With emerging large volume and diverse heterogeneity of Internet of Things (IoT) applications, the one-size-fits-all design of the current 4G networks is no longer adequate to serve various types of IoT applications. ...With emerging large volume and diverse heterogeneity of Internet of Things (IoT) applications, the one-size-fits-all design of the current 4G networks is no longer adequate to serve various types of IoT applications. Consequently, the concepts of network slicing enabled by Network Function Virtualization (NFV) have been proposed in the upcoming 5G networks. 5G network slicing allows IoT applications of different QoS requirements to be served by different virtual networks. Moreover, these network slices are equipped with scalability that allows them to grow or shrink their instances of Virtual Network Functions (VNFs) when needed. However, all current research only focuses on scalability on a single network slice, which is the scalability at the VNF level only. Such a design will eventually reach the capacity limit of a single slice under stressful incoming traffic, and cause the breakdown of an IoT system. Therefore, we propose a new IoT scalability architecture in this research to provide scalability at the NS level and design a testbed to implement the proposed architecture in order to verify its effectiveness. For evaluation, three systems are compared for their throughput, response time, and CPU utilization under three different types of IoT traffic, including the single slice scaling system, the multiple slices scaling system and the hybrid scaling system where both single slicing and multiple slicing can be simultaneously applied. Due to the balanced tradeoff between slice scalability and resource availability, the hybrid scaling system turns out to perform the best in terms of throughput and response time with medium CPU utilization.展开更多
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are v...Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are vital in facilitating end-user communication requirements.However,the security of Android systems has been challenged by the sensitive data involved,leading to vulnerabilities in mobile devices used in 5G networks.These vulnerabilities expose mobile devices to cyber-attacks,primarily resulting from security gaps.Zero-permission apps in Android can exploit these channels to access sensitive information,including user identities,login credentials,and geolocation data.One such attack leverages“zero-permission”sensors like accelerometers and gyroscopes,enabling attackers to gather information about the smartphone’s user.This underscores the importance of fortifying mobile devices against potential future attacks.Our research focuses on a new recurrent neural network prediction model,which has proved highly effective for detecting sidechannel attacks in mobile devices in 5G networks.We conducted state-of-the-art comparative studies to validate our experimental approach.The results demonstrate that even a small amount of training data can accurately recognize 37.5%of previously unseen user-typed words.Moreover,our tap detection mechanism achieves a 92%accuracy rate,a crucial factor for text inference.These findings have significant practical implications,as they reinforce mobile device security in 5G networks,enhancing user privacy,and data protection.展开更多
Robotic-assisted percutaneous coronary intervention(R-PCI)is an innovative way of performing percutaneous coronary intervention(PCI)whereby the operator can manipulate coronary intraluminal guidewires and catheter dev...Robotic-assisted percutaneous coronary intervention(R-PCI)is an innovative way of performing percutaneous coronary intervention(PCI)whereby the operator can manipulate coronary intraluminal guidewires and catheter devices by using remotely controlled technology.Performing tele-R-PCI from a remote location via fifth generation network communication technology has never been reported in China;however,if this were possible,the technique could be used to treat many patients with coronary artery disease who would otherwise not have the opportunity of treatment.The case of a 73-year-old male patient with coronary artery disease who underwent successful tele-R-PCI at 800 km from the operators is presented.Performing long-distance teleR-PCI in patients with coronary artery disease is feasible with predictably successful outcomes when reliable network connectivity and local cardiac catheterization facilities are present.展开更多
文摘With emerging large volume and diverse heterogeneity of Internet of Things (IoT) applications, the one-size-fits-all design of the current 4G networks is no longer adequate to serve various types of IoT applications. Consequently, the concepts of network slicing enabled by Network Function Virtualization (NFV) have been proposed in the upcoming 5G networks. 5G network slicing allows IoT applications of different QoS requirements to be served by different virtual networks. Moreover, these network slices are equipped with scalability that allows them to grow or shrink their instances of Virtual Network Functions (VNFs) when needed. However, all current research only focuses on scalability on a single network slice, which is the scalability at the VNF level only. Such a design will eventually reach the capacity limit of a single slice under stressful incoming traffic, and cause the breakdown of an IoT system. Therefore, we propose a new IoT scalability architecture in this research to provide scalability at the NS level and design a testbed to implement the proposed architecture in order to verify its effectiveness. For evaluation, three systems are compared for their throughput, response time, and CPU utilization under three different types of IoT traffic, including the single slice scaling system, the multiple slices scaling system and the hybrid scaling system where both single slicing and multiple slicing can be simultaneously applied. Due to the balanced tradeoff between slice scalability and resource availability, the hybrid scaling system turns out to perform the best in terms of throughput and response time with medium CPU utilization.
基金supported by Universiti Kebangsaan Malaysia(No.GUP 2023-010).
文摘Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are vital in facilitating end-user communication requirements.However,the security of Android systems has been challenged by the sensitive data involved,leading to vulnerabilities in mobile devices used in 5G networks.These vulnerabilities expose mobile devices to cyber-attacks,primarily resulting from security gaps.Zero-permission apps in Android can exploit these channels to access sensitive information,including user identities,login credentials,and geolocation data.One such attack leverages“zero-permission”sensors like accelerometers and gyroscopes,enabling attackers to gather information about the smartphone’s user.This underscores the importance of fortifying mobile devices against potential future attacks.Our research focuses on a new recurrent neural network prediction model,which has proved highly effective for detecting sidechannel attacks in mobile devices in 5G networks.We conducted state-of-the-art comparative studies to validate our experimental approach.The results demonstrate that even a small amount of training data can accurately recognize 37.5%of previously unseen user-typed words.Moreover,our tap detection mechanism achieves a 92%accuracy rate,a crucial factor for text inference.These findings have significant practical implications,as they reinforce mobile device security in 5G networks,enhancing user privacy,and data protection.
基金supported by the National Key Project of Research and Development Plan during the fourteenth Five-year Plan Period(2022YFC2503400).
文摘Robotic-assisted percutaneous coronary intervention(R-PCI)is an innovative way of performing percutaneous coronary intervention(PCI)whereby the operator can manipulate coronary intraluminal guidewires and catheter devices by using remotely controlled technology.Performing tele-R-PCI from a remote location via fifth generation network communication technology has never been reported in China;however,if this were possible,the technique could be used to treat many patients with coronary artery disease who would otherwise not have the opportunity of treatment.The case of a 73-year-old male patient with coronary artery disease who underwent successful tele-R-PCI at 800 km from the operators is presented.Performing long-distance teleR-PCI in patients with coronary artery disease is feasible with predictably successful outcomes when reliable network connectivity and local cardiac catheterization facilities are present.