concentration muddy debris flows.Further study is needed on the interaction mechanism of FGSGF caused by different initiations,the evolution of FGSGF with the effect of organic-inorganic synergy,and the controlling factors of the distribution pat-terns of FGSGFD.The study of FGSGFD can shed some new light on the formation of widely developed thin-bedded siltstones within shales.At the same time,these insights may broaden the exploration scope of shale oil and gas,which have important geological significances for unconventional shale oil and gas.
基金This project was funded by the National Natural Science Foundation of China(No.42106213)the China Postdoctoral Science Foundation(Nos.2021M690161 and 2021T140691)+1 种基金the National Key Research and Development Program of China(No.2021YFC3100601)the Postdoctorate Funded Project in Hainan Province.
文摘Accurate quantification of the gas hydrate content in the deep sea is useful for assessing the resource potential and understanding the role of gas hydrates in the global carbon cycle.Resistivity logging data combined with Archie’s equation are often used to calculate gas hydrate saturation,but the reliability is dependent on the rationality of the empirical parameter cementation factor and saturation index.At present,an increasing number of fine-grained hydrate-rich sediment regions have been discovered worldwide through drilling efforts,and the reservoir types and hydrate distribution are diverse,which differs greatly from that of coarse-grained reservoirs of hydrate-bearing sediment.This results in vertical variations in m and n through stratigraphy.At present,the saturation evaluation effect of these reservoirs cannot be improved.In this work,a theory for the determination of the cementation factor and saturation index was first proposed to obtain reliable and variable values of the empirical parameters.Then,a hydrate saturation evaluation technique with variables m and n was formed based on the well logging data.This technique was used to evaluate complex fine-grained hydrate-bearing reservoirs in several regions worldwide.It was found that the highest n could be 16,and the log calculation results were more consistent with the core hydrate saturation.Additionally,the cause of the excessively high n values was explained from physical principles,and the result was verified with actually well log data.In future evaluations of the amount of hydrate resources in fine-grained sediment reservoirs worldwide,new saturation estimation methods should be taken into account to advance hydrate research.
文摘Mineralogical and geochemical characteristics of stream sediments collected from 30 stations in the Dahab-Wadi Kid area(southeastern Sinai,Egypt)are presented.The studied sediments contain considerable amounts of heavy minerals,including abundant Fe–Ti oxides,with up to 25.94%index figure that measures the relative abundance of heavy minerals to light minerals.Immaturity of the sediments and nature of Fe–Ti oxide intergrowths,in addition to some non-opaque heavy minerals,indicate multiple provenances with contributions from a variety of Neoproterozoic mafic to felsic intrusions.Appreciable amounts of heavy minerals are derived from schists that belong to the so-called Wadi Kid volcanosedimentary group.Owing to the considerable contribution of the felsic intrusions represented by within-plate granites,the sediments are enriched in REE-bearing minerals(e.g.,monazite,cerianite,La-cerianite and allanite),V-bearing thorite,zircon,and a ZrO_(2) phase.The majority of Fe–Ti oxides are derived from the mafic intrusions,and they show evidence of pre-,syn-and post-depositional phases of alteration and formation of intergrowths.As to the geochemical signature of the bulk silt fraction,there is remarkable enrichment of LREEs with distinct negative Eu anomaly,and this supports dominance of a provenance dominated by felsic intrusions(i.e.,the A-type within-plate granite and associated pegmatites).Also,the felsic provenance is responsible for slight abnormality of ∑PU+Th content(up to~37 ppm)and few anomalous samples bear uraniferous zircon and Ce-type monazite.The present paper sheds light on the fertility of the Dahab stream sediments in some economic minerals for possible future exploitation,not for gold only,but for potential REEbearing minerals that are needed for a wide spectrum of modern technological industries.
基金Supported by the National Major Research and Development Project(2020YFA0710504,2022YFF0801204)PetroChina Science and Technology Major Project(2019E-26)。
文摘According to the theory of sequence stratigraphy based on continental transgressive-regressive(T-R)cycles,a 500 m continuous core taken from the second member of Kongdian Formation(Kong 2 Member)of Paleogene in Well G108-8 in the Cangdong Sag,Bohai Bay Basin,was tested and analyzed to clarify the high-frequency cycles of deep-water fine-grained sedimentary rocks in lacustrine basins.A logging vectorgraph in red pattern was plotted,and then a sequence stratigraphic framework with five-order high-frequency cycles was formed for the fine-grained sedimentary rocks in the Kong 2 Member.The high-frequency cycles of fine-grained sedimentary rocks were characterized by using different methods and at different scales.It is found that the fifth-order T cycles record a high content of terrigenous clastic minerals,a low paleosalinity,a relatively humid paleoclimate and a high density of laminae,while the fifth-order R cycles display a high content of carbonate minerals,a high paleosalinity,a dry paleoclimate and a low density of laminae.The changes in high-frequency cycles controlled the abundance and type of organic matter.The T cycles exhibit relatively high TOC and abundant endogenous organic matters in water in addition to terrigenous organic matters,implying a high primary productivity of lake for the generation and enrichment of shale oil.
