期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Assessing the deformation response of double-track overlapped tunnels using numerical simulation and field monitoring 被引量:13
1
作者 Yao Hu Huayang Lei +4 位作者 Gang Zheng Liang Shi Tianqi Zhang Zhichao Shen Rui Jia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期436-447,共12页
The unprecedented rate of metro construction has led to a highly complex network of metro lines.Tunnels are being overlapped to an ever-increasing degree.This paper investigates the deformation response of double-trac... The unprecedented rate of metro construction has led to a highly complex network of metro lines.Tunnels are being overlapped to an ever-increasing degree.This paper investigates the deformation response of double-track overlapped tunnels in Tianjin,China using finite element analysis(FEA)and field monitoring,considering the attributes of different tunneling forms.With respect to the upper tunneling,the results of the FEA and field monitoring showed that the maximum vertical displacements of the ground surface during the tail passage were 2.06 mm,2.25 mm and 2.39 mm obtained by the FEA,field monitoring and Peck calculation,respectively;the heaves on the vertical displacement curve were observed at 8 m(1.25D,where D is the diameter of the tunnel)away from the center of the tunnel and the curve at both sides was asymmetrical.Furthermore,the crown and bottom produce approximately0.38 mm and 1.26 mm of contraction,respectively.The results of the FEA of the upper and lower sections demonstrated that the tunneling form has an obvious influence on the deformation response of the double-track overlapped tunnel.Compared with the upper tunneling,the lower tunneling exerted significantly less influence on the deformation response,which manifested as a smaller displacement of the strata and deformation of the existing tunnel.The results of this study on overlapped tunnels can provide a reference for similar projects in the future. 展开更多
关键词 Double-track overlapped tunnels Deformation response Finite element analysis(FEA) field monitoring Upper and lower tunneling
在线阅读 下载PDF
Analytical approach and field monitoring for mechanical behaviors of pipe roof reinforcement 被引量:4
2
作者 王海涛 贾金青 康海贵 《Journal of Central South University》 SCIE EI CAS 2009年第5期827-834,共8页
Considering the delay effect of initial lining and revising the Winkler elastic foundation model,an analytical approach based on Pasternak elastic foundation beam theory for pipe roof reinforcement was put forward. Wi... Considering the delay effect of initial lining and revising the Winkler elastic foundation model,an analytical approach based on Pasternak elastic foundation beam theory for pipe roof reinforcement was put forward. With the example of a certain tunnel excavation,the comparison of the values of longitudinal strain of reinforcing pipe between field monitoring and analytical approach was made. The results indicate that Pasternak model,which considers a more realistic hypothesis in the elastic soil than Winkler model,gives more accurate calculation and agrees better with the result of field monitoring. The difference of calculation results between these two models is about 7%,and Pasternak model is proved to be a better way to study the reinforcement mechanism and improve design practice. The calculation results also reveal that the reinforcing pipes act as levers,which increases longitudinal load transfer to an unexcavated area,and consequently decreases deformation and increases face stability. 展开更多
关键词 tunnel heading pipe roof reinforcement Pasternak elastic foundation beam field monitoring
在线阅读 下载PDF
Numerical analysis and field monitoring tests on shallow tunnels under weak surrounding rock 被引量:2
3
作者 刘建华 刘晓明 +1 位作者 张永杰 肖庭 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4056-4063,共8页
The Jianpudong No. 4 tunnel is a shallow tunnel, which belongs to Shaoshan County scenic highway in Hunan province, China and whose surrounding rock is weak. According to its characteristics, the field monitoring test... The Jianpudong No. 4 tunnel is a shallow tunnel, which belongs to Shaoshan County scenic highway in Hunan province, China and whose surrounding rock is weak. According to its characteristics, the field monitoring tests and numerical analysis were done. The mechanical characteristics of shallow tunnels under weak surrounding rock and the stress-strain rule of surrounding rock and support were analyzed. The numerical analysis results show that the settlement caused by upper bench excavating accounts for 44% of the total settlement, and the settlement caused by tunnel upper bench supporting accounts for 56% of the total settlement. The maximum axial force of shotcrete lining is 177.2 k N, which locates in hance under the secondary lining. The maximum moment of shotcrete lining is 5.08 k N·m, which locates in the arch foot. The stress curve of steel arch has three obvious stages during the tunnel construction. The maximum axial force of steel arch is 297.4 k N, which locates in tunnel vault. The axial forces of steel arch are respectively 23.5 k N and-21.8 k N, which is influenced by eccentric compression of shallow tunnel and locates in hance. The results show that there is larger earth pressure in tunnel vault which is most unfavorable position of steel arch. Therefore, the advance support should be strengthened in tunnel vault during construction process. 展开更多
