The integration of cloud computing into traditional industrial control systems is accelerating the evolution of Industrial Cyber-Physical System(ICPS),enhancing intelligence and autonomy.However,this transition also e...The integration of cloud computing into traditional industrial control systems is accelerating the evolution of Industrial Cyber-Physical System(ICPS),enhancing intelligence and autonomy.However,this transition also expands the attack surface,introducing critical security vulnerabilities.To address these challenges,this article proposes a hybrid intrusion detection scheme for securing ICPSs that combines system state anomaly and network traffic anomaly detection.Specifically,an improved variation-Bayesian-based noise covariance-adaptive nonlinear Kalman filtering(IVB-NCA-NLKF)method is developed to model nonlinear system dynamics,enabling optimal state estimation in multi-sensor ICPS environments.Intrusions within the physical sensing system are identified by analyzing residual discrepancies between predicted and observed system states.Simultaneously,an adaptive network traffic anomaly detection mechanism is introduced,leveraging learned traffic patterns to detect node-and network-level anomalies through pattern matching.Extensive experiments on a simulated network control system demonstrate that the proposed framework achieves higher detection accuracy(92.14%)with a reduced false alarm rate(0.81%).Moreover,it not only detects known attacks and vulnerabilities but also uncovers stealthy attacks that induce system state deviations,providing a robust and comprehensive security solution for the safety protection of ICPS.展开更多
The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is...The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.展开更多
1.Background In the chemical industry,process plants-commonly referred to as plantwide systems-typically consist of many process units(unit operations).Driven by the considerable economic efficiency offered by complex...1.Background In the chemical industry,process plants-commonly referred to as plantwide systems-typically consist of many process units(unit operations).Driven by the considerable economic efficiency offered by complex and interactive process designs,modern plantwide systems are becoming increasingly sophisticated.The operation of these processes is typically characterized by the complexity of individual units(subsystems)and the intricate interactions between geographically distributed units through networks of material and energy flows,as well as control loops[1].展开更多
Following publication of the original article[1],the statement of Data availability and Competing interests have been added.Data availability The datasets used and analyzed during this study are available from the cor...Following publication of the original article[1],the statement of Data availability and Competing interests have been added.Data availability The datasets used and analyzed during this study are available from the corresponding author upon reasonable request.展开更多
A Wireless Networked Control System using 802.11b is used to model fault-tolerance at the controller level of an industrial workcell. The fault-tolerance study in this paper presents the cascading of two independent w...A Wireless Networked Control System using 802.11b is used to model fault-tolerance at the controller level of an industrial workcell. The fault-tolerance study in this paper presents the cascading of two independent workcells where each controller must be able to handle the load of both cells in case of failure of the other one. The intercommunication is completely wireless between the cells and this feature is investigated. The model incorporates unmodified 802.11b and 802.11g for communication. Sensors send sampled data to both controllers and the controllers to exchange a watchdog. The fault-free and faulty models are both simulated using OPNET Network Modeler. External interference on the critical intercommunication link is also investigated. Results of simulations are presented based on a 95% confidence analysis, guaranteeing correct system performance.展开更多
An important and practical pattern of industrial symbiosis is rapidly developing: eco-industrial parks. In this study, we used social network analysis to study the network connectedness (i.e., the proportion of the ...An important and practical pattern of industrial symbiosis is rapidly developing: eco-industrial parks. In this study, we used social network analysis to study the network connectedness (i.e., the proportion of the theoretical number of connections that had been achieved) and related attributes of these hybrid ecological and industrial symbiotic systems. This approach provided insights into details of the network's interior and analyzed the overall degree of connectedness and the relationships among the nodes within the network. We then characterized the structural attributes of the network and subnetwork nodes at two levels (core and periphery), thereby providing insights into the operational problems within each eco-industrial park. We chose ten typical eco-industrial parks in China and around the world and compared the degree of network connectedness of these systems that resulted from exchanges of products, byproducts, and wastes. By analyzing the density and nodal degree, we determined the relative power and status of the nodes in these networks, as well as other structural attributes such as the core-periphery structure and the degree of sub-network connectedness. The results reveal the operational problems created by the structure of the industrial networks and provide a basis for improving the degree of completeness, thereby increasing their potential for sustainable development and enriching the methods available for the study of industrial symbiosis.展开更多