基金supported by the Study on Astronomical Stratigraphic Period of Lacustrine Shale and High Resolution Sedimentary Cycle in Logging(41872166)of the National Natural Science Foundation of China and the Exploration and Development Research Institute,Shengli Oilfield Company,SINOPEC.
文摘Fine-grained lacustrine sedimentation controlled by astronomical cycles remains a research weakness in sedimentology studies,as most studies have concentrated on how astronomical cycles affect the normal lacustrine fine-grained sedimentation,but how they affect the lacustrine fine-grained event sedimen-tation has been rarely studied.Therefore,this work researched the characteristics of event sedimentation by systematically observing the cores from 30 cored wells in the Shahejie Formation of the Dongying Sag at a depth of over 1800 m,with more than 4000 thin sections being authenticated and over 1000 whole rocks being analyzed by X-ray diffraction(XRD).The research object was the Chunshang Sub-member of Upper Es_(4) in the Fanye 1 well,as it had the most comprehensive analysis data and underwent the most continuous coring.We divided astronomical cycles into different orders and made corresponding curves using the gamma-ray(GR)curve,spectral analysis,power spectrum estimation,and module extreme values,there were 6 long eccentricity periods,22 short eccentricity periods,65.5 obliquity cycles,and 110.5 precession cycles in this sub-member.On this basis,this study analyzed the control of astronomical cycles on the lacustrine fine-grained event sedimentation,and the research shows deposits were developed by slide-slump,turbidities,hyperpycnites,and tempestites in the Chunshang Sub-member of the Upper Es_(4),with higher long eccentricity,the monsoon climate contributes to the formation of storm currents,while with lower long eccentricity,the surface deposits are severely eroded by rivers and rainfalls,thus developing the slide-slump,turbidities,and hyperpycnites.The relationship between the lacustrine fine-grained event sedimentation and astronomical cycles was studied in this case study,which can promote research on fine-grained sedimentary rocks in genetic dynamics and boost the theoretical and disciplinary development in fine-grained sedimentology.
文摘Two depositional processes controlled the muddy sediments in the South China Sea Basin. Bathyal sediments depositional rate was 7.66 cm/la in the northern continental slope of the Basin where turbidity current was almost nonexistent. In the northern margin of the Basin, abyssal sediment depositional rate was 5.05cm/ka and turbidity current occurrence averaged 0.22 per 1000 years. Turbidite was found in the middle of the Basin. Over half of the muddy sediments in the deep sea basin were deposited by turbidity currents, and had typically graded bedding, and contents of organic matter, calcareous material and micropaleontologic species inconsistent with the environment.
基金financially supported by the National Natural Science Foundation of China(No.42002133,42072150)Natural Science Foundation of Beijing(8204069)+1 种基金Strategic Cooperation Project of PetroChina and CUPB(ZLZX2020-01-06-01)Science Foundation of China University of Petroleum,Beijing(No.2462021YXZZ003)
文摘Core,thin section,conventional and image logs are used to provide insights into distribution of fractures in fine grained sedimentary rocks of Permian Lucaogou Formation in Jimusar Sag.Bedding parallel fractures are common in fine grained sedimentary rocks which are characterized by layered structures.Core and thin section analysis reveal that fractures in Lucaogou Formation include tectonic inclined fracture,bedding parallel fracture,and abnormal high pressure fracture.Bedding parallel fractures are abundant,but only minor amounts of them remain open,and most of them are partly to fully sealed by carbonate minerals(calcite)and bitumen.Bedding parallel fractures result in a rapid decrease in resistivity,and they are recognized on image logs to extend along bedding planes and have discontinuous surfaces due to partly-fully filled resistive carbonate minerals as well as late stage dissolution.A comprehensive interpretation of distribution of bedding parallel fractures is performed with green line,red line,yellow line and blue line representing bedding planes,induced fractures,resistive fractures,and open(bedding and inclined)fractures,respectively.The strike of bedding parallel fractures is coinciding with bedding planes.Bedding parallel fractures are closely associated with the amounts of bedding planes,and high density of bedding planes favor the formation of bedding parallel fractures.Alternating dark and bright layers have the most abundant bedding parallel fractures on the image logs,and the bedding parallel fractures are always associated with low resistivity zones.The results above may help optimize sweet spots in fine grained sedimentary rocks,and improve future fracturing design and optimize well spacing.