关键词 tunnel engineering shallow tunnel weak surrounding rock numerical analysis field monitoring tests
在线阅读 下载PDF
Field monitoring of railroad embankment vibration responses in seasonally frozen regions 被引量:2
4
作者 ZiYu Wang XianZhang Ling +3 位作者 Feng Zhang LiNa Wang ShiJun Chen ZhanYuan Zhu 《Research in Cold and Arid Regions》 CSCD 2013年第4期393-398,共6页
To investigate the vibration characteristics of a railway subgrade in different seasons, three field experiments were carried out in the seasonally frozen Daqing area of China during spring, smnmer, and winter. The vi... To investigate the vibration characteristics of a railway subgrade in different seasons, three field experiments were carried out in the seasonally frozen Daqing area of China during spring, smnmer, and winter. The vibration characteristics and attenuation rates of the subgrade induced by passing trains were investigated, and the influences of the season, train speed, train type, train load, and number of train compartments are described in this paper. The results show that: (1) near the rail track the vibration in the vertical direction was more significant than in the lateral and longitudinal directions, and as the distance from the railway track increased, the acceleration amplitudes and the attenuation rates all decreased in all three directions; (2) the acceleration amplitudes and at- tenuation rates decreased in the three different study seasons as the distance from the railway track increased, and the attenuation rates in the freezing period were the largest; and (3) the acceleration amplitude induced by a freight train was greater than that by a passenger train, and the subgrade vibration increased with increasing passenger train speeds when the number of train compart- ments was similar. These results have great significance for enhanced understanding of the characteristics of wain-induced vibra- tion embankment response in seasonally frozen regions, and provide essential field monitoring data on train-induced vibrations in order to improve the performance criteria of railroading in seasonally frozen regions. 展开更多
关键词 seasonally frozen region train-induced vibration field monitoring acceleration vibration characteristics time histories
在线阅读 下载PDF
Field monitoring of differential frost heave in widened highway subgrade 被引量:1
5
作者 XuFeng Lu Feng Zhang +1 位作者 KangWei Tang DeCheng Feng 《Research in Cold and Arid Regions》 CSCD 2021年第5期408-418,共11页
In cold regions,the widened subgrade could produce uneven frost heave that is detrimental to the pavement.This study investigates the differential frost heave characteristics in a widened subgrade.The field monitoring... In cold regions,the widened subgrade could produce uneven frost heave that is detrimental to the pavement.This study investigates the differential frost heave characteristics in a widened subgrade.The field monitoring system mainly consists of temperature,moisture,and displacement sensors and distributed optical fiber cables for strain measurement.The monitoring results show that the cooling period in the subgrade is longer than the warming period.Water content in the subgrade changes significantly within 0−2 m below the subgrade surface but stabilizes within 2−5 m.The maximum frost heave occurs from February to March.In comparison,the existing subgrade has a longer freezing period and larger heave value,caused by the higher density and water content inside.Water in the existing subgrade migrates into the new one after widening,leading to frost heave reduction in the existing subgrade.Simultaneously,the traffic loads result in the consolidation of the new subgrade,thus reducing the heave value in the second year.In the third year,the water supply from the existing subgrade facilitates the frost heave in the new subgrade.The tensile strain distributions obtained by the distributed optical fiber cables show that the maximum differential frost heave occurs at the joint between the existing and new subgrades.The differential frost heave gradually stabilizes after three years.Finally,an improved frost heave prediction model is developed based on the segregation potential concept and monitoring results. 展开更多
关键词 widened subgrade differential frost heave field monitoring distributed optical fiber strain sensing seasonally frozen region
在线阅读 下载PDF
Numerical Simulation and Field Monitoring Analysis for Deep Foundation Pit Construction of Subway Station 被引量:1
