The corrosion resistance of cobalt-based alloy cladding layers is crucial for the long-term reliability of materials in the nuclear power industry,where they are exposed to highly aggressive environmental conditions.A...The corrosion resistance of cobalt-based alloy cladding layers is crucial for the long-term reliability of materials in the nuclear power industry,where they are exposed to highly aggressive environmental conditions.A major challenge to their performance is the corrosion occurring at phase boundaries under harsh operating conditions.This study investigates the effects of pulsed magnetic field treatment(PMT)on improving corrosion resistance at phase boundaries,specifically at the carbide/matrix Co interface,and seeks to clarify the underlying mechanisms.Advanced characterization techniques,including scanning electron microscopy(SEM),in situ transmission electron microscopy(TEM),in situ scanning kelvin probe force microscopy(SKPFM),and density functional theory(DFT)calculations,were employed.PMT samples exhibited no interface corrosion cracking or carbide spalling and showed a significant reduction in corrosion depth.TEM analysis revealed reduced lattice distortion at phase boundaries and a partial transformation of face-centered cubic(FCC)Co to hexagonal closepacked(HCP)Co.The enhanced corrosion resistance at phase boundaries is attributed to changes in the electronic work function(EWF),as determined by SKPFM measurements and DFT calculations.展开更多
The effects of electric-field treatment on the microstructure and deformation behavior of a nickel-base superalloy were summarized.The results show that the electric-field treatment increases the ductility of the supe...The effects of electric-field treatment on the microstructure and deformation behavior of a nickel-base superalloy were summarized.The results show that the electric-field treatment increases the ductility of the superalloy but has no evident influence on its static strength at both room and elevated temperatures,while,the strength increases but elongation changes weekly with the increasing tensile strain rate.It is found that the direction of microcrack propagation can be changed by the presence of the annealing twins during the tensile deformation,and it causes the increasing of the plastic deformation energy and delay of the fracture,which is considered as the reason for the increasing the ductility.展开更多
The effects of electric field intensity and treatment temperature on the microstructures of GH4199 superalloy after long-term aging were investigated. The results show that the number and size of carbides and TCP(σph...The effects of electric field intensity and treatment temperature on the microstructures of GH4199 superalloy after long-term aging were investigated. The results show that the number and size of carbides and TCP(σphase andμphase) phase in the alloy increase with increasing electric field intensity at the same heat treatment temperature and holding time. While the number and size of carbides and TCP phase are weekly influenced by treatment temperature with lower electric field intensity of 2 kV/cm. When the treat temperature is up to 1 093 K, annealing twins appear in the alloy, and the number of twins increases with increasing holding time. Since the electric field can provide the enough energy for the movement of vacancies and atom, it is considered that the nucleus of the twins formed with formation stack faults due to the mismatch of local atom in crystal caused by the vacancies, and the twins will grow with the increase of holding time. Meanwhile, such promoting effects on atom movement of the electric field increase with the increase of the electric field intensity, meantime the carbides and TCP phase grow fast with the increase of electric field intensity.展开更多
Solution treatment of 20% Al-Li alloy in an electric field has been studied. The results show that it increases the solubility of elements and accelerates the nucleation of T1-phase and promotes the formation of the p...Solution treatment of 20% Al-Li alloy in an electric field has been studied. The results show that it increases the solubility of elements and accelerates the nucleation of T1-phase and promotes the formation of the precipitation free zones(PFZ), and increases the strength and decreases the plasticity of the alloy.展开更多
This study systematically investigated the effects of a low-intensity magnetic field on the influence of keratinase activity, peptide yield, and structural and functional properties of peptides produced during solid-s...This study systematically investigated the effects of a low-intensity magnetic field on the influence of keratinase activity, peptide yield, and structural and functional properties of peptides produced during solid-state fermentation (SSF) of mixed organic substrates (chicken feather powder and okara) using a mutant strain of Bacillus licheniformis. Initially, the magnetic field-assisted SSF (MSSF) conditions were optimized, which provided the optimized conditions as the number of treatments 3 at every 24 h (24, 48, and 72 h) with 4 h holding time at 120 Gs of magnetic intensity (mI). Under the optimum conditions, keratinase activity and peptide production increased by 10.31% and 13.77%, respectively. Further, in order to evaluate the influence of magnetic field treatment on the peptides, MSSF experiments were done under different mI conditions (40, 80, 120, and 160 Gs), followed by the evaluation of the structural changes of the extracted peptides. The structural analysis revealed that mI had a significant impact on the keratin surface. In contrast, secondary structure analysis confirmed the unfolding of the peptide with decreased α-keratin and increased β-keratin, thereby boosting the bioactive properties of the peptides. The highest hydroxyl free radical (.OH), 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging and Fe2+ chelating rates (56.55, 71.36, and 50.72%, respectively) were found at 120 Gs, which were insignificant with the results at 160 Gs. Therefore, MSSF has a positive effect on the proteolysis mechanism, which can increase bioactive peptide production from keratin.展开更多
