Numerous arthropods evolve and optimize sensory systems, enabling them to effectively adapt complex and competitive habitats. Typically, scorpions can precisely perceive the prey location with the lowest metabolic rat...Numerous arthropods evolve and optimize sensory systems, enabling them to effectively adapt complex and competitive habitats. Typically, scorpions can precisely perceive the prey location with the lowest metabolic rate among invertebrates. This biological phenomenon contrasts sharply with engineered systems, which generally associates high accuracy with substantial energy consumption. Inspired by the Scorpion Compound Slit Sensilla (SCSS) with a stress field modulation strategy, a bionic positioning sensor with superior precision and minimal power consumption is developed for the first time, which utilizes the particular Minimum Positioning Units (MPUs) to efficiently locate vibration signals. The single MPU of the SCSS can recognize the direction of collinear loads by regulating the stress field distribution and further, the coupling action of three MPUs can realize all-angle vibration monitoring in plane. Experiments demonstrate that the bionic positioning sensor achieves 1.43 degrees of angle-error-free accuracy without additional energy supply. As a proof of concept, two bionic positioning sensors and machine learning algorithm are integrated to provide centimeter (cm)-accuracy target localization, ideally suited for the man-machine interaction. The novel design offers a new mechanism for the design of traditional positioning devices, improving precision and efficiency in both the meta-universe and real-world Internet-connected systems.展开更多
In this paper,a magnetic field modulation model considering the influence of phase angles is established for the analysis and weakening of the cogging torque of the permanent magnet synchronous wind generations.Compar...In this paper,a magnetic field modulation model considering the influence of phase angles is established for the analysis and weakening of the cogging torque of the permanent magnet synchronous wind generations.Compared with the existing analytical model,the modulation effect of the magnetic field harmonics and phase angle on the cogging torque components is analyzed in the new model.Firstly,flux density model with phase angle characteristics is derived,and the relationship of the cogging torque and magnetic field harmonic is analyzed using energy method.Then,based on the magnetic modulation mechanism,the impact of the phase angle and magnetic field harmonics on the coupling relationship among cogging torque components is analyzed.All cogging torque components are classified as a combination of multiple positive and negative harmonic components,and the contribution characteristics of the components are determined by the harmonic combination and phase angle characteristics.Based on the finite element model(FEM),the magnetic field modulation model of the cogging torque is proved.On the basis of the conclusions obtained,it is further explained that the suppression mechanism of rotor-step skewing is a mutual complementary effect of the positive components and negative cogging components,and the main harmonic is effectively offset by selecting the seasonable of segment number and skewed angle of rotor.Finally,in order to verify the validity of the analysis method,the no-load line back EMF and cogging torque of optimized prototype is tested,and the experimental results agree well with the FEM results.展开更多
With the increasing demand for high torque density in motors,more and more new topologies emerge.Furthermore,the magnetic field modulation principle is widely concerned and has evolved into an effective analysis metho...With the increasing demand for high torque density in motors,more and more new topologies emerge.Furthermore,the magnetic field modulation principle is widely concerned and has evolved into an effective analysis method for studying the new motor topology.This paper introduces the principle of magnetic field modulation.And the research on high torque density in recent years is reviewed from the perspective of magnetic field modulation,including permanent magnet vernier machine(PMVM),flux reverse machine(FRM),flux switching machine(FSM),dual permanent magnet(DPM)machine,and DC biased machine.The principle of magnetic field modulation makes it possible to propose higher torque density topologies in the future.展开更多
We present a digital micromirror device(DMD) based superpixel method for focusing light through scattering media by modulating the complex field of incident light. Firstly, we numerically and experimentally investig...We present a digital micromirror device(DMD) based superpixel method for focusing light through scattering media by modulating the complex field of incident light. Firstly, we numerically and experimentally investigate focusing light through a scattering sample using the superpixel methods with different target complex fields.Then, single-point and multiple-point focusing experiments are performed using this superpixel-based complex modulation method. In our experiment, up to 71.5% relative enhancement is realized. The use of the DMDbased superpixel method for the control of the complex field of incident light opens an avenue to improve the enhancement of focusing light through scattering media.展开更多
