In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived ...In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on the most commonly accepted definition of the MSPE as the expectation of the squared prediction error loss, we provide theoretical expressions for it, valid for any linear model (LM) fitter, be it under random or non random designs. Specializing these MSPE expressions for each of them, we are able to derive closed formulas of the MSPE for some of the most popular LM fitters: Ordinary Least Squares (OLS), with or without a full column rank design matrix;Ordinary and Generalized Ridge regression, the latter embedding smoothing splines fitting. For each of these LM fitters, we then deduce a computable estimate of the MSPE which turns out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a class of MSPE estimates coinciding with the classical GCV formula for those same LM fitters.展开更多
In the past two decades,model averaging,as a way to solve model uncertainty,has attracted more and more attention.In this paper,the authors propose a jackknife model averaging(JMA) method for the quantile single-index...In the past two decades,model averaging,as a way to solve model uncertainty,has attracted more and more attention.In this paper,the authors propose a jackknife model averaging(JMA) method for the quantile single-index coefficient model,which is widely used in statistics.Under model misspecification,the model averaging estimator is proved to be asymptotically optimal in terms of minimizing out-of-sample quantile loss.Simulation experiments are conducted to compare the JMA method with several model selections and model averaging methods,and the results show that the proposed method has a satisfactory performance.The method is also applied to a real dataset.展开更多
文摘In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on the most commonly accepted definition of the MSPE as the expectation of the squared prediction error loss, we provide theoretical expressions for it, valid for any linear model (LM) fitter, be it under random or non random designs. Specializing these MSPE expressions for each of them, we are able to derive closed formulas of the MSPE for some of the most popular LM fitters: Ordinary Least Squares (OLS), with or without a full column rank design matrix;Ordinary and Generalized Ridge regression, the latter embedding smoothing splines fitting. For each of these LM fitters, we then deduce a computable estimate of the MSPE which turns out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a class of MSPE estimates coinciding with the classical GCV formula for those same LM fitters.
基金supported by the National Natural Science Foundation of China under Grant Nos.U23A2064 and 12031005。
文摘In the past two decades,model averaging,as a way to solve model uncertainty,has attracted more and more attention.In this paper,the authors propose a jackknife model averaging(JMA) method for the quantile single-index coefficient model,which is widely used in statistics.Under model misspecification,the model averaging estimator is proved to be asymptotically optimal in terms of minimizing out-of-sample quantile loss.Simulation experiments are conducted to compare the JMA method with several model selections and model averaging methods,and the results show that the proposed method has a satisfactory performance.The method is also applied to a real dataset.