基金Supported by the National Natural Science Foundation of China(4160211941572079)
文摘Based on various test data, the composition, texture, structure and lamina types of gas-bearing shale were determined based on Well Wuxi 2 of the Silurian Longmaxi Formation in the Sichuan Basin. Four types of lamina, namely organic-rich lamina, organic-bearing lamina, clay lamina and silty lamina, are developed in the Longmaxi Formation of Well Wuxi 2, and they form 2 kinds of lamina set and 5 kinds of beds. Because of increasing supply of terrigenous clasts and enhancing hydrodynamics and associated oxygen levels, the contents of TOC and brittle mineral reduce and content of clay mineral increases gradually as the depth becomes shallow. Organic-rich lamina, organic-rich + organic-bearing lamina set and organic-rich bed dominate the small layers 1-3 of Member 1 of the Longmaxi Formation, suggesting anoxic and weak hydraulic depositional setting. Organic-rich lamina, along with organic-bearing lamina and silty lamina, appear in small layer 4, suggesting increased oxygenated and hydraulic level. Small layers 1-3 are the best interval and drilling target of shale gas exploration and development.
基金provided by the National Major Research Program for Science and Technology of China (No. 2017ZX05009-002)the National Natural Science Fund (No. 41772090)
文摘Fine-grained carbonate rocks, which extensively occur in the Eocene strata in the Shulu sag, Bohai Bay Basin, North China, represent an unconventional, fine-grained carbonate reservoir. However, previous studies have ignored the complexity of the lithofacies components and their formation mechanisms. Fine-grained carbonate rocks are typical reservoirs in which hydrocarbons form and gather. A better understanding of the nature of these rocks is extremely important for evaluating the quality of unconventional, fine-grained carbonate reservoirs. Various lithofacies components were discriminated in this study with a combination of petrographic observations and carbon isotope analyses. These finegrained carbonate rocks comprise terrigenous, biogenic and diagenetic materials. Terrigenous input and biologically induced precipitation are the main sources of the materials in the lake. Five lithofacies were identified based on the observations of sedimentary features(core and thin section) and mineralogical data:(1) varve-like laminated calcilutite,(2) graded laminated calcilutite,(3) interlaminated calcisiltitecalcilutite,(4) massive calcilutite, and(5) massive calcisiltite-calcarenite. Their origins were recorded by various lithofacies components, which are controlled by the interactions of physical, chemical and biological processes. This study indicated that the lithology of the bedrocks was the key factor controlling carbonate accumulation. The tectonics and climate can influence the weathering and types of lithofacies. Primary productivity controlled the precipitation of the endogenic calcite. These factors jointly determined the abundant fine-grained carbonate rocks that have accumulated in the Shulu sag.
基金Supported by the Petrochina Science and Technology Project(2021DJ18).
文摘The geological conditions and processes of fine-grained gravity flow sedimentation in continental lacustrine basins in China are analyzed to construct the model of fine-grained gravity flow sedimentation in lacustrine basin,reveal the development laws of fine-grained deposits and source-reservoir,and identify the sweet sections of shale oil.The results show that fine-grained gravity flow is one of the important sedimentary processes in deep lake environment,and it can transport fine-grained clasts and organic matter in shallow water to deep lake,forming sweet sections and high-quality source rocks of shale oil.Fine-grained gravity flow deposits in deep waters of lacustrine basins in China are mainly fine-grained high-density flow,fine-grained turbidity flow(including surge-like turbidity flow and fine-grained hyperpycnal flow),fine-grained viscous flow(including fine-grained debris flow and mud flow),and fine-grained transitional flow deposits.The distribution of fine-grained gravity flow deposits in the warm and humid unbalanced lacustrine basins are controlled by lake-level fluctuation,flooding events,and lakebed paleogeomorphology.During the lake-level rise,fine-grained hyperpycnal flow caused by flooding formed fine-grained channel–levee–lobe system in the flat area of the deep lake.During the lake-level fall,the sublacustrine fan system represented by unconfined channel was developed in the flexural slope breaks and sedimentary slopes of depressed lacustrine basins,and in the steep slopes of faulted lacustrine basins;the sublacustrine fan system with confined or unconfined channel was developed on the gentle slopes and in axial direction of faulted lacustrine basins,with fine-grained gravity flow deposits possibly existing in the lower fan.Within the fourth-order sequences,transgression might lead to organic-rich shale and fine-grained hyperpycnal flow deposits,while regression might cause fine-grained high-density flow,surge-like turbidity flow,fine-grained debris flow,mud flow,and fine-grained transitional flow deposits.Since the Permian,in the shale strata of lacustrine basins in China,multiple transgression-regression cycles of fourth-order sequences have formed multiple source-reservoir assemblages.Diverse fine-grained gravity flow sedimentation processes have created sweet sections of thin siltstone consisting of fine-grained high-density flow,fine-grained hyperpycnal flow and surge-like turbidity flow deposits,sweet sections with interbeds of mudstone and siltstone formed by fine-grained transitional flows,and sweet sections of shale containing silty and muddy clasts and with horizontal bedding formed by fine-grained debris flow and mud flow.The model of fine-grained gravity flow sedimentation in lacustrine basin is significant for the scientific evaluation of sweet shale oil reservoir and organic-rich source rock.