An analytical approach is proposed for the cogging torque of a flux-switching permanent magnet machine based on the general air-gap field modulation theory. The modulation process is first investigated, and the coggin...An analytical approach is proposed for the cogging torque of a flux-switching permanent magnet machine based on the general air-gap field modulation theory. The modulation process is first investigated, and the cogging torque generation mechanism is analyzed based on the distribution of the air-gap magnetic flux density harmonics. Thus, the relationship between the air-gap field harmonics and the cogging torque is revealed, and the contribution of each harmonic to the cogging torque is calculated using the proposed method. Simultaneously, the characteristics of the cogging torque, including amplitude and frequency, are analyzed. Subsequently, the calculated cogging torque is compared with the simulated torque using finite element analysis. The two results exhibit considerable consistency, confirming the feasibility of the proposed method. Moreover, a prototype experiment is conducted, and the cogging torque is measured to verify the effectiveness of the proposed method.展开更多
We propose a promising method to develop flexible,compact,and tunable light-activated film diffractive optical elements(FDOEs)with exceptional diffraction efficiency,by integrating liquid crystal(LC)geometric phase-ba...We propose a promising method to develop flexible,compact,and tunable light-activated film diffractive optical elements(FDOEs)with exceptional diffraction efficiency,by integrating liquid crystal(LC)geometric phase-based diffractive optical elements(DOEs)with a specifically designed light-activated LC polymer(LCP)film.Arbitrary film bending induced by UV/Vis irradiation is realized through precise mesogens arrangement within the LCP film,enabling 1D and 2D beam steering,as well as dynamic and reversible switching between structured and Gaussian lights after cooperating with the DOE design.Furthermore,remarkable fatigue resistance,solvent resistance,and thermal stability are demonstrated,providing a solid material platform for advanced optical applications.展开更多
This paper aims to investigate the torque production mechanism and its improvement design in switched reluctance machines(SRMs) based on field modulation principle. Firstly, the analytical expressions of the air-gap m...This paper aims to investigate the torque production mechanism and its improvement design in switched reluctance machines(SRMs) based on field modulation principle. Firstly, the analytical expressions of the air-gap magnetic field are derived from the perspective of DC-and AC-components, respectively. Meanwhile, different slot/pole combinations and winding arrangements are considered. Secondly, the torque productions are analyzed and evaluated with emphasis on the interaction between the DCand AC-components of air-gap fields. Thirdly, the 12-slot/8-pole and 12-slot/10-pole SRMs are established and studied by using the finite-element method. The effects of slot/pole combination and winding arrangement on the average torque production are clarified. Then, two new designs to improve the average torque are proposed. Finally, the prototype of the 12-slot/10-pole SRM is manufactured, and the experiments are carried out for validation.展开更多
The obvious enhancement effect of magnetic nanoparticles(MNPs) introduced in Cr/Co/Cr/Au substrate on the pulsed magnetic field-modulated surface plasmon coupled emission(SPCE) was investigated,and the observed enhanc...The obvious enhancement effect of magnetic nanoparticles(MNPs) introduced in Cr/Co/Cr/Au substrate on the pulsed magnetic field-modulated surface plasmon coupled emission(SPCE) was investigated,and the observed enhancement factor was 4 comparing with the magnetic field modulated SPCE without MNPs.This is the new observation for the magnetic field modulated SPCE,and this method was designed as a biosensor,which to our knowledge,is the first application of magnetic field-modulated SPCE in biosensing and detection field.This strategy is a universal approach to increase the fluorescence signal and helps to build the new SPCE based stimulus-response system.展开更多
We study the effect of longitudinally applied field modulation on a two-level system using superconducting quantum circuits. The presence of the modulation results in additional transitions and changes the magnitude o...We study the effect of longitudinally applied field modulation on a two-level system using superconducting quantum circuits. The presence of the modulation results in additional transitions and changes the magnitude of the resonance peak in the energy spectrum of the qubit. In particular, when the amplitude ,λz and the frequency COl of the modulation field meet certain conditions, the resonance peak of the qubit disappears. Using this effect, we further demonstrate that the longitudinal field modulation of the Xmon qubit coupled to a one-dimensional transmission line could be used to dynamically control the transmission of single-photon level coherent resonance microwave.展开更多
This paper reports a multifunctional magnetic-photoelectric laminate device based on the integration of spintronic material(La_(0.7)Sr_(0.3)MnO_(3))and multiferroic(Ni-doped BiFeO_(3)),in which the repeatable modulati...This paper reports a multifunctional magnetic-photoelectric laminate device based on the integration of spintronic material(La_(0.7)Sr_(0.3)MnO_(3))and multiferroic(Ni-doped BiFeO_(3)),in which the repeatable modulation effect on the photoelectric properties were achieved by applying external magnetic fields.More obviously,photocurrent density(J)of the laminate was largely enhanced,the change rate of J up to 287.6%is obtained.This sensing function effect should be attributed to the low-field magnetoresistance effect in perovskite manganite and the scattering of spin photoelectron in multiferroic material.The laminate perfectly combines the functions of sensor and controller,which can not only reflect the intensity of environmental magnetic field,but also modulate the photoelectric conversion performance.This work provides an alternative and facile way to realize multi-degree-of-freedom control for photoelectric conversion performances and lastly miniaturize multifunction device.展开更多