The heat treatment microstructures and XRD patterns of the Mg-8Gd-5Y-2Zn-0.5Zr(wt.%) alloy in the absence and presence of a 10T high magnetic field have been investigated.The investigations show that the grains of α-...The heat treatment microstructures and XRD patterns of the Mg-8Gd-5Y-2Zn-0.5Zr(wt.%) alloy in the absence and presence of a 10T high magnetic field have been investigated.The investigations show that the grains of α-Mg demonstrate a preferred orientation due to the magnetic driving force.In addition,high magnetic fields can promote the growth of the long period ordered structure(LPS) phase to the grain interior.And the corresponding mechanisms are also discussed in this article.展开更多
In the present work,Ce_(17)Fe_(76.5)Co_1Zr_(0.5)B_6 ribbons were prepared by a direct melt spinning method.The effects of chamber pressure and magnetic field annealing temperature on the magnetic properties and micros...In the present work,Ce_(17)Fe_(76.5)Co_1Zr_(0.5)B_6 ribbons were prepared by a direct melt spinning method.The effects of chamber pressure and magnetic field annealing temperature on the magnetic properties and microstructures of the alloys were investigated.The grain size and content of Ce_(2)Fe_(14)B phase can be changed by adjusting the chamber pressure,and the optimal magnetic performance is obtained at0.04 MPa.The magnetic properties can be influenced under magnetic field heat treatment.When the annealing temperature is lower than the Curie temperature,the refinement and a uniform distribution of the grains is obtained.The irreversible magnetic susceptibility curve reveals that magnetic field heat treatment enhances the exchange coupling interaction between grains of the Ce_(2)Fe_(14)B phase.When the magnetic field annealing temperature is 438 K,the alloy displays the optimal magnetic properties.Compared with the as-spun sample,the values of intrinsic coercivity(H_(ci)),remanence(B_r) and maximum energy product((BH)max) increase by 3.4%,9.8% and 18.7%,respectively.This work provides an effective approach by which to enhance the magnetic properties of Ce-Fe-B alloys.展开更多
In local post weld heat treatment, the temperature difference is the criterion of the process. The temperature field in the main stream pipe under local post weld heat treatment is simulated by finite element method. ...In local post weld heat treatment, the temperature difference is the criterion of the process. The temperature field in the main stream pipe under local post weld heat treatment is simulated by finite element method. A close-loop control program is designed to simulate the temperature field of two different pipes. Both the skin effect of induction heating and electro-thermal coupled effect are considered in the heating model. The local heat treatment temperature difference at the inner and outer side of the pipe is analyzed and the different convection conditions are also considered. The simulation results show that in appropriate induction heating process, the temperature difference in the pipe can be controlled within 30 ℃.展开更多
The thermal treatment process of cold-rolled Cu-Al composite strip under magnetic field conditions is systematically investigated by means of metallographic microscope and universal testing machine to observe the inte...The thermal treatment process of cold-rolled Cu-Al composite strip under magnetic field conditions is systematically investigated by means of metallographic microscope and universal testing machine to observe the interface microstructure and test the mechanical properties.The heat treatment parameters' effects to the interface structure and mechanical properties of Al-Cu cold-rolled strip are discussed.The conclusions is showed as follows:(1)when the magnetic field intensity is greater than 0.1 T,the interface layer grow widely and stimulate the interfacial compounds' generation,the shear strength is reduced.(2)When the Cu-Al specimen's annealing temperature is at the condition of 300℃,the interfacial layer narrows when the magnetic field strength stay 0.1T than that without magnetic field,the magnetic filed restrains the interfacial compounds' generation,the shear strength reaches as high as 124Mpa;(3)The interfacial compounds are meanly brittleness intermetallic compounds such as CuAl,CuAl_2,Cu_9Al.展开更多
In comparison with the homogenization treatment without an electric field prior to the same solid solution and aging treatment, the homogenization treatment in an electric field increases the hardness and strength of ...In comparison with the homogenization treatment without an electric field prior to the same solid solution and aging treatment, the homogenization treatment in an electric field increases the hardness and strength of 1420 Al Li alloy, but somewhat decreases the elongation of the alloy. Moreover, the elongation of the alloy increases with the homogenization temperature in an electric field increasing. TEM observation showed that the homogenization treatment in an electric field can accelerate the dissolution of the coarse particles of second phase on the grain boundary as well as make δ′phase precipitated in subsequent aging process finer and more numerous.展开更多