This paper discusses a strategy for estimating Hammerstein nonlinear systems in the presence of measurement noises for industrial control by applying filtering and recursive approaches.The proposed Hammerstein nonline...This paper discusses a strategy for estimating Hammerstein nonlinear systems in the presence of measurement noises for industrial control by applying filtering and recursive approaches.The proposed Hammerstein nonlinear systems are made up of a neural fuzzy network(NFN)and a linear state`-space model.The estimation of parameters for Hammerstein systems can be achieved by employing hybrid signals,which consist of step signals and random signals.First,based on the characteristic that step signals do not excite static nonlinear systems,that is,the intermediate variable of the Hammerstein system is a step signal with different amplitudes from the input,the unknown intermediate variables can be replaced by inputs,solving the problem of unmeasurable intermediate variable information.In the presence of step signals,the parameters of the state-space model are estimated using the recursive extended least squares(RELS)algorithm.Moreover,to effectively deal with the interference of measurement noises,a data filtering technique is introduced,and the filtering-based RELS is formulated for estimating the NFN by employing random signals.Finally,according to the structure of the Hammerstein system,the control system is designed by eliminating the nonlinear block so that the generated system is approximately equivalent to a linear system,and it can then be easily controlled by applying a linear controller.The effectiveness and feasibility of the developed identification and control strategy are demonstrated using two industrial simulation cases.展开更多
Dear Editor,With the advances in computing and communication technologies,the cyber-physical system(CPS),has been used in lots of industrial fields,such as the urban water cycle,internet of things,and human-cyber syst...Dear Editor,With the advances in computing and communication technologies,the cyber-physical system(CPS),has been used in lots of industrial fields,such as the urban water cycle,internet of things,and human-cyber systems[1],[2],which has to face up to malicious cyber-attacks towards cyber communication of control commands.Specifically,jamming attack is regarded as one of the most common attacks of decreasing network performance.Game theory is widely regarded as a method of accurately describing the interaction between jamming attacker and legitimate user[3].In the cyber layer,the signal game model has been utilized to describe the transmission between the attacker and defender[4].However,most previous game theoretical researches are not feasible to meet the demands of industrial CPSs mainly due to the shared communication network nature.Specifically,it leads to incomplete information for players of game owing to various network-induced phenomena and employed communication protocols.In the physical layer,the secure control[5]and estimation[6]under attack detection have been studied for CPSs.However,these methods not only rely heavily on signals injection detection,but also have no access to smart attackers who launch covert attacks so that data receivers cannot observe the attack behaviour[7].Accordingly,the motivation arising here is to tackle the nested game problem for CPSs subject to jamming attack.展开更多
In this paper, we demonstrate that the eco-industrial network equilibrium model of link flow version previously introduced can be reformulated as a transportation network equilibrium problem of path flow version. Then...In this paper, we demonstrate that the eco-industrial network equilibrium model of link flow version previously introduced can be reformulated as a transportation network equilibrium problem of path flow version. Then, some methodological tools mainly applied in the field of transportation science can be used to discuss the eco-industrial chain network problem. What the highlighted contribution lies in is that the paper not only expands theory of supply chain model with reducing path flow but also generalizes the traditional transportation network equilibrium problem by new applications.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)under grant No.62371187the Hunan Provincial Natural Science Foundation of China under Grant Nos.2024JJ8309 and 2023JJ50495.
文摘The integration of cloud computing into traditional industrial control systems is accelerating the evolution of Industrial Cyber-Physical System(ICPS),enhancing intelligence and autonomy.However,this transition also expands the attack surface,introducing critical security vulnerabilities.To address these challenges,this article proposes a hybrid intrusion detection scheme for securing ICPSs that combines system state anomaly and network traffic anomaly detection.Specifically,an improved variation-Bayesian-based noise covariance-adaptive nonlinear Kalman filtering(IVB-NCA-NLKF)method is developed to model nonlinear system dynamics,enabling optimal state estimation in multi-sensor ICPS environments.Intrusions within the physical sensing system are identified by analyzing residual discrepancies between predicted and observed system states.Simultaneously,an adaptive network traffic anomaly detection mechanism is introduced,leveraging learned traffic patterns to detect node-and network-level anomalies through pattern matching.Extensive experiments on a simulated network control system demonstrate that the proposed framework achieves higher detection accuracy(92.14%)with a reduced false alarm rate(0.81%).Moreover,it not only detects known attacks and vulnerabilities but also uncovers stealthy attacks that induce system state deviations,providing a robust and comprehensive security solution for the safety protection of ICPS.
文摘The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.
基金the National Natural Science Foundation of China(NSFC)(62103283)the Australia Research Council’s Discovery Pro-jects Scheme(DP220100355).
文摘1.Background In the chemical industry,process plants-commonly referred to as plantwide systems-typically consist of many process units(unit operations).Driven by the considerable economic efficiency offered by complex and interactive process designs,modern plantwide systems are becoming increasingly sophisticated.The operation of these processes is typically characterized by the complexity of individual units(subsystems)and the intricate interactions between geographically distributed units through networks of material and energy flows,as well as control loops[1].
文摘Following publication of the original article[1],the statement of Data availability and Competing interests have been added.Data availability The datasets used and analyzed during this study are available from the corresponding author upon reasonable request.