To reduce thrust ripple and cost and improve the average thrust of permanent magnet linear motors,a modular dual-field modulation permanent magnet linear motor was studied,and the parameters were optimized.First,sensi...To reduce thrust ripple and cost and improve the average thrust of permanent magnet linear motors,a modular dual-field modulation permanent magnet linear motor was studied,and the parameters were optimized.First,sensitive parameters were selected using the Taguchi method,and then the optimal variables were sampled using the optimal Latin hypercube experimental design method and an ensemble of surrogates model of optimization objectives,and its accuracy was verified.Next,a multi-objective particle swarm optimization algorithm was used to optimize the purpose of“maximum average thrust and minimum thrust ripple”,and the Pareto front of average thrust and thrust ripple was obtained.Finite element analysis showed that the optimized modular dual flux-modulation permanent magnet linear motor(MDFMPMLM)had a 29.5%reduction in thrust ripple and a 5%increase in average thrust compared to the original motor.This study provided an effective method for improving the performance of permanent magnet linear motors.展开更多
Open physical systems described by the non-Hermitian Hamiltonian with parity-time-reversal(PT)symmetry show peculiar phenomena,such as the presence of an exceptional point(EP)at which the PT symmetry is broken and two...Open physical systems described by the non-Hermitian Hamiltonian with parity-time-reversal(PT)symmetry show peculiar phenomena,such as the presence of an exceptional point(EP)at which the PT symmetry is broken and two resonant modes of the Hamiltonian become degenerate.Near the EP,the system could be more sensitive to external perturbations and this may lead to enhanced sensing.In this paper,we present experimental results on the observation of PT symmetry broken transition and the EP using a tunable superconducting qubit.The quantum system of investigation is formed by the two levels of the qubit and the energy loss of the system to the environment is controlled by a method of parametric modulation of the qubit frequency.This method is simple with no requirements for additional elements or qubit device modifications.We believe it can be easily implemented on multi-qubit devices that would be suitable for further exploration of non-Hermitian physics in more complex and diverse systems.展开更多
A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels c...A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels covered by a microlens. The pixels receive spectral information from different spectral filters to the diffraction and misalignments of the optical components. In this paper, we present a linear spectral multiplexing model of the acquired target spectrum. A calibration method is proposed for calibrating the center wavelengths and bandwidths of channels of an LFMIS system based on the liner-variable filter (LVF) and for determining the spectral multiplexing matrix. In order to improve the accuracy of the restored spectral data, we introduce a reconstruction algorithm based on the total least square (TLS) approach. Simulation and experimental results confirm the performance of the spectrum reconstruction algorithm and validate the feasibility of the proposed calibrating scheme.展开更多
This paper presents an experimental study which in a first stage is focused on obtaining quantitative information about the isothermal flow field exposed to various magnetic field configurations.Melt stirring has been...This paper presents an experimental study which in a first stage is focused on obtaining quantitative information about the isothermal flow field exposed to various magnetic field configurations.Melt stirring has been realized by utilizing time-modulated AC magnetic fields in different variants.We consider time-modulated fields or combinations of traveling magnetic fields(TMF)and rotating magnetic fields(RMF).In a second step solidification experiments are carried out to verify the effect of a certain flow field on the solidification process.Our results demonstrate that the melt agitation using modulated magnetic fields offers a considerable potential for a well-aimed modification of casting properties by an effective control of the flow field.展开更多
We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photo...We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover,single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity.Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field.This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system.展开更多
A novel super-junction lateral double-diffused metal-oxide semiconductor (SJ-LDMOS) with a partial lightly doped P pillar (PD) is proposed. Firstly, the reduction in the partial P pillar charges ensures the charge...A novel super-junction lateral double-diffused metal-oxide semiconductor (SJ-LDMOS) with a partial lightly doped P pillar (PD) is proposed. Firstly, the reduction in the partial P pillar charges ensures the charge balance and suppresses the substrate-assisted depletion effect. Secondly, the new electric field peak produced by the P/P junction modulates the surface electric field distribution. Both of these result in a high breakdown voltage (BV). In addition, due to the same conduction paths, the specific on-resistance (Ron,sp) of the PD SJ-LDMOS is approximately identical to the conventional SJ-LDMOS. Simulation results indicate that the average value of the surface lateral electric field of the PD SJ-LDMOS reaches 20 V/μm at a 15 μm drift length, resulting in a BV of 300 V.展开更多
