In the aerospace sector,the soft magnetic materials of Hermetically Sealed Electromagnetic Relays(HSERs)are critical in forming magnetic circuits.Conventional soft magnetic materials,primarily magnetic iron,have been ...In the aerospace sector,the soft magnetic materials of Hermetically Sealed Electromagnetic Relays(HSERs)are critical in forming magnetic circuits.Conventional soft magnetic materials,primarily magnetic iron,have been unable to meet the development trend of fast-response,miniaturized,and lightweight aerospace and aviation systems.This paper applies circuit theory and electromagnetics theory to establish a Field-Circuit Coupling Mathematical Model(FCCMM)for dynamic response analysis of HSERs.This model centers on inductance calculation,with the core's permeability and saturation magnetic flux density as critical parameters.Based on this model,for a specific type of HSER,this paper introduced three alloys with key parameters different from magnetic iron,then tested the magnetic characteristic curves of these four soft magnetic materials,followed by simulations to obtain the electromagnetic characteristics of digital mock-ups corresponding to these four materials,compared and validated the dynamic responses corresponding to these four soft magnetic materials finally.Based on the theoretical model analysis results,this paper designed a lightweight coil to minimize response time,made prototypes,set up test systems,and tested dynamic characteristics.The experimental results indicate that the nanocrystalline alloy1K107B exhibits the most significant optimization,reducing the closing time by 40.48%and achieving a weight reduction of 6.53%.展开更多
Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the...Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.展开更多
针对目前荷电状态(state of charge,SOC)估计方法考虑温度与退化共同影响及其关联耦合关系较少,导致电池性能退化后的模型表征不完善、SOC估计精度不足的问题,提出一种基于退化注入场路耦合模型的锂电池SOC估计方法,以实现全寿命周期下...针对目前荷电状态(state of charge,SOC)估计方法考虑温度与退化共同影响及其关联耦合关系较少,导致电池性能退化后的模型表征不完善、SOC估计精度不足的问题,提出一种基于退化注入场路耦合模型的锂电池SOC估计方法,以实现全寿命周期下SOC的准确估计。首先建立等效电路模型与多物理场模型耦合的场路耦合模型,刻画温度的影响;进而使用离线参数辨识方法将温度、退化等因素注入等效电路模型参数中;最终建立代理模型提高计算效率,实现在线SOC估计。案例验证结果表明,在锂电池经过长时间运行发生退化后,相比于其他方法,所提方法的估计结果具有更平稳的曲线和更高的精度。展开更多
基金supported by the National Natural Science Foundation of China(No.52177134)。
文摘In the aerospace sector,the soft magnetic materials of Hermetically Sealed Electromagnetic Relays(HSERs)are critical in forming magnetic circuits.Conventional soft magnetic materials,primarily magnetic iron,have been unable to meet the development trend of fast-response,miniaturized,and lightweight aerospace and aviation systems.This paper applies circuit theory and electromagnetics theory to establish a Field-Circuit Coupling Mathematical Model(FCCMM)for dynamic response analysis of HSERs.This model centers on inductance calculation,with the core's permeability and saturation magnetic flux density as critical parameters.Based on this model,for a specific type of HSER,this paper introduced three alloys with key parameters different from magnetic iron,then tested the magnetic characteristic curves of these four soft magnetic materials,followed by simulations to obtain the electromagnetic characteristics of digital mock-ups corresponding to these four materials,compared and validated the dynamic responses corresponding to these four soft magnetic materials finally.Based on the theoretical model analysis results,this paper designed a lightweight coil to minimize response time,made prototypes,set up test systems,and tested dynamic characteristics.The experimental results indicate that the nanocrystalline alloy1K107B exhibits the most significant optimization,reducing the closing time by 40.48%and achieving a weight reduction of 6.53%.
基金National Natural Sciences Foundation(60474043)Henan Province Science Fund for Distinguished Young Scholars(0412002200)Henan Province Major Projects(0223025300)
文摘Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.
文摘针对目前荷电状态(state of charge,SOC)估计方法考虑温度与退化共同影响及其关联耦合关系较少,导致电池性能退化后的模型表征不完善、SOC估计精度不足的问题,提出一种基于退化注入场路耦合模型的锂电池SOC估计方法,以实现全寿命周期下SOC的准确估计。首先建立等效电路模型与多物理场模型耦合的场路耦合模型,刻画温度的影响;进而使用离线参数辨识方法将温度、退化等因素注入等效电路模型参数中;最终建立代理模型提高计算效率,实现在线SOC估计。案例验证结果表明,在锂电池经过长时间运行发生退化后,相比于其他方法,所提方法的估计结果具有更平稳的曲线和更高的精度。