6
作者 Longyu Zhang Jiming Zhu 《Structural Durability & Health Monitoring》 EI 2022年第4期397-416,共20页
To investigate the effect of deep foundation pit excavation on the stability of retaining structure, a subway stationin the city of Jinan was selected as a project, and a FLAC3D-based three dimensional model was devel... To investigate the effect of deep foundation pit excavation on the stability of retaining structure, a subway stationin the city of Jinan was selected as a project, and a FLAC3D-based three dimensional model was developed fornumerical simulation. The horizontal displacement of the retaining structure, the axial force of the support, andthe vertical displacement of the column were studied and compared to the collected data from the field. The findingsindicate that when the foundation pit is excavated, the maximum deformation of the retaining structure progressivelydecreases from the top, the distortion of the retaining structure gradually rises, and the final maximumdeformation is around 17 meters deep. In each layer of support, the largest axial force support is located in thefirst reinforced concrete support;the uplift of the pit bottom caused by soil unloading plays a primary role in thevertical displacement of the column, and the column exhibits an upward trend under all construction conditions.When compared to the measured data, the generated findings are comparable and the fluctuation trend is extremelyconsistent. The findings of this article may give technical direction for the development of subway stationswith a comparable engineering basis. 展开更多
关键词 Subway station deep foundations pit numerical simulation field monitoring maximum horizontal displacement
在线阅读 下载PDF
Laboratory evaluation of a low-cost micro electro-mechanical systems sensor for inclination and acceleration monitoring
7
作者 Antonis Paganis Vassiliki NGeorgiannou +1 位作者 Xenofon Lignos Reina El Dahr 《Deep Underground Science and Engineering》 2025年第1期46-54,共9页
In this study,the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented.Αmicro electro-mechanical systems,micro electro mechanical systems,sensor was housed i... In this study,the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented.Αmicro electro-mechanical systems,micro electro mechanical systems,sensor was housed in a robust enclosure and interfaced with a Raspberry Pi microcomputer with Internet connectivity into a proposed tilt and acceleration monitoring node.Online capabilities accessible by mobile phone such as real-time graph,early warning notification,and database logging were implemented using Python programming.The sensor response was calibrated for inherent bias and errors,and then tested thoroughly in the laboratory under static and dynamic loading conditions beside high-quality transducers.Satisfactory accuracy was achieved in real time using the Complementary Filter method,and it was further improved in LabVIEW using Kalman Filters with parameter tuning.A sensor interface with LabVIEW and a 600 MHz CPU microcontroller allowed real-time implementation of highspeed embedded filters,further optimizing sensor results.Kalman and embedded filtering results show agreement for the sensor,followed closely by the lowcomplexity complementary filter applied in real time.The sensor's dynamic response was also verified by shaking table tests,simulating past recorded seismic excitations or artificial vibrations,indicating negligible effect of external acceleration on measured tilt;sensor measurements were benchmarked using highquality tilt and acceleration measuring transducers.A preliminary field evaluation shows robustness of the sensor to harsh weather conditions. 展开更多
关键词 field monitoring Kalman filter laboratory evaluation micro electro mechanical systems(MEMS) monitoring node shaking table
原文传递
Health Phys. Abstracts,Volume 128,Number 5
8
《辐射防护》 北大核心 2025年第4期440-444,共5页
Evaluation of a Commercially Available Radiochromic Film for Use as a Complementary Dosimeter for Rapid In-field Low Photon Equivalent Radiation Dose (≤50 mSv) Monitoring Nicky Nivi1, Helen Moise1,2, Ana Pejovic'... Evaluation of a Commercially Available Radiochromic Film for Use as a Complementary Dosimeter for Rapid In-field Low Photon Equivalent Radiation Dose (≤50 mSv) Monitoring Nicky Nivi1, Helen Moise1,2, Ana Pejovic'-Milic'1(1. Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3;2. Autonomous and Radiological Technologies Section, Defense Research and Development Canada, PO Box 4000 Stn Main,Medicine Hat, Alberta, T1A 8K6). 展开更多
关键词 low photon equivalent radiation dose autonomous radiological technologies complementary dosimeter DOSIMETER field monitoring radiochromic film
暂未订购
Hydrologic Characteristics and Settlement Deformation of Backfilled Loess in Yan'an,China
9
作者 Lina Ma Shengwen Qi Songfeng Guo 《Journal of Earth Science》 2025年第3期1198-1212,共15页