文摘A Wireless Networked Control System using 802.11b is used to model fault-tolerance at the controller level of an industrial workcell. The fault-tolerance study in this paper presents the cascading of two independent workcells where each controller must be able to handle the load of both cells in case of failure of the other one. The intercommunication is completely wireless between the cells and this feature is investigated. The model incorporates unmodified 802.11b and 802.11g for communication. Sensors send sampled data to both controllers and the controllers to exchange a watchdog. The fault-free and faulty models are both simulated using OPNET Network Modeler. External interference on the critical intercommunication link is also investigated. Results of simulations are presented based on a 95% confidence analysis, guaranteeing correct system performance.
文摘An important and practical pattern of industrial symbiosis is rapidly developing: eco-industrial parks. In this study, we used social network analysis to study the network connectedness (i.e., the proportion of the theoretical number of connections that had been achieved) and related attributes of these hybrid ecological and industrial symbiotic systems. This approach provided insights into details of the network's interior and analyzed the overall degree of connectedness and the relationships among the nodes within the network. We then characterized the structural attributes of the network and subnetwork nodes at two levels (core and periphery), thereby providing insights into the operational problems within each eco-industrial park. We chose ten typical eco-industrial parks in China and around the world and compared the degree of network connectedness of these systems that resulted from exchanges of products, byproducts, and wastes. By analyzing the density and nodal degree, we determined the relative power and status of the nodes in these networks, as well as other structural attributes such as the core-periphery structure and the degree of sub-network connectedness. The results reveal the operational problems created by the structure of the industrial networks and provide a basis for improving the degree of completeness, thereby increasing their potential for sustainable development and enriching the methods available for the study of industrial symbiosis.
基金Project supported by the National Natural Science Foundation of China(No.62003151)the Changzhou Science and Technology Bureau,China(No.CJ20220065)+1 种基金the Qinglan Project of Jiangsu Province,China(No.2022[29])the Zhongwu Youth Innovative Talents Support Program of Jiangsu University of Technology,China(No.202102003)。
文摘This paper discusses a strategy for estimating Hammerstein nonlinear systems in the presence of measurement noises for industrial control by applying filtering and recursive approaches.The proposed Hammerstein nonlinear systems are made up of a neural fuzzy network(NFN)and a linear state`-space model.The estimation of parameters for Hammerstein systems can be achieved by employing hybrid signals,which consist of step signals and random signals.First,based on the characteristic that step signals do not excite static nonlinear systems,that is,the intermediate variable of the Hammerstein system is a step signal with different amplitudes from the input,the unknown intermediate variables can be replaced by inputs,solving the problem of unmeasurable intermediate variable information.In the presence of step signals,the parameters of the state-space model are estimated using the recursive extended least squares(RELS)algorithm.Moreover,to effectively deal with the interference of measurement noises,a data filtering technique is introduced,and the filtering-based RELS is formulated for estimating the NFN by employing random signals.Finally,according to the structure of the Hammerstein system,the control system is designed by eliminating the nonlinear block so that the generated system is approximately equivalent to a linear system,and it can then be easily controlled by applying a linear controller.The effectiveness and feasibility of the developed identification and control strategy are demonstrated using two industrial simulation cases.
基金supported by the National Natural Science Foundation of China(62173136)the Natural Science Foundation of Hunan Province(2020JJ2013,2021JJ50047).
文摘Dear Editor,With the advances in computing and communication technologies,the cyber-physical system(CPS),has been used in lots of industrial fields,such as the urban water cycle,internet of things,and human-cyber systems[1],[2],which has to face up to malicious cyber-attacks towards cyber communication of control commands.Specifically,jamming attack is regarded as one of the most common attacks of decreasing network performance.Game theory is widely regarded as a method of accurately describing the interaction between jamming attacker and legitimate user[3].In the cyber layer,the signal game model has been utilized to describe the transmission between the attacker and defender[4].However,most previous game theoretical researches are not feasible to meet the demands of industrial CPSs mainly due to the shared communication network nature.Specifically,it leads to incomplete information for players of game owing to various network-induced phenomena and employed communication protocols.In the physical layer,the secure control[5]and estimation[6]under attack detection have been studied for CPSs.However,these methods not only rely heavily on signals injection detection,but also have no access to smart attackers who launch covert attacks so that data receivers cannot observe the attack behaviour[7].Accordingly,the motivation arising here is to tackle the nested game problem for CPSs subject to jamming attack.
基金Sponsored by the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.13XNH169)
文摘In this paper, we demonstrate that the eco-industrial network equilibrium model of link flow version previously introduced can be reformulated as a transportation network equilibrium problem of path flow version. Then, some methodological tools mainly applied in the field of transportation science can be used to discuss the eco-industrial chain network problem. What the highlighted contribution lies in is that the paper not only expands theory of supply chain model with reducing path flow but also generalizes the traditional transportation network equilibrium problem by new applications.