旨在揭示含双频周期激励的不同尺度Filippov系统的非光滑簇发振荡模式及分岔机制.以Duffing和Van der Pol耦合振子作为动力系统模型,引入周期变化的双频激励项,当两激励频率与固有频率存在量级差时,将两周期激励项表示为可以作为一慢变...旨在揭示含双频周期激励的不同尺度Filippov系统的非光滑簇发振荡模式及分岔机制.以Duffing和Van der Pol耦合振子作为动力系统模型,引入周期变化的双频激励项,当两激励频率与固有频率存在量级差时,将两周期激励项表示为可以作为一慢变参数的单一周期激励项的代数表达式,给出了当保持外部激励频率不变,改变参数激励频率的情况下,快子系统随慢变参数变化的平衡曲线及因系统出现的fold分岔或Hopf分岔导致的系统分岔行为的演化机制.结合转换相图和由Hopf分岔产生稳定极限环的演化过程,得到了由慢变参数确定的同宿分岔、多滑分岔的临界情形及因慢变参数改变而出现的混合振荡模式,并详细阐述了系统的簇发振荡机制和非光滑动力学行为特性.通过对比两种不同情形下的平衡曲线及分岔图,指出虽然系统有相似的平衡曲线结构,却因参数激励频率取值的不同,致使平衡曲线发生了更多的曲折,对应的极值点的个数也有所改变,并通过数值模拟,对结果进行了验证.展开更多
借助于含非光滑分界面的耦合Bohoffer-Van der Pol(BVP)电路系统,引入周期慢变的交流电源,构建两频域尺度的Filippov系统。利用微分包含理论,分析了尺度因素与非光滑因素相互作用的机理。当周期激励频率远远小于系统固有频率时,选取适...借助于含非光滑分界面的耦合Bohoffer-Van der Pol(BVP)电路系统,引入周期慢变的交流电源,构建两频域尺度的Filippov系统。利用微分包含理论,分析了尺度因素与非光滑因素相互作用的机理。当周期激励频率远远小于系统固有频率时,选取适当参数,得到了具有滑动结构的复杂周期簇发振荡,并结合理论分析揭示了滑动结构的产生机制。数值结果与理论分析吻合较好。展开更多
文摘旨在揭示含双频周期激励的不同尺度Filippov系统的非光滑簇发振荡模式及分岔机制.以Duffing和Van der Pol耦合振子作为动力系统模型,引入周期变化的双频激励项,当两激励频率与固有频率存在量级差时,将两周期激励项表示为可以作为一慢变参数的单一周期激励项的代数表达式,给出了当保持外部激励频率不变,改变参数激励频率的情况下,快子系统随慢变参数变化的平衡曲线及因系统出现的fold分岔或Hopf分岔导致的系统分岔行为的演化机制.结合转换相图和由Hopf分岔产生稳定极限环的演化过程,得到了由慢变参数确定的同宿分岔、多滑分岔的临界情形及因慢变参数改变而出现的混合振荡模式,并详细阐述了系统的簇发振荡机制和非光滑动力学行为特性.通过对比两种不同情形下的平衡曲线及分岔图,指出虽然系统有相似的平衡曲线结构,却因参数激励频率取值的不同,致使平衡曲线发生了更多的曲折,对应的极值点的个数也有所改变,并通过数值模拟,对结果进行了验证.
文摘借助于含非光滑分界面的耦合Bohoffer-Van der Pol(BVP)电路系统,引入周期慢变的交流电源,构建两频域尺度的Filippov系统。利用微分包含理论,分析了尺度因素与非光滑因素相互作用的机理。当周期激励频率远远小于系统固有频率时,选取适当参数,得到了具有滑动结构的复杂周期簇发振荡,并结合理论分析揭示了滑动结构的产生机制。数值结果与理论分析吻合较好。