A novel silicon-on-insulator lateral insulated gate bipolar transistor(SOI LIGBT)is proposed in this paper.The proposed device has a P-type buried layer and a partial-SOI layer,which is called the BPSOI-LIGBT.Due to t...A novel silicon-on-insulator lateral insulated gate bipolar transistor(SOI LIGBT)is proposed in this paper.The proposed device has a P-type buried layer and a partial-SOI layer,which is called the BPSOI-LIGBT.Due to the electric field modulation effect generated by the P-type buried layer and the partial-SOI layer,the proposed structure generates two new peaks in the surface electric field distribution,which can achieve a smaller device size with a higher breakdown voltage.The smaller size of the device is beneficial to the fast switching.The simulation shows that under the same size,the breakdown voltage of the BPSOI LIGBT is 26%higher than that of the conventional partial-SOI LIGBT(PSOI LIGBT),and 84%higher than the traditional SOI LIGBT.When the forward voltage drop is 2.05 V,the turn-off time of the BPSOI LIGBT is 71%shorter than that of the traditional SOI LIGBT.Therefore,the proposed BPSOI LIGBT has a better forward voltage drop and turn-off time trade-off than the traditional SOI LIGBT.In addition,the BPSOI LIGBT effectively relieves the self-heating effect of the traditional SOI LIGBT.展开更多
In this paper,two-dimensional electron gas(2DEG) regions in AlGaN/GaN high electron mobility transistors(HEMTs) are realized by doping partial silicon into the AlGaN layer for the first time.A new electric field p...In this paper,two-dimensional electron gas(2DEG) regions in AlGaN/GaN high electron mobility transistors(HEMTs) are realized by doping partial silicon into the AlGaN layer for the first time.A new electric field peak is introduced along the interface between the AlGaN and GaN buffer by the electric field modulation effect due to partial silicon positive charge.The high electric field near the gate for the complete silicon doping structure is effectively decreased,which makes the surface electric field uniform.The high electric field peak near the drain results from the potential difference between the surface and the depletion regions.Simulated breakdown curves that are the same as the test results are obtained for the first time by introducing an acceptor-like trap into the N-type GaN buffer.The proposed structure with partial silicon doping is better than the structure with complete silicon doping and conventional structures with the electric field plate near the drain.The breakdown voltage is improved from 296 V for the conventional structure to 400 V for the proposed one resulting from the uniform surface electric field.展开更多
A novel low specific on-resistance (Ron,sp) lateral double-diffused metal oxide semiconductor (LDMOS) with a buried improved super-junction (BISJ) layer is proposed. A super-junction layer is buried in the drift...A novel low specific on-resistance (Ron,sp) lateral double-diffused metal oxide semiconductor (LDMOS) with a buried improved super-junction (BISJ) layer is proposed. A super-junction layer is buried in the drift region and the P pillar is split into two parts with different doping concentrations. Firstly, the buried super-junction layer causes the multiple-direction assisted depletion effect. The drift region doping concentration of the BISJ LDMOS is therefore much higher than that of the conventional LDMOS. Secondly, the buried super-junction layer provides a bulk low on-resistance path. Both of them reduce Ron,sp greatly. Thirdly, the electric field modulation effect of the new electric field peak introduced by the step doped P pillar improves the breakdown voltage (BV). The BISJ LDMOS exhibits a BV of 300 V and Ron,sp of 8.08 mΩ·cm2 which increases BV by 35% and reduces Ron,sp by 60% compared with those of a conventional LDMOS with a drift length of 15 μm, respectively.展开更多
This paper overviews the recent developments and various topologies of magnetically geared(MGd)machines.Particularly,current design trends and research hotspots of this kind of MGd machines are emphasized,with the aid...This paper overviews the recent developments and various topologies of magnetically geared(MGd)machines.Particularly,current design trends and research hotspots of this kind of MGd machines are emphasized,with the aid of statistic summary of the published papers.According to different evolutions from a magnetic gear(MG),four mainstreams of MGd machines are extracted and compared in terms of both mechanical complexity and electromagnetic performance.By virtue of their inherent features,such as high torque density and multi-power port,the feasibility of MGd machines for applications,where continuously variable transmission(CVT)and power split are demanded,is also described.展开更多
基金supported by the National Natural Science Foundation of China(No.52175269)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52021003)+2 种基金Science and Technology Research Project of Education Department of Jilin Province(JJKH20231146KJ,JJKH20241262KJ)Project ZR2024ME104 supported by Shandong Provincial Natural Science FoundationChina Postdoctoral Science Foundation(No.2024M751086).