A gigantic project named Gully Land Consolidation(GLC)was launched in the hillgully region of the Chinese Loess Plateau in 2011 to cope with land degradation and create new farmlands for cultivation.The dynamic change... A gigantic project named Gully Land Consolidation(GLC)was launched in the hillgully region of the Chinese Loess Plateau in 2011 to cope with land degradation and create new farmlands for cultivation.The dynamic change of groundwater table and loess subsidence in the backfilled farmland are the main causes of site disasters and soil disease,but there is a lack of research on these issues.Based on this,the Shijiagou(SJG)backfilled farmland which is a typical GLC engineering site located in Ansai District,Yan'an City,Shaanxi Province was selected as the study area in this paper.Field site monitoring was carried out in this area,including four aspects of monitoring:rainfall,groundwater table,soil moisture and soil settlement displacement.The following findings were obtained from the analysis of the monitoring data in 2019-2020:(1)The backfilled farmlands have suffered a significant groundwater table rise.And the percentage increase of groundwater table increased from the upstream of F-1(such as 49.2%,46.3%,26.4%)to the downstream of F-5(90.0%,52.3%,34.2%correspondingly),which is related to the terrain of the valley channel and dam seepage.It is also revealed that rainfall characteristics are positively correlated with the depth of water infiltration and groundwater table.(2)The influence depth of rainfall infiltration on soil moisture of the backfilled loess in the GLC study area is no more than 2.5 m,and that within 1.5 m depth is significantly affected by rainfall.In addition,the dramatic rise in the groundwater table led to a steep increase in soil moisture,thus the soil underwent collapse deformation due to water immersion,and the farmland experienced large subsidence displacement.(3)The backfilled loess of the GLC farmland was in a continuous consolidation and settlement stage after the filling completion.With the passage of time,the settlement displacement and settlement rate of the backfilled loess gradually decreased,from 1.0-1.9 mm/d in 2019 to 0.4-0.8 mm/d in 2020,which indicates the GLC farmland tended to be stable.This study reveals the hydrological evolution characteristics and settlement deformation laws of the backfilled loess,which is important for the stability of the farmland and the management of the GLC project. 展开更多
关键词 backfilled loess gully land consolidation FARMLAND field monitoring GROUNDWATER soil moisture settlement displacement
原文传递
Deformation mechanism and collapse treatment of the rock surrounding a shallow tunnel based on on-site monitoring 被引量:6
10
作者 QIU Hong-zhi CHEN Xiao-qing +3 位作者 WU Qi-hong WANG Ren-chao ZHAO Wan-yu QIAN Ke-jiang 《Journal of Mountain Science》 SCIE CSCD 2020年第12期2897-2914,共18页
When tunnels are constructed at shallow depths in areas with poor geological conditions,such as portal sections,valleys and hillsides in regions with granitic bedrock,considerable excavation-induced deformation of the... When tunnels are constructed at shallow depths in areas with poor geological conditions,such as portal sections,valleys and hillsides in regions with granitic bedrock,considerable excavation-induced deformation of the surrounding rock may occur,potentially resulting in tunnel collapses.The main reason for these problems is the lack of understanding of the deformation mechanism and evolution of the soft granitic rock surrounding the tunnel and the adoption of inappropriate construction technology and methods.This article analyzes the deformation mechanism of the rock surrounding a shallow tunnel based on in situ monitoring data as a case study and suggests that certain measures should be taken to effectively control the deformation of the surrounding rock and to minimize the potential for tunnel collapse.The results show that the deformation of the granitic soil surrounding the tunnel can be divided into three stages:the rapid deformation stage,the slow deformation stage and the stabilization stage.Appropriate construction methods should be carefully selected to ensure safety during tunnel excavation in the first stage.To avoid secondary disasters caused by tunnel collapses,three treatment measures may be implemented as part of safety management:enhancing the monitoring of the surrounding rock deformation,adjusting the construction methods and optimizing the support systems.In particular,accurate monitoring data and timely information feedback play a vital role in tunnel construction.Therefore,engineers with considerable engineering experience and professional knowledge are needed to analyze the monitoring data and make accurate predictions of tunnel deformation to ensure that reasonable measures are taken in the process of shallow tunnel excavation. 展开更多
关键词 Shallow tunnel Surrounding rock deformation field monitoring Treatment for collapse Information feedback