TbFe_2,as a typical magnetostrictive material,is ferrimagnetic.Its magnetostrictive property can be improved by an external magnetic field at a temperature below its Curie temperature.In this paper,the effects of high...TbFe_2,as a typical magnetostrictive material,is ferrimagnetic.Its magnetostrictive property can be improved by an external magnetic field at a temperature below its Curie temperature.In this paper,the effects of high magnetic fields on the preferred orientation,phase composition and magnetostrictive property of Tb-Fe alloys during heat treatment process were investigated.It was found that the magnetostriction performance of the alloy annealed in an 11.5 T magnetic field was improved by 30%contrary to that without magnetic field.Such increase can be attributed to the increase in orientation degree of <113> caused by the high magnetic field during the heat treatment.展开更多
Atmospheric pressure non-thermal plasma is of interest for industrial applications. In this study, polypropylene (PP) films are modified by a dielectric barrier discharge (DBD) with a non-uniform magnetic field in...Atmospheric pressure non-thermal plasma is of interest for industrial applications. In this study, polypropylene (PP) films are modified by a dielectric barrier discharge (DBD) with a non-uniform magnetic field in air at atmospheric pressure. The surface properties of the PP films before and after a DBD treatment are studied by using contact angle measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The effect of treatment time on the surface modification with and without a magnetic field is investigated. It is found that the hydrophilic improvement depends on the treatment time and magnetic field. It is also found that surface roughness and oxygen-containing groups are introduced onto the PP film surface after the DBD treatment. Surface roughness and oxygen-containing polar functional groups of the PP films increase with the magnetic induction density. The functional groups are identified as C-O, C=O and O-C=O by using XPS analysis. It is concluded that the hydrophilic improvement of PP films treated with a magnetic field is due to a greater surface roughness and more oxygen-containing groups.展开更多
Background: Acute otitis externa is a common multi-factorial disorder in the dog. Several topical preparations are available on the veterinary market, which are licensed for an either specified duration of treatment o...Background: Acute otitis externa is a common multi-factorial disorder in the dog. Several topical preparations are available on the veterinary market, which are licensed for an either specified duration of treatment or for a discretionary period that is determined by the clinician. Objectives: To compare the efficacy of two topical products, both licensed for the treatment of otitis externa in the dog, but with different treatment durations. Animal Population: One hundred and sixty dogs were enrolled in this multicentre field study from which 157 dogs were analysed in the Per Protocol sample (73 Aurizon?treated animals and 84 Easotic?treated animals). Method: Dogs were randomly assigned to Aurizon?or Easotic?treatment groups. Aurizon?(Vétoquinol SA: marbofloxacin, clotrimazole, dexamethasone) was administered daily in the affected ear(s) for 7 or 14 days, and was compared with a daily administration of Easotic?(Virbac SAS: gentamicin, miconazole, hydrocortisone aceponate) for 5 days. General and localised clinical signs were scored on days 0 (D0), 3 (D3), 7 (D7), 14 (D14) and 21 (D21). Results: Clinical cure rates at the end of treatment were 56.3% and 48.8% (p=0.35) in the Aurizon?and Easotic?groups respectively and 81.2% versus 74.7% one week after completing the course of treatment (p = 0.34). Twenty-one days after initially presenting for the study, cure rates were 84.3% in the Aurizon?group and 73.8% in the Easotic?(p=0.12). A relationship between severity of clinical signs and treatment duration was observed. Conclusion and Clinical Significance: At the end of the trial period, cure rates showed a tendency to be higher in the Aurizon?treated animals. The flexible dosage and the veterinary monitoring permitted treatment duration to be adjusted based upon the severity of otitis externa thus increasing the likelihood of clinical cure.展开更多
For 2091 Al-Li alloy, the volume fraction of second phase particles is greatly determined by the homogenization temperature and homogenization time under an electric field and the ductility of the alloy is determined ...For 2091 Al-Li alloy, the volume fraction of second phase particles is greatly determined by the homogenization temperature and homogenization time under an electric field and the ductility of the alloy is determined by the fraciton of second phase particles. The combined homogenization treatment shortens the homogenization time, reduces the loss ofLi content and increases the ductity of the alloy.展开更多
Homogenization treatment under an electric field increases the distributive homogeneity of the T1 precipitation and improves the yield strength of 2091 Al-Li alloy.