文摘Numerous arthropods evolve and optimize sensory systems, enabling them to effectively adapt complex and competitive habitats. Typically, scorpions can precisely perceive the prey location with the lowest metabolic rate among invertebrates. This biological phenomenon contrasts sharply with engineered systems, which generally associates high accuracy with substantial energy consumption. Inspired by the Scorpion Compound Slit Sensilla (SCSS) with a stress field modulation strategy, a bionic positioning sensor with superior precision and minimal power consumption is developed for the first time, which utilizes the particular Minimum Positioning Units (MPUs) to efficiently locate vibration signals. The single MPU of the SCSS can recognize the direction of collinear loads by regulating the stress field distribution and further, the coupling action of three MPUs can realize all-angle vibration monitoring in plane. Experiments demonstrate that the bionic positioning sensor achieves 1.43 degrees of angle-error-free accuracy without additional energy supply. As a proof of concept, two bionic positioning sensors and machine learning algorithm are integrated to provide centimeter (cm)-accuracy target localization, ideally suited for the man-machine interaction. The novel design offers a new mechanism for the design of traditional positioning devices, improving precision and efficiency in both the meta-universe and real-world Internet-connected systems.
基金supported in part by the National Natural Science Foundation of China under Grant 52077142the Research Foundation of Zhengzhou Electric Power College under Grant ZEPCKY2024-01 and ZEPCKYRC01。
文摘In this paper,a magnetic field modulation model considering the influence of phase angles is established for the analysis and weakening of the cogging torque of the permanent magnet synchronous wind generations.Compared with the existing analytical model,the modulation effect of the magnetic field harmonics and phase angle on the cogging torque components is analyzed in the new model.Firstly,flux density model with phase angle characteristics is derived,and the relationship of the cogging torque and magnetic field harmonic is analyzed using energy method.Then,based on the magnetic modulation mechanism,the impact of the phase angle and magnetic field harmonics on the coupling relationship among cogging torque components is analyzed.All cogging torque components are classified as a combination of multiple positive and negative harmonic components,and the contribution characteristics of the components are determined by the harmonic combination and phase angle characteristics.Based on the finite element model(FEM),the magnetic field modulation model of the cogging torque is proved.On the basis of the conclusions obtained,it is further explained that the suppression mechanism of rotor-step skewing is a mutual complementary effect of the positive components and negative cogging components,and the main harmonic is effectively offset by selecting the seasonable of segment number and skewed angle of rotor.Finally,in order to verify the validity of the analysis method,the no-load line back EMF and cogging torque of optimized prototype is tested,and the experimental results agree well with the FEM results.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Project No.51737010the National Key R&D Program of China under Grant 2020YFA0710500。
文摘With the increasing demand for high torque density in motors,more and more new topologies emerge.Furthermore,the magnetic field modulation principle is widely concerned and has evolved into an effective analysis method for studying the new motor topology.This paper introduces the principle of magnetic field modulation.And the research on high torque density in recent years is reviewed from the perspective of magnetic field modulation,including permanent magnet vernier machine(PMVM),flux reverse machine(FRM),flux switching machine(FSM),dual permanent magnet(DPM)machine,and DC biased machine.The principle of magnetic field modulation makes it possible to propose higher torque density topologies in the future.
基金Supported by the Natural Science Foundation of Beijing under Grant Nos 2162033 and 7182091the National Natural Science Foundation of China under Grant No 21627813
文摘We present a digital micromirror device(DMD) based superpixel method for focusing light through scattering media by modulating the complex field of incident light. Firstly, we numerically and experimentally investigate focusing light through a scattering sample using the superpixel methods with different target complex fields.Then, single-point and multiple-point focusing experiments are performed using this superpixel-based complex modulation method. In our experiment, up to 71.5% relative enhancement is realized. The use of the DMDbased superpixel method for the control of the complex field of incident light opens an avenue to improve the enhancement of focusing light through scattering media.
基金Supported by the National Natural Science Foundation of China(U24A20147)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX23_0250).