原文传递
Field observations of debris-flow initiation processes on sediment deposits in a previous deep-seated landslide site 被引量:4
11
作者 Fumitoshi IMAIZUMI Satoshi TSUCHIYA Okihiro OHSAKA 《Journal of Mountain Science》 SCIE CSCD 2016年第2期213-222,共10页
Although information regarding the initiation processes of debris flows is important for the development of mitigation measures,field data regarding these processes are scarce.We conducted field observations of debris... Although information regarding the initiation processes of debris flows is important for the development of mitigation measures,field data regarding these processes are scarce.We conducted field observations of debris-flow initiation processes in the upper Ichinosawa catchment of the Ohya landslide,central Japan.On 19 June 2012,our videocamera monitoring systems recorded the moment of debris-flow initiation on channel deposits(nine surges) and talus slopes(eight surges).The initiation mechanisms of these surges were classified into three types by analyzing the video images: erosion by the surface flow,movement of deposits as a mass,and upward development of the fluid area.The first type was associated with the progress of surface flow from the upper stream on unsaturated channel deposits.The second type was likely caused by an increase in the pore water pressure associated with the rising in the groundwater level in channel deposits;a continuous water supply from the upper stream by the surface flow might have induced this saturation.The third type was associated with changes in the downstream topography caused by erosion.The flow velocity of most surges was less than 3 m s^(-1) and they usually stopped within 100 m from the initiation point.Surges with abundant pore fluid had a higher flow velocity(about 3- 5 m s^(-1)) and could travel for alonger duration.Our observations indicate that the surface flow plays an important role in the initiation of debris flows on channel deposits and talus slopes. 展开更多
关键词 Debris flow Initiation zone field monitoring Ohya landslide
原文传递
Field experiment on train-induced embankment vibration responses in seasonally-frozen regions of Daqing,China 被引量:2
12
作者 Xian-zhang LING Li-na WANG +2 位作者 Feng ZHANG Shi-jun CHEN Zhan-yuan ZHU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第8期596-605,共10页
The seasonal-frozen layer may have an influence on embankment motion from train-induced vibrations. Based on the field monitoring in a seasonally-frozen region of northeastern China, the effects of the frozen layer on... The seasonal-frozen layer may have an influence on embankment motion from train-induced vibrations. Based on the field monitoring in a seasonally-frozen region of northeastern China, the effects of the frozen layer on the embankment responses to train-induced vibration were investigated in winter and summer via acceleration time histories and acceleration frequency spectrums. The results show that: (1) Compared to unfrozen soil conditions, the amplitudes of longitudinal and vertical vibrations at the points near the rail were increased, different influences of freight versus high-speed trains are the most evident. (2) With greater distance from the rail, the dominant frequency ranges of embankment with both frozen and unfrozen layers narrowed and shifted to low frequency bands. (3) The predominant frequency of embankment vibration with frozen soil layers shifted to higher frequencies with the increased train speed, although there was little change with unfrozen condition. Layer condition (frozen versus unfrozen) and distance to rail both play important roles in investigating the embankment vibration characteristics and rail transit field monitoring to improve the criterion of the rail construction in seasonally-frozen regions. 展开更多
关键词 Embankment vibration Spectrum characteristics Time histories field monitoring. Seasonally-frozen re^ion
原文传递
Structural Stress Monitoring and FEM Analysis of the Cutting Operation of the Main Bracket of A Semi-Submersible Platform 被引量:1
13
作者 KOU Yu-feng YANG Jian-min +3 位作者 XU Sheng-wen PENG Tao LIU Jun WU Zhuo-wei 《China Ocean Engineering》 SCIE EI CSCD 2019年第6期649-659,共11页
For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracke... For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracket and calculate the initial stress condition of new main bracket, the structural stress monitoring of eight key spots is carried out, and then the calibrated finite element model is established according to the field monitoring results. Before cutting the main bracket and all associated structures, eight rectangular rosettes were installed, and a tailored cutting scheme was proposed to release the initial stress, in which the main bracket and associated column and pontoon plates were partly cut. During the cutting procedure, the strains of the monitoring spots were measured, and then the structural stress of the monitored spots