Piezoelectric resonators are widely used in frequency reference devices, mass sensors, resonant sensors(such as gyros and accelerometers), etc. Piezoelectric resonators usually work in a special resonant mode. Obtaini...Piezoelectric resonators are widely used in frequency reference devices, mass sensors, resonant sensors(such as gyros and accelerometers), etc. Piezoelectric resonators usually work in a special resonant mode. Obtaining working resonant mode with high quality is key to improve the performance of piezoelectric resonators. In this paper, the resonance characteristics of a rectangular lead zirconium titanate(PZT) piezoelectric resonator are studied. On the basis of the field-programmable gate array(FPGA) embedded system, direct digital synthesizer(DDS) and automatic gain controller(AGC) are used to generate the driving signals with precisely adjustable frequency and amplitude. The driving signals are used to excite the piezoelectric resonator to the working vibration mode. The influence of the connection of driving electrodes and voltage amplitude on the vibration of the resonator is studied. The quality factor and vibration linearity of the resonator are studied with various driving methods mentioned in this paper. The resonator reaches resonant mode at 330 kHz by different driving methods.The relationship between resonant amplitude and driving signal amplitude is linear. The quality factor reaches over 150 by different driving methods. The results provide a theoretical reference for the efficient excitation of the piezoelectric resonator.展开更多
In order to obtain variable characteristics,the digital filter's type,number of taps and coefficients should be changed constantly such that the desired frequency-domain characteristics can be obtained.This paper ...In order to obtain variable characteristics,the digital filter's type,number of taps and coefficients should be changed constantly such that the desired frequency-domain characteristics can be obtained.This paper proposes a method for self-programmable variable digital filter(VDF) design based on field programmable gate array(FPGA).We implement a digital filter system by using custom embedded micro-processor,programmable finite impulse response(P-FIR) macro module,coefficient-loader,clock manager and analog/digital(A/D) or digital/analog(D/A) controller and other modules.The self-programmable VDF can provide the best solution for realization of digital filter algorithms,which are the low-pass,high-pass,band-pass and band-stop filter algorithms with variable frequency domain characteristics.The design examples with minimum 1 to maximum 32 taps FIR filter,based on Modelsim post-routed simulation and onboard running on XUPV5-LX110T,are provided to demonstrate the effectiveness of the proposed method.展开更多
An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the conv...An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the converter was mapped into a look-up table that was synthesized into a set of Boolean equations. A VLSI chip–a field programmable gate array (FPGA) was used to implement the Boolean equations. Features include the size of RAM chip independent of number of rules in the knowledge base, on-chip fuzzification and defuzzification, faster response with speeds over giga fuzzy logic inferences per sec (FLIPS), and an inexpensive VLSI chip. The key application areas are: 1) on-chip integrated controllers;and 2) on-chip co-integration for entire system of sensors, circuits, controllers, and detectors for building complete instrument systems.展开更多
In order to solve the current high failure rate of warship equipment field programmable gate array( FPGA) software,fault detection is not timely enough and FPGA detection equipment is expensive and so on. After in-dep...In order to solve the current high failure rate of warship equipment field programmable gate array( FPGA) software,fault detection is not timely enough and FPGA detection equipment is expensive and so on. After in-depth research,this paper proposes a warship equipment FPGA software based on Xilinx integrated development environment( ISE) and ModelSim software.Functional simulation and timing simulation to verify the correctness of the logic design of the FPGA,this method is very convenient to view the signal waveform inside the FPGA program to help FPGA test engineers to achieve FPGA fault prediction and diagnosis. This test method has important engineering significance for the upgrading of warship equipment.展开更多
High performance computer is often required by model predictive control(MPC) systems due to the heavy online computation burden.To extend MPC to more application cases with low-cost computation facilities, the impleme...High performance computer is often required by model predictive control(MPC) systems due to the heavy online computation burden.To extend MPC to more application cases with low-cost computation facilities, the implementation of MPC controller on field programmable gate array(FPGA) system is studied.For the dynamic matrix control(DMC) algorithm,the main design idea and the implemental strategy of DMC controller are introduced based on a FPGA’s embedded system.The performance tests show that both the computation efficiency and the accuracy of the proposed controller can be satisfied due to the parallel computing capability of FPGA.展开更多