文摘An analytical approach is proposed for the cogging torque of a flux-switching permanent magnet machine based on the general air-gap field modulation theory. The modulation process is first investigated, and the cogging torque generation mechanism is analyzed based on the distribution of the air-gap magnetic flux density harmonics. Thus, the relationship between the air-gap field harmonics and the cogging torque is revealed, and the contribution of each harmonic to the cogging torque is calculated using the proposed method. Simultaneously, the characteristics of the cogging torque, including amplitude and frequency, are analyzed. Subsequently, the calculated cogging torque is compared with the simulated torque using finite element analysis. The two results exhibit considerable consistency, confirming the feasibility of the proposed method. Moreover, a prototype experiment is conducted, and the cogging torque is measured to verify the effectiveness of the proposed method.
基金the National Key Research and Development Program of China(No.2022YFA1203700)the National Natural Science Foundation of China(Nos.62275081,62035008,and 22305079)+4 种基金the Innovation Program of Shanghai Municipal Education Commission,Scientific Committee of Shanghai(No.2021-01-07-00-02-E00107)the“Shuguang Program”of Shanghai Education Development Foundation,the Shanghai Municipal Education Commission(No.21SG29)the Shanghai Sailing Program(No.23YF1409000)the Fellowship of China National Postdoctoral Program for Innovative Talents(No.BX20230125)the Postdoctoral Fellowship Program of CPSF(No.GZB20240218)。
文摘We propose a promising method to develop flexible,compact,and tunable light-activated film diffractive optical elements(FDOEs)with exceptional diffraction efficiency,by integrating liquid crystal(LC)geometric phase-based diffractive optical elements(DOEs)with a specifically designed light-activated LC polymer(LCP)film.Arbitrary film bending induced by UV/Vis irradiation is realized through precise mesogens arrangement within the LCP film,enabling 1D and 2D beam steering,as well as dynamic and reversible switching between structured and Gaussian lights after cooperating with the DOE design.Furthermore,remarkable fatigue resistance,solvent resistance,and thermal stability are demonstrated,providing a solid material platform for advanced optical applications.
基金supported by the National Natural Science Foundation of China(Grant No.52025073)the Postgraduate Research & Practice Innovation Program of Jiangsu Province(Grant No.KYCX21_3358)。
文摘This paper aims to investigate the torque production mechanism and its improvement design in switched reluctance machines(SRMs) based on field modulation principle. Firstly, the analytical expressions of the air-gap magnetic field are derived from the perspective of DC-and AC-components, respectively. Meanwhile, different slot/pole combinations and winding arrangements are considered. Secondly, the torque productions are analyzed and evaluated with emphasis on the interaction between the DCand AC-components of air-gap fields. Thirdly, the 12-slot/8-pole and 12-slot/10-pole SRMs are established and studied by using the finite-element method. The effects of slot/pole combination and winding arrangement on the average torque production are clarified. Then, two new designs to improve the average torque are proposed. Finally, the prototype of the 12-slot/10-pole SRM is manufactured, and the experiments are carried out for validation.
基金Financial support from the National Natural Science Foundation of China(Nos.21874110,21375111,21505109,21521004 and 21804098)the Fund of the Ministry of Education of China(No. IRT17R66)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.201802104)
文摘The obvious enhancement effect of magnetic nanoparticles(MNPs) introduced in Cr/Co/Cr/Au substrate on the pulsed magnetic field-modulated surface plasmon coupled emission(SPCE) was investigated,and the observed enhancement factor was 4 comparing with the magnetic field modulated SPCE without MNPs.This is the new observation for the magnetic field modulated SPCE,and this method was designed as a biosensor,which to our knowledge,is the first application of magnetic field-modulated SPCE in biosensing and detection field.This strategy is a universal approach to increase the fluorescence signal and helps to build the new SPCE based stimulus-response system.
基金Project supported by the Ministry of Science and Technology of China(Grant Nos.2014CB921401,2017YFA0304300,2014CB921202,and2016YFA0300601)the National Natural Science Foundation of China(Grant No.11674376)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07010300)
文摘We study the effect of longitudinally applied field modulation on a two-level system using superconducting quantum circuits. The presence of the modulation results in additional transitions and changes the magnitude of the resonance peak in the energy spectrum of the qubit. In particular, when the amplitude ,λz and the frequency COl of the modulation field meet certain conditions, the resonance peak of the qubit disappears. Using this effect, we further demonstrate that the longitudinal field modulation of the Xmon qubit coupled to a one-dimensional transmission line could be used to dynamically control the transmission of single-photon level coherent resonance microwave.