were obtained. The stress variation characteristics at different spots during the initial cutting operation were shown and the initial stress condition of the monitored spots was figured out. The loading and support conditions of the semi-submersible platform were calibrated based on the measured initial stress condition, which made the finite element model more credible. The stress condition with the main bracket and associated structures being entirely cut out is analyzed by the Finite Element Method (FEM), which demonstrates the cutting operation to be safe and feasible. In addition, the calibrated finite element model can be used to calculate the initial stress condition of the new main bracket, which will be very helpful for the long-term stress monitoring on the main bracket. 展开更多
关键词 semi-submersible platform main bracket cutting operation field stress monitoring FEM analysis
在线阅读 下载PDF
Case study of performance assessment of overlapping shield tunnels with a small curve radius 被引量:1
14
作者 Xu Zhang Bin Luo +2 位作者 Youjun Xu Chenxu Zhao Huachuan Wang 《Deep Underground Science and Engineering》 2024年第4期481-496,共16页
Due to the network planning of subways and their surrounding structures,increasingly more overlapping shields with a small curve radius have been constructed. A newly constructed upper tunnel partly overlaps a lower o... Due to the network planning of subways and their surrounding structures,increasingly more overlapping shields with a small curve radius have been constructed. A newly constructed upper tunnel partly overlaps a lower one, leading to the extremely complex uplift of the lower tunnel caused by the construction of a new tunnel. Based on the shield-driven project that runs from the Qinghe Xiaoyingqiao Station to the Qinghe Station in Beijing, which adopts the reinforcement measures of interlayer soil grouting and steel supports on site, in this study, the uplift pattern of the lower tunnel and the stress characteristics of steel supports were investigated through numerical simulations and on-site monitoring.The study results show that among all tunnel segments, the first segment of the shield witnesses a maximum uplift displacement that increases with the horizontal space between tunnels. On using either interlayer soil grouting or steel-ring bracing reinforcement, the uplift of the tunnel lining exceeds the control value;by contrast,when these two measures are jointly applied, the uplift of the tunnel lining does not exceed a maximum value of 4.87 mm, which can satisfy the requirements of deformation control. Under these two joint measures, the soil strength between two stacked shield tunnels can be enhanced and the uplift deformation can be restricted with the interlayer soil grouting. Also, the segmental deformation and overall stability of the existing tunnel can be controlled with the temporary steel supports.The deformation of circumferential supports and segments is closely related to each other, and the segmental uplift is controlled by H-shaped steel supports. With the increase in the horizontal space between twin shields, the effect of the construction would gradually weaken, accompanied by a gradual reduction of the stresses of steel supports. These findings provide a valuable reference for the engineering design and safe construction of overlapping shield tunnels with a small curve radius. 展开更多
关键词 field monitoring numerical simulation overlapping shields small curve radius steel support stress uplift of tunnel lining
原文传递
Control effect and optimization scheme of combined rockbolt-cable support for a tunnel in horizontally layered limestone:A case study
15
作者 Jiachen Wang Dingli Zhang +1 位作者 Zhenyu Sun Feng Peng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4586-4604,共19页
This study focused on the mechanical behavior of a deep-buried tunnel constructed in horizontally layered limestone,and investigated the effect of a new combined rockboltecable support system on the tunnel response.Th... This study focused on the mechanical behavior of a deep-buried tunnel constructed in horizontally layered limestone,and investigated the effect of a new combined rockboltecable support system on the tunnel response.The Yujingshan Tunnel,excavated through a giant karst cave,was used as a case study.Firstly,a multi-objective optimization model for the rockboltecable support was proposed by using fuzzy mathematics and multi-objective comprehensive decision-making principles.Subsequently,the parameters of the surrounding rock were calibrated by comparing the simulation results obtained by the discrete element method(DEM)with the field monitoring data to obtain an optimized support scheme based on the optimization model.Finally,the optimization scheme was applied to the karst cave section,which was divided into the B-and C-shaped sections.The distribution range of the rockboltecable support in the C-shaped section was larger than that