With the continuous evolution of electronic technology,field-programmable gate array(FPGA)has demonstrated significant advantages in the realm of signal acquisition and processing,and signal acquisition plays a pivota...With the continuous evolution of electronic technology,field-programmable gate array(FPGA)has demonstrated significant advantages in the realm of signal acquisition and processing,and signal acquisition plays a pivotal role in the practical applications of laser gyros.By analysis of the output signals from a laser gyro and an accelerometer,this paper presents a circuit design for signal acquisition of the laser gyro based on domestic devices.The design incorporates a finite impulse response(FIR)filter to process the gyro signal and employs a small-volume,impact-resistant quartz flexible accelerometer for signal aquisition.Simulation results demonstrate that the errors in X,Y,and Z axes fall within acceptable ranges while meeting filtering requirements.The use of FPGA for signal acquisition and preprocessing enhances configuration flexibility,which provides an idea and method for optimizing performance and processing signals in laser gyro applications.展开更多
A programmable low-profile array antenna based on nematic liquid crystals(NLCs)is proposed.Each antenna unit comprises a square patch radiating structure and a tunable NLC-based phase shifter capable of achieving a ph...A programmable low-profile array antenna based on nematic liquid crystals(NLCs)is proposed.Each antenna unit comprises a square patch radiating structure and a tunable NLC-based phase shifter capable of achieving a phase shift exceeding 360°with high linearity.First,the above 64 antenna units are periodically arranged into an 8×8 NLC-based antenna array,and the bias voltage of the NLC-based phase shifter loaded on the antenna unit is adjusted through the control of the field-programmable gate array(FPGA)programming sequences.This configuration enables precise phase changes for all 64 channels.Numerical simulation,sample processing,and experimental measurements of the antenna array are conducted to validate the performance of the antenna.The numerical and experimental results demonstrate that the proposed antenna performs well within the frequency range of 19.5-20.5 GHz,with a 3 dB relative bandwidth of 10%and a maximum main lobe gain of 14.1 dBi.A maximum scanning angle of±34°is achieved through the adjustment of the FPGA programming sequence.This NLC-based programmable array antenna shows promising potential for applications in satellite communication.展开更多
The design of an FPGA( field programmable gate array) based programmable SONET (synchronous optical network) OC-192 10 Gbit/s PRBS (pseudo-random binary sequence) generator and a bit interleaved polarity 8 (BI...The design of an FPGA( field programmable gate array) based programmable SONET (synchronous optical network) OC-192 10 Gbit/s PRBS (pseudo-random binary sequence) generator and a bit interleaved polarity 8 (BIP-8) error detector is presented. Implemented in a parallel feedback configuration, this tester features PRBS generation of sequences with bit lengths of 2^7 - 1,2^10- 1,2^15 - 1,2^23 - land 2^31 - 1 for up to 10 Gbit/s applications with a 10 Gbit/s optical transceiver, via the SFI-4 (OC-192 serdes-framer interface). In the OC-192 frame alignment circuit, a dichotomy search algorithm logic which performs the functions of word alignment and STM-64/OC192 de-frame speeds up the frame sync logic and reduces circuit complexity greatly. The system can be used as a low cost tester to evaluate the performance of OC-192 devices and components, taking the replacement of precious commercial PRBS testers.展开更多
The intellectual property (IP) core for inter-integrated circuit (IIC) bus controller is designed using finite state machine (FSM) based on field programmable gate array (FPGA). Not only the data from AT 24C02...The intellectual property (IP) core for inter-integrated circuit (IIC) bus controller is designed using finite state machine (FSM) based on field programmable gate array (FPGA). Not only the data from AT 24C02C can be read automatically after power on, but also the data from upper computer can be written into AT24C02C immediately under the control of the IIC bus controller. When it is applied to blast wave overpressure test system, the IIC bus controller can read and store working parameters automatically. In a laboratory environment, the IP core simulation is carried out and the result is accurate. In the explosion field test, by analyzing the obtained valid data, it can be concluded that the designed IP core has good reliability.展开更多