基金financially supported by National Natural Science Foundation of China(11074031)National Key R&D Program of China(2017YFE0301401)Natural Science Foundation of Fujian Province,China(2020J01192,2021J01191)
文摘This paper reports a multifunctional magnetic-photoelectric laminate device based on the integration of spintronic material(La_(0.7)Sr_(0.3)MnO_(3))and multiferroic(Ni-doped BiFeO_(3)),in which the repeatable modulation effect on the photoelectric properties were achieved by applying external magnetic fields.More obviously,photocurrent density(J)of the laminate was largely enhanced,the change rate of J up to 287.6%is obtained.This sensing function effect should be attributed to the low-field magnetoresistance effect in perovskite manganite and the scattering of spin photoelectron in multiferroic material.The laminate perfectly combines the functions of sensor and controller,which can not only reflect the intensity of environmental magnetic field,but also modulate the photoelectric conversion performance.This work provides an alternative and facile way to realize multi-degree-of-freedom control for photoelectric conversion performances and lastly miniaturize multifunction device.
文摘To reduce thrust ripple and cost and improve the average thrust of permanent magnet linear motors,a modular dual-field modulation permanent magnet linear motor was studied,and the parameters were optimized.First,sensitive parameters were selected using the Taguchi method,and then the optimal variables were sampled using the optimal Latin hypercube experimental design method and an ensemble of surrogates model of optimization objectives,and its accuracy was verified.Next,a multi-objective particle swarm optimization algorithm was used to optimize the purpose of“maximum average thrust and minimum thrust ripple”,and the Pareto front of average thrust and thrust ripple was obtained.Finite element analysis showed that the optimized modular dual flux-modulation permanent magnet linear motor(MDFMPMLM)had a 29.5%reduction in thrust ripple and a 5%increase in average thrust compared to the original motor.This study provided an effective method for improving the performance of permanent magnet linear motors.
基金supported by the State Key Development Program for Basic Research of China(Grant Nos.2017YFA0304300 and 2016YFA0300600)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0303030001)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000).
文摘Open physical systems described by the non-Hermitian Hamiltonian with parity-time-reversal(PT)symmetry show peculiar phenomena,such as the presence of an exceptional point(EP)at which the PT symmetry is broken and two resonant modes of the Hamiltonian become degenerate.Near the EP,the system could be more sensitive to external perturbations and this may lead to enhanced sensing.In this paper,we present experimental results on the observation of PT symmetry broken transition and the EP using a tunable superconducting qubit.The quantum system of investigation is formed by the two levels of the qubit and the energy loss of the system to the environment is controlled by a method of parametric modulation of the qubit frequency.This method is simple with no requirements for additional elements or qubit device modifications.We believe it can be easily implemented on multi-qubit devices that would be suitable for further exploration of non-Hermitian physics in more complex and diverse systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.61307020)Beijing Natural Science Foundation(Grant No.4172038)the Qingdao Opto-electronic United Foundation,China
文摘A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels covered by a microlens. The pixels receive spectral information from different spectral filters to the diffraction and misalignments of the optical components. In this paper, we present a linear spectral multiplexing model of the acquired target spectrum. A calibration method is proposed for calibrating the center wavelengths and bandwidths of channels of an LFMIS system based on the liner-variable filter (LVF) and for determining the spectral multiplexing matrix. In order to improve the accuracy of the restored spectral data, we introduce a reconstruction algorithm based on the total least square (TLS) approach. Simulation and experimental results confirm the performance of the spectrum reconstruction algorithm and validate the feasibility of the proposed calibrating scheme.
基金Item Sponsored by Deutsche Forschungsgemeinschaft (DFG) in Form of the Collaborative Research Centre SFB 609"Electromagnetic Flow Control in MetallurgyCrystal Growth and Electrochemistry"
文摘This paper presents an experimental study which in a first stage is focused on obtaining quantitative information about the isothermal flow field exposed to various magnetic field configurations.Melt stirring has been realized by utilizing time-modulated AC magnetic fields in different variants.We consider time-modulated fields or combinations of traveling magnetic fields(TMF)and rotating magnetic fields(RMF).In a second step solidification experiments are carried out to verify the effect of a certain flow field on the solidification process.Our results demonstrate that the melt agitation using modulated magnetic fields offers a considerable potential for a well-aimed modification of casting properties by an effective control of the flow field.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51132004,11474096,11604199,U1704145 and 11747101the Science and Technology Commission of Shanghai Municipality under Grant No 14JC1401500+1 种基金the Henan Provincial Natural Science Foundation of China under Grant No 182102210117the Higher Education Key Program of He’nan Province of China under Grant Nos 17A140025 and 16A140030
文摘We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover,single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity.Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field.This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2010ZX02201)the National Natural Science Foundation of China (Grant No. 61176069)the National Defense Pre-Research of China (Grant No. 51308020304)
文摘A novel super-junction lateral double-diffused metal-oxide semiconductor (SJ-LDMOS) with a partial lightly doped P pillar (PD) is proposed. Firstly, the reduction in the partial P pillar charges ensures the charge balance and suppresses the substrate-assisted depletion effect. Secondly, the new electric field peak produced by the P/P junction modulates the surface electric field distribution. Both of these result in a high breakdown voltage (BV). In addition, due to the same conduction paths, the specific on-resistance (Ron,sp) of the PD SJ-LDMOS is approximately identical to the conventional SJ-LDMOS. Simulation results indicate that the average value of the surface lateral electric field of the PD SJ-LDMOS reaches 20 V/μm at a 15 μm drift length, resulting in a BV of 300 V.