基金financially supported by the National Key Research and Development Program of China(No.2020YFA0714900)the Joint Fund of the Ministry of Education(No.8091B012201)
文摘The corrosion resistance of cobalt-based alloy cladding layers is crucial for the long-term reliability of materials in the nuclear power industry,where they are exposed to highly aggressive environmental conditions.A major challenge to their performance is the corrosion occurring at phase boundaries under harsh operating conditions.This study investigates the effects of pulsed magnetic field treatment(PMT)on improving corrosion resistance at phase boundaries,specifically at the carbide/matrix Co interface,and seeks to clarify the underlying mechanisms.Advanced characterization techniques,including scanning electron microscopy(SEM),in situ transmission electron microscopy(TEM),in situ scanning kelvin probe force microscopy(SKPFM),and density functional theory(DFT)calculations,were employed.PMT samples exhibited no interface corrosion cracking or carbide spalling and showed a significant reduction in corrosion depth.TEM analysis revealed reduced lattice distortion at phase boundaries and a partial transformation of face-centered cubic(FCC)Co to hexagonal closepacked(HCP)Co.The enhanced corrosion resistance at phase boundaries is attributed to changes in the electronic work function(EWF),as determined by SKPFM measurements and DFT calculations.
文摘The effects of electric-field treatment on the microstructure and deformation behavior of a nickel-base superalloy were summarized.The results show that the electric-field treatment increases the ductility of the superalloy but has no evident influence on its static strength at both room and elevated temperatures,while,the strength increases but elongation changes weekly with the increasing tensile strain rate.It is found that the direction of microcrack propagation can be changed by the presence of the annealing twins during the tensile deformation,and it causes the increasing of the plastic deformation energy and delay of the fracture,which is considered as the reason for the increasing the ductility.
文摘The effects of electric field intensity and treatment temperature on the microstructures of GH4199 superalloy after long-term aging were investigated. The results show that the number and size of carbides and TCP(σphase andμphase) phase in the alloy increase with increasing electric field intensity at the same heat treatment temperature and holding time. While the number and size of carbides and TCP phase are weekly influenced by treatment temperature with lower electric field intensity of 2 kV/cm. When the treat temperature is up to 1 093 K, annealing twins appear in the alloy, and the number of twins increases with increasing holding time. Since the electric field can provide the enough energy for the movement of vacancies and atom, it is considered that the nucleus of the twins formed with formation stack faults due to the mismatch of local atom in crystal caused by the vacancies, and the twins will grow with the increase of holding time. Meanwhile, such promoting effects on atom movement of the electric field increase with the increase of the electric field intensity, meantime the carbides and TCP phase grow fast with the increase of electric field intensity.
文摘Solution treatment of 20% Al-Li alloy in an electric field has been studied. The results show that it increases the solubility of elements and accelerates the nucleation of T1-phase and promotes the formation of the precipitation free zones(PFZ), and increases the strength and decreases the plasticity of the alloy.
基金the National Natural Science Foundation of China(Grant No.:31601516)for the financial support.