To solve the excessive huge scale problem of the traditional multi-bit digital artificial neural network(ANN) hardware implementation methods,a bit-stream ANN hardware implementation method based on sigma delta(Σ...To solve the excessive huge scale problem of the traditional multi-bit digital artificial neural network(ANN) hardware implementation methods,a bit-stream ANN hardware implementation method based on sigma delta(ΣΔ) modulation is presented.The bit-stream adder,multiplier,threshold function unit and fully digital ΣΔ modulator are implemented in a field programmable gate array(FPGA),and these bit-stream arithmetical units are employed to build the bit-stream artificial neuron.The function of the bit-stream artificial neuron is verified through the realization of the logic function and a linear classifier.The bit-stream perceptron based on the bit-stream artificial neuron with the pre-processed structure is proved to have the ability of nonlinear classification.The FPGA resource utilization of the bit-stream artificial neuron shows that the bit-stream ANN hardware implementation method can significantly reduce the demand of the ANN hardware resources.展开更多
Because single line-scan camera loses light in the edge of the sensor when the field of view is large, a mosaic cam- era based on field programmable gate array (FPGA) is presented by putting multiple cameras arrange...Because single line-scan camera loses light in the edge of the sensor when the field of view is large, a mosaic cam- era based on field programmable gate array (FPGA) is presented by putting multiple cameras arranged in a straight line to share the field of view and reduce the view angle of every camera. For detecting doping micro particles with the designed mosaic line-scan camera, a detection algorithm of the target's location in FPGA is proposed. Finally, the practicability and stability of the system were validated experimentally. The results of the experiment show that the camera can get images clearly with less light loss and can accurately distinguish the target and the background.展开更多
InterRange Instrumentation Group(IRIG-B(AC))code is usually used in the shooting range test for time information transmission and systems time synchronization.According to IRIG-B(AC)code format and modulation pr...InterRange Instrumentation Group(IRIG-B(AC))code is usually used in the shooting range test for time information transmission and systems time synchronization.According to IRIG-B(AC)code format and modulation principle,this paper presents IRIG-B(AC)coding circuit design scheme based on field programmable gate array(FPGA).The B(AC)code signal is generated by AD7245,a digital-to-analog(D/A)converter.After amplified,the signal can be used directly for system time synchronization,and the amplitude of the signal can be adjusted according to different requirements.The IRIG-B(AC)encoder designed has been verified by test.The test results show that it can output accurate time information and has higher practicality.展开更多
文摘Piezoelectric resonators are widely used in frequency reference devices, mass sensors, resonant sensors(such as gyros and accelerometers), etc. Piezoelectric resonators usually work in a special resonant mode. Obtaining working resonant mode with high quality is key to improve the performance of piezoelectric resonators. In this paper, the resonance characteristics of a rectangular lead zirconium titanate(PZT) piezoelectric resonator are studied. On the basis of the field-programmable gate array(FPGA) embedded system, direct digital synthesizer(DDS) and automatic gain controller(AGC) are used to generate the driving signals with precisely adjustable frequency and amplitude. The driving signals are used to excite the piezoelectric resonator to the working vibration mode. The influence of the connection of driving electrodes and voltage amplitude on the vibration of the resonator is studied. The quality factor and vibration linearity of the resonator are studied with various driving methods mentioned in this paper. The resonator reaches resonant mode at 330 kHz by different driving methods.The relationship between resonant amplitude and driving signal amplitude is linear. The quality factor reaches over 150 by different driving methods. The results provide a theoretical reference for the efficient excitation of the piezoelectric resonator.
基金Science &Technology Plan Foundation of Hunan Province,China(No.2010F3102)Science Research Foundation of Hunan Province,China(No.08C392)
文摘In order to obtain variable characteristics,the digital filter's type,number of taps and coefficients should be changed constantly such that the desired frequency-domain characteristics can be obtained.This paper proposes a method for self-programmable variable digital filter(VDF) design based on field programmable gate array(FPGA).We implement a digital filter system by using custom embedded micro-processor,programmable finite impulse response(P-FIR) macro module,coefficient-loader,clock manager and analog/digital(A/D) or digital/analog(D/A) controller and other modules.The self-programmable VDF can provide the best solution for realization of digital filter algorithms,which are the low-pass,high-pass,band-pass and band-stop filter algorithms with variable frequency domain characteristics.The design examples with minimum 1 to maximum 32 taps FIR filter,based on Modelsim post-routed simulation and onboard running on XUPV5-LX110T,are provided to demonstrate the effectiveness of the proposed method.