基金Project supported by the National Basic Research Program of China(Grant No.2015CB351906)the Science Foundation for Distinguished Young Scholars of Shaanxi Province,China(Grant No.2018JC-017)。
文摘A novel silicon-on-insulator lateral insulated gate bipolar transistor(SOI LIGBT)is proposed in this paper.The proposed device has a P-type buried layer and a partial-SOI layer,which is called the BPSOI-LIGBT.Due to the electric field modulation effect generated by the P-type buried layer and the partial-SOI layer,the proposed structure generates two new peaks in the surface electric field distribution,which can achieve a smaller device size with a higher breakdown voltage.The smaller size of the device is beneficial to the fast switching.The simulation shows that under the same size,the breakdown voltage of the BPSOI LIGBT is 26%higher than that of the conventional partial-SOI LIGBT(PSOI LIGBT),and 84%higher than the traditional SOI LIGBT.When the forward voltage drop is 2.05 V,the turn-off time of the BPSOI LIGBT is 71%shorter than that of the traditional SOI LIGBT.Therefore,the proposed BPSOI LIGBT has a better forward voltage drop and turn-off time trade-off than the traditional SOI LIGBT.In addition,the BPSOI LIGBT effectively relieves the self-heating effect of the traditional SOI LIGBT.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61106076)
文摘In this paper,two-dimensional electron gas(2DEG) regions in AlGaN/GaN high electron mobility transistors(HEMTs) are realized by doping partial silicon into the AlGaN layer for the first time.A new electric field peak is introduced along the interface between the AlGaN and GaN buffer by the electric field modulation effect due to partial silicon positive charge.The high electric field near the gate for the complete silicon doping structure is effectively decreased,which makes the surface electric field uniform.The high electric field peak near the drain results from the potential difference between the surface and the depletion regions.Simulated breakdown curves that are the same as the test results are obtained for the first time by introducing an acceptor-like trap into the N-type GaN buffer.The proposed structure with partial silicon doping is better than the structure with complete silicon doping and conventional structures with the electric field plate near the drain.The breakdown voltage is improved from 296 V for the conventional structure to 400 V for the proposed one resulting from the uniform surface electric field.
基金Project supported by the National Science and Technology Project of the Ministry of Science and Technology of China(Grant No.2010ZX02201)the National Natural Science Foundation of China(Grant No.61176069)the National Defense Pre-Research of China(Grant No.51308020304)
文摘A novel low specific on-resistance (Ron,sp) lateral double-diffused metal oxide semiconductor (LDMOS) with a buried improved super-junction (BISJ) layer is proposed. A super-junction layer is buried in the drift region and the P pillar is split into two parts with different doping concentrations. Firstly, the buried super-junction layer causes the multiple-direction assisted depletion effect. The drift region doping concentration of the BISJ LDMOS is therefore much higher than that of the conventional LDMOS. Secondly, the buried super-junction layer provides a bulk low on-resistance path. Both of them reduce Ron,sp greatly. Thirdly, the electric field modulation effect of the new electric field peak introduced by the step doped P pillar improves the breakdown voltage (BV). The BISJ LDMOS exhibits a BV of 300 V and Ron,sp of 8.08 mΩ·cm2 which increases BV by 35% and reduces Ron,sp by 60% compared with those of a conventional LDMOS with a drift length of 15 μm, respectively.
文摘This paper overviews the recent developments and various topologies of magnetically geared(MGd)machines.Particularly,current design trends and research hotspots of this kind of MGd machines are emphasized,with the aid of statistic summary of the published papers.According to different evolutions from a magnetic gear(MG),four mainstreams of MGd machines are extracted and compared in terms of both mechanical complexity and electromagnetic performance.By virtue of their inherent features,such as high torque density and multi-power port,the feasibility of MGd machines for applications,where continuously variable transmission(CVT)and power split are demanded,is also described.