in the B-shaped section.The field monitoring results,including tunnel crown settlement,horizontal convergence,and axial force of the rockboltecable system,were analyzed to assess the effectiveness of the optimization scheme.The maximum crown settlement and horizontal convergence were measured to be 25.9 mm and 35 mm,accounting for 0.1%and 0.2%of the tunnel height and span,respectively.Although the C-shaped section had poorer rock properties than the B-shaped section,the crown settlement and horizontal convergence in the C-shaped section ranged from 46%to 97%of those observed in the B-shaped section.The cable axial force in the Bshaped section was approximately 60%of that in the C-shaped section.The axial force in the crown rockbolt was much smaller than that in the sidewall rockbolt.Field monitoring results demonstrated that the optimized scheme effectively controlled the deformation of the layered surrounding rock,ensuring that it remained within a safe range.These results provide valuable references for the design of support systems in deep-buried tunnels situated in layered rock masses. 展开更多
关键词 Giant karst cave Multi-objective optimization model Numerical simulation Combined rockbolt-cable support field monitoring
在线阅读 下载PDF
Proposal of a Method to Easily Understand Rainfall Infiltration in Railway Embankments
16
作者 Takashi Nakayama Tadashi Hara Keigo Koizumi 《Journal of Civil Engineering and Architecture》 2024年第6期261-268,共8页
Slope failures due to heavy or prolonged rain have been occurring frequently in Japan in recent years.In railway embankments,even small-scale surface collapse can result in track deformation.Currently,train operation ... Slope failures due to heavy or prolonged rain have been occurring frequently in Japan in recent years.In railway embankments,even small-scale surface collapse can result in track deformation.Currently,train operation during rainy periods is regulated according to empirical rules based on rainfall and disaster history.However,the validity of operation regulations is lacking because the rainfall infiltration circumstances inside the slope are unknown.We have been attempting to understand rainfall infiltration in railway embankments by applying a method of predicting surface collapse from observations of volumetric water content in the soil.We used previous field monitoring and model experiments to propose a method for easily understanding the state of rainfall infiltration in the surface layer of an embankment using the relative history of volumetric water content at different depths.In this study,we applied this simple determination method to railway embankments with different topography and geological environments to demonstrate the versatility of the method. 展开更多
关键词 Railway embankments field monitoring volumetric water content
在线阅读 下载PDF
Deformation Characteristics of Loess Landslide along the Contact between Loess and Neocene Red Mudstone 被引量:30
17
作者 WENBaoping WANGSijing +3 位作者 WANGEnzhi ZHANGJianmin WUYugeng WANGXinglin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第1期139-150,共12页
The loess landslide along the contact between loess and Neogene red mudstone (NRM) is one of those that have occurred extensively and frequently in loess areas of China. To better understand the mechanism of this type... The loess landslide along the contact between loess and Neogene red mudstone (NRM) is one of those that have occurred extensively and frequently in loess areas of China. To better understand the mechanism of this type of landslides, a distressed loess slope being subjected to deformation along the loess-NRM contact was comprehensively investigated through approaches of field monitoring and laboratory physical modeling. Field observation and physical modeling shows that the slope deformation will experience two distinct processes: 1) laterally retrogressive and vertically progressive propagation, which was initiated by falling of the slope head; and 2) retrogressively separate mass sliding along the weak basal zone of the loess-NRM contact with minor sliding along the paleosols within the loess. Shear failure of the loess-NRM contact may initiate in the middle section, followed by a progressive propagation towards the slope toe and inner slope. Analysis reveals that the deformation characteristics of the distressed slope are largely constrained by slope topography, the unique structure, physical and mechanical properties of loess and paleosols, and occurrence and nature of the loess-NRM contact. Rainfall has significantly influence on the deformation characteristics of the slope through its interaction with the loess and soil of the loess-NRM contact. Additionally, improper style and intensity of cutting on the slope greatly enhance and accelerate the deformation course of the slope. 展开更多
关键词 loess landslide contact between loess and Neogene red mudstone deformation mechanism field monitoring physical modeling.