文摘This study systematically investigated the effects of a low-intensity magnetic field on the influence of keratinase activity, peptide yield, and structural and functional properties of peptides produced during solid-state fermentation (SSF) of mixed organic substrates (chicken feather powder and okara) using a mutant strain of Bacillus licheniformis. Initially, the magnetic field-assisted SSF (MSSF) conditions were optimized, which provided the optimized conditions as the number of treatments 3 at every 24 h (24, 48, and 72 h) with 4 h holding time at 120 Gs of magnetic intensity (mI). Under the optimum conditions, keratinase activity and peptide production increased by 10.31% and 13.77%, respectively. Further, in order to evaluate the influence of magnetic field treatment on the peptides, MSSF experiments were done under different mI conditions (40, 80, 120, and 160 Gs), followed by the evaluation of the structural changes of the extracted peptides. The structural analysis revealed that mI had a significant impact on the keratin surface. In contrast, secondary structure analysis confirmed the unfolding of the peptide with decreased α-keratin and increased β-keratin, thereby boosting the bioactive properties of the peptides. The highest hydroxyl free radical (.OH), 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging and Fe2+ chelating rates (56.55, 71.36, and 50.72%, respectively) were found at 120 Gs, which were insignificant with the results at 160 Gs. Therefore, MSSF has a positive effect on the proteolysis mechanism, which can increase bioactive peptide production from keratin.
基金Item Sponsored by the Fundamental Research Funds for the Central University[NO.DUT12JN02]
文摘The heat treatment microstructures and XRD patterns of the Mg-8Gd-5Y-2Zn-0.5Zr(wt.%) alloy in the absence and presence of a 10T high magnetic field have been investigated.The investigations show that the grains of α-Mg demonstrate a preferred orientation due to the magnetic driving force.In addition,high magnetic fields can promote the growth of the long period ordered structure(LPS) phase to the grain interior.And the corresponding mechanisms are also discussed in this article.
基金supported by the National Natural Science Foundation of China (51971125)。
文摘In the present work,Ce_(17)Fe_(76.5)Co_1Zr_(0.5)B_6 ribbons were prepared by a direct melt spinning method.The effects of chamber pressure and magnetic field annealing temperature on the magnetic properties and microstructures of the alloys were investigated.The grain size and content of Ce_(2)Fe_(14)B phase can be changed by adjusting the chamber pressure,and the optimal magnetic performance is obtained at0.04 MPa.The magnetic properties can be influenced under magnetic field heat treatment.When the annealing temperature is lower than the Curie temperature,the refinement and a uniform distribution of the grains is obtained.The irreversible magnetic susceptibility curve reveals that magnetic field heat treatment enhances the exchange coupling interaction between grains of the Ce_(2)Fe_(14)B phase.When the magnetic field annealing temperature is 438 K,the alloy displays the optimal magnetic properties.Compared with the as-spun sample,the values of intrinsic coercivity(H_(ci)),remanence(B_r) and maximum energy product((BH)max) increase by 3.4%,9.8% and 18.7%,respectively.This work provides an effective approach by which to enhance the magnetic properties of Ce-Fe-B alloys.
文摘In local post weld heat treatment, the temperature difference is the criterion of the process. The temperature field in the main stream pipe under local post weld heat treatment is simulated by finite element method. A close-loop control program is designed to simulate the temperature field of two different pipes. Both the skin effect of induction heating and electro-thermal coupled effect are considered in the heating model. The local heat treatment temperature difference at the inner and outer side of the pipe is analyzed and the different convection conditions are also considered. The simulation results show that in appropriate induction heating process, the temperature difference in the pipe can be controlled within 30 ℃.
基金Item Sponsored by National Natural Science Foundation of China(No.51174058)
文摘The thermal treatment process of cold-rolled Cu-Al composite strip under magnetic field conditions is systematically investigated by means of metallographic microscope and universal testing machine to observe the interface microstructure and test the mechanical properties.The heat treatment parameters' effects to the interface structure and mechanical properties of Al-Cu cold-rolled strip are discussed.The conclusions is showed as follows:(1)when the magnetic field intensity is greater than 0.1 T,the interface layer grow widely and stimulate the interfacial compounds' generation,the shear strength is reduced.(2)When the Cu-Al specimen's annealing temperature is at the condition of 300℃,the interfacial layer narrows when the magnetic field strength stay 0.1T than that without magnetic field,the magnetic filed restrains the interfacial compounds' generation,the shear strength reaches as high as 124Mpa;(3)The interfacial compounds are meanly brittleness intermetallic compounds such as CuAl,CuAl_2,Cu_9Al.
文摘In comparison with the homogenization treatment without an electric field prior to the same solid solution and aging treatment, the homogenization treatment in an electric field increases the hardness and strength of 1420 Al Li alloy, but somewhat decreases the elongation of the alloy. Moreover, the elongation of the alloy increases with the homogenization temperature in an electric field increasing. TEM observation showed that the homogenization treatment in an electric field can accelerate the dissolution of the coarse particles of second phase on the grain boundary as well as make δ′phase precipitated in subsequent aging process finer and more numerous.