文摘An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the converter was mapped into a look-up table that was synthesized into a set of Boolean equations. A VLSI chip–a field programmable gate array (FPGA) was used to implement the Boolean equations. Features include the size of RAM chip independent of number of rules in the knowledge base, on-chip fuzzification and defuzzification, faster response with speeds over giga fuzzy logic inferences per sec (FLIPS), and an inexpensive VLSI chip. The key application areas are: 1) on-chip integrated controllers;and 2) on-chip co-integration for entire system of sensors, circuits, controllers, and detectors for building complete instrument systems.
文摘In order to solve the current high failure rate of warship equipment field programmable gate array( FPGA) software,fault detection is not timely enough and FPGA detection equipment is expensive and so on. After in-depth research,this paper proposes a warship equipment FPGA software based on Xilinx integrated development environment( ISE) and ModelSim software.Functional simulation and timing simulation to verify the correctness of the logic design of the FPGA,this method is very convenient to view the signal waveform inside the FPGA program to help FPGA test engineers to achieve FPGA fault prediction and diagnosis. This test method has important engineering significance for the upgrading of warship equipment.
基金the National Science Foundation of China(Nos.60934007 and 61074060)the Postdoctoral Science Foundation of China(No.20090460627)+2 种基金the Postdoctoral Scientific Program of Shanghai (No.10R21414600)the Specialized Research Fund for the Doctoral Program of Higher Education (No.20070248004)the China Postdoctoral Science Foundation Special Support(No.201003272)
文摘High performance computer is often required by model predictive control(MPC) systems due to the heavy online computation burden.To extend MPC to more application cases with low-cost computation facilities, the implementation of MPC controller on field programmable gate array(FPGA) system is studied.For the dynamic matrix control(DMC) algorithm,the main design idea and the implemental strategy of DMC controller are introduced based on a FPGA’s embedded system.The performance tests show that both the computation efficiency and the accuracy of the proposed controller can be satisfied due to the parallel computing capability of FPGA.
文摘With the continuous evolution of electronic technology,field-programmable gate array(FPGA)has demonstrated significant advantages in the realm of signal acquisition and processing,and signal acquisition plays a pivotal role in the practical applications of laser gyros.By analysis of the output signals from a laser gyro and an accelerometer,this paper presents a circuit design for signal acquisition of the laser gyro based on domestic devices.The design incorporates a finite impulse response(FIR)filter to process the gyro signal and employs a small-volume,impact-resistant quartz flexible accelerometer for signal aquisition.Simulation results demonstrate that the errors in X,Y,and Z axes fall within acceptable ranges while meeting filtering requirements.The use of FPGA for signal acquisition and preprocessing enhances configuration flexibility,which provides an idea and method for optimizing performance and processing signals in laser gyro applications.
基金The National Natural Science Foundation of China(No.62401168,62401139,62401170)China Postdoctoral Science Foundation(No.2023MD744197)+2 种基金Postdoctoral Fellowship Program of CPSF(No.GZC20230631)Project for Enhancing Young and Middle-aged Teacher’s Research Basis Ability in Colleges of Guangxi(No.2023KY0218)Guangxi Key Laboratory Foundation of Optoelectronic Information Processing(No.GD23102)。
文摘A programmable low-profile array antenna based on nematic liquid crystals(NLCs)is proposed.Each antenna unit comprises a square patch radiating structure and a tunable NLC-based phase shifter capable of achieving a phase shift exceeding 360°with high linearity.First,the above 64 antenna units are periodically arranged into an 8×8 NLC-based antenna array,and the bias voltage of the NLC-based phase shifter loaded on the antenna unit is adjusted through the control of the field-programmable gate array(FPGA)programming sequences.This configuration enables precise phase changes for all 64 channels.Numerical simulation,sample processing,and experimental measurements of the antenna array are conducted to validate the performance of the antenna.The numerical and experimental results demonstrate that the proposed antenna performs well within the frequency range of 19.5-20.5 GHz,with a 3 dB relative bandwidth of 10%and a maximum main lobe gain of 14.1 dBi.A maximum scanning angle of±34°is achieved through the adjustment of the FPGA programming sequence.This NLC-based programmable array antenna shows promising potential for applications in satellite communication.