在线阅读 下载PDF
Discovery of a wild,genetically pure Chinese giant salamander creates new conservation opportunities 被引量:8
18
作者 Jing Chai Chen-Qi Lu +16 位作者 Mu-Rong Yi Nian-Hua Dai Xiao-Dong Weng Ming-Xiao Di Yong Peng Yong Tang Qing-Hua Shan Kai Wang Huan-Zhang Liu Hai-Peng Zhao Jie-Qiong Jin Ru-Jun Cao Ping Lu Lai-Chun Luo Robert W.Murphy Ya-Ping Zhang Jing Che 《Zoological Research》 SCIE CAS CSCD 2022年第3期469-480,共12页
Effective conservation of threatened biota relies on accurate assessments and scientific guidance.As an unfortunate example,Chinese giant salamanders(Andrias,CGS)remain critically endangered in nature.Misguided conser... Effective conservation of threatened biota relies on accurate assessments and scientific guidance.As an unfortunate example,Chinese giant salamanders(Andrias,CGS)remain critically endangered in nature.Misguided conservation efforts,e.g.,commercial propagation and releasing of millions of likely non-indigenous or interspecific hybrids,have further compromised conservation initiatives.Limited information on wild populations of CGS poses a significant conservation challenge.Following 18-month long field monitoring,we now report the discovery of a wild population of CGS in a closed nature reserve in Jiangxi Province,China.Genomic assessments reveal its genetic distinctiveness and do not detect genetic admixture with other species.Based on morphological and molecular evidences,we describe this CGS as a new species Andrias jiangxiensis sp.nov.This is the only known species of CGS today with a genetically pure,reproducing,in situ population.This discovery emphasizes the important role that closed nature reserves play in protecting species,and the necessity of integrating long-term field monitoring and genetic assessments.It sets a new pathway for discovering and conserving endangered species,especially for those biotas that are similarly being extirpated by anthropogenic translocations and overexploitation. 展开更多
关键词 CONSERVATION Human translocation Genetic homogenization field monitoring Taxonomy
在线阅读 下载PDF
Instability energy mechanism of super-large section crossing chambers in deep coal mines 被引量:5
19
作者 Deyuan Fan Xuesheng Liu +2 位作者 Yunliang Tan Xuebin Li Purev Lkhamsuren 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期1075-1086,共12页
The stress concentration and failure at chamber intersections in coal mine are intense,especially in deepburied,super-large section conditions.In this paper,the plastic radius of super-large section chamber under uneq... The stress concentration and failure at chamber intersections in coal mine are intense,especially in deepburied,super-large section conditions.In this paper,the plastic radius of super-large section chamber under unequal pressure was corrected on the basis of the size effect.Then,stress and failure evolution of intersections under different crossing angles and equivalent angular bisectors were revealed.Furthermore,2 trajectory curves of failure and stress were analytically expressed,which divided the intersection into 5 influencing zones in the light of stress superposition degree.After determining instability trigger point and instability path,instability energy criterion of intersection can be obtained as K>1,which means that the external energy is greater than the sum of energy consumed by surrounding rock instability and supporting structure failure.Taking coal-gangue separation system of Longgu Coal Mine as example,it was found that there was instability risk under original parameters.For long-term stability,an optimization design method was proposed by considering safety factor,and optimal support scheme was obtained.Field monitoring showed intersections deformations were relatively small with the maximum of 125 mm,which verified the rationality of theoretical analysis.This study provides guidance for the stability control of the intersections under the same or similar conditions. 展开更多
关键词 Super-large section INTERSECTION Instability energy mechanism Optimization design field monitoring
在线阅读 下载PDF
Temperature-induced structural static responses of a long-span steel box girder suspension bridge 被引量:5
20
作者 Lin-ren ZHOU Lan CHEN +1 位作者 Yong XIA Ki Young KOO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第7期580-592,共13页
Temperature is a significant load on bridges,particularly for long-span steel box girder bridges.This study investigates the temperature-induced static responses of a long-span suspension bridge under real service env... Temperature is a significant load on bridges,particularly for long-span steel box girder bridges.This study investigates the temperature-induced static responses of a long-span suspension bridge under real service environmental conditions using numerical simulations and field measurements.Detailed 2 D finite element(FE)models of a typical section for the box girder,main cable,hanger,tower column,and crossbeam are constructed.The thermal boundary conditions are determined strictly according to the surrounding environments of a typical sunny day and applied to the FE models.A transient heat-transfer analysis is performed and the time-dependent temperature and its distribution on the bridge are obtained.In addition,a fine,3 D FE model of the bridge is developed for a structural analysis.The calculated temperatures are applied to the 3 D model and the temperature-induced structural responses are simulated.The simulated temperatures and the associated static responses have good agreement with the measured counterparts and support the numerical simulation method.The main cable and bridge deck make the greatest contributions to the temperature effects on the suspension bridge.The static responses of bridge caused by the design vehicle load are also calculated.The daily variation of the temperature-induced static responses is comparable with,even higher than,that of the design vehicle load. 展开更多
关键词 Long-span suspension bridge Temperature effect Static response Vehicle load field monitoring
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部