基金Item Sponsored by the National Natural Science Foundation of China(Grant Nos.51006020and51174056)the Fundamental Research Funds for the Central Universities(Grant Nos.N090109001,N100409008,and N100609001)+1 种基金the National Basic Research Program of China(Grant No.2011CB612206)the Wuhan National High Magnetic Field Center(Grant No.WHMFCK2011006)
文摘TbFe_2,as a typical magnetostrictive material,is ferrimagnetic.Its magnetostrictive property can be improved by an external magnetic field at a temperature below its Curie temperature.In this paper,the effects of high magnetic fields on the preferred orientation,phase composition and magnetostrictive property of Tb-Fe alloys during heat treatment process were investigated.It was found that the magnetostriction performance of the alloy annealed in an 11.5 T magnetic field was improved by 30%contrary to that without magnetic field.Such increase can be attributed to the increase in orientation degree of <113> caused by the high magnetic field during the heat treatment.
基金supported by China Postdoctoral Science Foundation(No.20100480255)the Scientific Research Starting Foundation for Talent Introduction(Nanjing University of Information Science&Technology)
文摘Atmospheric pressure non-thermal plasma is of interest for industrial applications. In this study, polypropylene (PP) films are modified by a dielectric barrier discharge (DBD) with a non-uniform magnetic field in air at atmospheric pressure. The surface properties of the PP films before and after a DBD treatment are studied by using contact angle measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The effect of treatment time on the surface modification with and without a magnetic field is investigated. It is found that the hydrophilic improvement depends on the treatment time and magnetic field. It is also found that surface roughness and oxygen-containing groups are introduced onto the PP film surface after the DBD treatment. Surface roughness and oxygen-containing polar functional groups of the PP films increase with the magnetic induction density. The functional groups are identified as C-O, C=O and O-C=O by using XPS analysis. It is concluded that the hydrophilic improvement of PP films treated with a magnetic field is due to a greater surface roughness and more oxygen-containing groups.
文摘Background: Acute otitis externa is a common multi-factorial disorder in the dog. Several topical preparations are available on the veterinary market, which are licensed for an either specified duration of treatment or for a discretionary period that is determined by the clinician. Objectives: To compare the efficacy of two topical products, both licensed for the treatment of otitis externa in the dog, but with different treatment durations. Animal Population: One hundred and sixty dogs were enrolled in this multicentre field study from which 157 dogs were analysed in the Per Protocol sample (73 Aurizon?treated animals and 84 Easotic?treated animals). Method: Dogs were randomly assigned to Aurizon?or Easotic?treatment groups. Aurizon?(Vétoquinol SA: marbofloxacin, clotrimazole, dexamethasone) was administered daily in the affected ear(s) for 7 or 14 days, and was compared with a daily administration of Easotic?(Virbac SAS: gentamicin, miconazole, hydrocortisone aceponate) for 5 days. General and localised clinical signs were scored on days 0 (D0), 3 (D3), 7 (D7), 14 (D14) and 21 (D21). Results: Clinical cure rates at the end of treatment were 56.3% and 48.8% (p=0.35) in the Aurizon?and Easotic?groups respectively and 81.2% versus 74.7% one week after completing the course of treatment (p = 0.34). Twenty-one days after initially presenting for the study, cure rates were 84.3% in the Aurizon?group and 73.8% in the Easotic?(p=0.12). A relationship between severity of clinical signs and treatment duration was observed. Conclusion and Clinical Significance: At the end of the trial period, cure rates showed a tendency to be higher in the Aurizon?treated animals. The flexible dosage and the veterinary monitoring permitted treatment duration to be adjusted based upon the severity of otitis externa thus increasing the likelihood of clinical cure.
文摘For 2091 Al-Li alloy, the volume fraction of second phase particles is greatly determined by the homogenization temperature and homogenization time under an electric field and the ductility of the alloy is determined by the fraciton of second phase particles. The combined homogenization treatment shortens the homogenization time, reduces the loss ofLi content and increases the ductity of the alloy.
文摘Homogenization treatment under an electric field increases the distributive homogeneity of the T1 precipitation and improves the yield strength of 2091 Al-Li alloy.