文摘The design of an FPGA( field programmable gate array) based programmable SONET (synchronous optical network) OC-192 10 Gbit/s PRBS (pseudo-random binary sequence) generator and a bit interleaved polarity 8 (BIP-8) error detector is presented. Implemented in a parallel feedback configuration, this tester features PRBS generation of sequences with bit lengths of 2^7 - 1,2^10- 1,2^15 - 1,2^23 - land 2^31 - 1 for up to 10 Gbit/s applications with a 10 Gbit/s optical transceiver, via the SFI-4 (OC-192 serdes-framer interface). In the OC-192 frame alignment circuit, a dichotomy search algorithm logic which performs the functions of word alignment and STM-64/OC192 de-frame speeds up the frame sync logic and reduces circuit complexity greatly. The system can be used as a low cost tester to evaluate the performance of OC-192 devices and components, taking the replacement of precious commercial PRBS testers.
文摘The intellectual property (IP) core for inter-integrated circuit (IIC) bus controller is designed using finite state machine (FSM) based on field programmable gate array (FPGA). Not only the data from AT 24C02C can be read automatically after power on, but also the data from upper computer can be written into AT24C02C immediately under the control of the IIC bus controller. When it is applied to blast wave overpressure test system, the IIC bus controller can read and store working parameters automatically. In a laboratory environment, the IP core simulation is carried out and the result is accurate. In the explosion field test, by analyzing the obtained valid data, it can be concluded that the designed IP core has good reliability.
基金The National Natural Science Foundation of China (No.60576028)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.11KJB510004)
文摘To solve the excessive huge scale problem of the traditional multi-bit digital artificial neural network(ANN) hardware implementation methods,a bit-stream ANN hardware implementation method based on sigma delta(ΣΔ) modulation is presented.The bit-stream adder,multiplier,threshold function unit and fully digital ΣΔ modulator are implemented in a field programmable gate array(FPGA),and these bit-stream arithmetical units are employed to build the bit-stream artificial neuron.The function of the bit-stream artificial neuron is verified through the realization of the logic function and a linear classifier.The bit-stream perceptron based on the bit-stream artificial neuron with the pre-processed structure is proved to have the ability of nonlinear classification.The FPGA resource utilization of the bit-stream artificial neuron shows that the bit-stream ANN hardware implementation method can significantly reduce the demand of the ANN hardware resources.
基金National Natural Science Foundation of China(No.61227003,61171179,61302159)Natural Science Foundation of Shanxi Province(No.2012021011-2)+2 种基金Research Project Supported by Shanxi Scholarship Council of China(No.2013-083)Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20121420110006)Top Science and Technology Innovation Teams of Higher Learning Institutions of Shanxi Province,China
文摘Because single line-scan camera loses light in the edge of the sensor when the field of view is large, a mosaic cam- era based on field programmable gate array (FPGA) is presented by putting multiple cameras arranged in a straight line to share the field of view and reduce the view angle of every camera. For detecting doping micro particles with the designed mosaic line-scan camera, a detection algorithm of the target's location in FPGA is proposed. Finally, the practicability and stability of the system were validated experimentally. The results of the experiment show that the camera can get images clearly with less light loss and can accurately distinguish the target and the background.
基金The 10th Postgraduate Science and Technology Fund of North University of China(No.20131020)
文摘InterRange Instrumentation Group(IRIG-B(AC))code is usually used in the shooting range test for time information transmission and systems time synchronization.According to IRIG-B(AC)code format and modulation principle,this paper presents IRIG-B(AC)coding circuit design scheme based on field programmable gate array(FPGA).The B(AC)code signal is generated by AD7245,a digital-to-analog(D/A)converter.After amplified,the signal can be used directly for system time synchronization,and the amplitude of the signal can be adjusted according to different requirements.The IRIG-B(AC)encoder designed has been verified by test.The test results show that it can output accurate time information and has higher practicality.