We analyze the significance of supersymmetry in two topological models and the standard model (SM). We conclude that the two topological field theory models favor hidden supersymmetry. The SM superpartners, instead, h...We analyze the significance of supersymmetry in two topological models and the standard model (SM). We conclude that the two topological field theory models favor hidden supersymmetry. The SM superpartners, instead, have not been found.展开更多
The absolute vacuum is the Mocombeian ontological name for the fifth dimensional probability wavefunction(the world of noumena,i.e.,the in-itself)that gives rise to the material worlds,their facts,relations of ideas,a...The absolute vacuum is the Mocombeian ontological name for the fifth dimensional probability wavefunction(the world of noumena,i.e.,the in-itself)that gives rise to the material worlds,their facts,relations of ideas,and mathematical principles,we as a species experience.In this article,I utilize Mocombe’s phenomenological structural epistemology emanating out of the aforementioned ontology of the absolute vacuum to refute Kant’s epistemological unknowability of the noumenal world,i.e.,the absolute vacuum in Mocombeian epistemology.展开更多
Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that e...Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that each material object, including living creatures, is concomitant with a fraction of the charged complex masses of DM and DE in proportion to its mass. This perception provides new insights into the physics of nature and its constituents from subatomic to cosmic scales. This complex nature of DM and DE explains our inability to see DM or harvest DE for the last several decades. The positive complex DM is responsible for preserving the integrity of galaxies and all material systems. The negative complex charged DE induces a positive repelling force with the positively charged DM and contributes to the universe’s expansion. Both fields are Lorentz invariants in all directions and entangle the whole universe. The paper uses CFT to investigate zero-point energy, particle-wave duality, relativistic mass increase, and entanglement phenomenon and unifies Coulomb’s and Newton’s laws. The paper also verifies the existence of tachyons and explains the spooky action of quantum mechanics at a distance. The paper encourages further research into how CFT might resolve several physical mysteries in physics.展开更多
We investigate the interplay between the pseudogap state and d-wave superconductivity in the two-dimensional doped Hubbard model by employing an eight-site cluster dynamical mean-field theory method.By tuning electron...We investigate the interplay between the pseudogap state and d-wave superconductivity in the two-dimensional doped Hubbard model by employing an eight-site cluster dynamical mean-field theory method.By tuning electron hopping parameters,the strong-coupling pseudogap in the two-dimensional Hubbard model can be either enhanced or suppressed in the doped Mott insulator regime.We find that in underdoped cases,the closing of pseudogap leads to a significant enhancement of superconductivity,indicating competition between the two in the underdoped regime.In contrast,at large dopings,suppressing the pseudogap is accompanied by a concurrent decrease in the superconducting transition temperature Tc,which can be attributed to a reduction in antiferromagnetic correlations behind both the pseudogap and superconductivity.We elucidate this evolving relationship between pseudogap and superconductivity across different doping regimes.展开更多
The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad...The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.展开更多
In this work,we attempt to construct the Lax connections of TT-deformed integrable field theories in two different ways.With reasonable assumptions,we make an ansatz and find the Lax pairs in the TT-deformed affine To...In this work,we attempt to construct the Lax connections of TT-deformed integrable field theories in two different ways.With reasonable assumptions,we make an ansatz and find the Lax pairs in the TT-deformed affine Toda theories and the principal chiral model by solving the Lax equations directly.This method is straightforward,but it may be difficult to apply for general models.We then make use of a dynamic coordinate transformation to read the Lax connection in the deformed theory from the undeformed one.We find that once the inverse of the transformation is available,the Lax connection can be read easily.We show the construction explicitly for a few classes of scalar models and find consistency with those determined using the first method.展开更多
Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to ver...Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to verify the feasibility of this theory,this paper fits it to the Monte Carlo simulations of specific heat and susceptibility versus temperature of two-dimensional(2D)random-site Ising model(2D-RSIM).The results indicate that the FMFT deviates from the 2D-RSIM significantly.The main reason for the deviation is that the 2D-RSIM is a typical system of component random distribution,where the real order parameter is spatially heterogeneous and has no symmetry of space translation,but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation.展开更多
This study considers an-particle jump-diffusion system with mean field interaction,where the coefficients are locally Lipschitz continuous.We address the convergence as n→∞of the empirical measure of the jump-diffus...This study considers an-particle jump-diffusion system with mean field interaction,where the coefficients are locally Lipschitz continuous.We address the convergence as n→∞of the empirical measure of the jump-diffusions to the solution of a deterministic McKean-Vlasov equation.The strong well-posedness of the associated McKean-Vlasov equation and a corresponding propagation of chaos result are proven.In particular,we also provide precise estimates of the convergence speed with respect to a Wasserstein-like metric.展开更多
The self-consistent field theory(SCFT)was employed to numerically study the interaction and interpenetration between two opposing weak polyelectrolyte(PE)brushes formed by grafting weak PE chains onto the surfaces of ...The self-consistent field theory(SCFT)was employed to numerically study the interaction and interpenetration between two opposing weak polyelectrolyte(PE)brushes formed by grafting weak PE chains onto the surfaces of two long and parallel columns with rectangularshaped cross-section immersed in a salty aqueous solution.The dependences of the brush heights and the average degree of ionization on various system parameters were also investigated.When the brush separation is relatively large compared with the unperturbed brush height,the degree of interpenetration between the two opposing PE brushes was found to increase with increasing grafting density and bulk degree of ionization.The degree of interpenetration also increases with the bulk salt concentration in the osmotic brush regime.Numerical results further revealed that,at a brush separation comparable to the unperturbed brush height,the degree of interpenetration does not increase further with increasing bulk degree of ionization,bulk salt concentration in the osmotic regime and grafting density.The saturation of the degree of interpenetration with these system parameters indicates that the grafted PE chains in the gap between the two columns retract and tilt in order to reduce the unfavorable electrostatic and steric repulsions between the two opposing PE brushes.Based on salt ion concentrations at the midpoint between the two opposing brushes,a quantitative criterion in terms of the unperturbed brush height and Debye screening length was established to determine the threshold value of the brush separation beyond which they are truly independent from each other.展开更多
We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implemen...We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.展开更多
Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix...Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix elements from a dual fermion-boson Lagrangian. In this formalism, the fermion binding energies are compensated by boson energies, indicating that particles can be generated out of the vacuum. This yields quantitative solutions for various mesons ω (0.78 GeV) - Υ (9.46 GeV) and all leptons e, μ and τ, with uncertainties in the extracted properties of less than 1‰. For transparency, a Web-page with the address htpps://h2909473.stratoserver.net has been constructed, where all calculations can be run on line and also the underlying fortran source code can be inspected.展开更多
This work explores the epistemology of consciousness in Mocombe’s consciousness field in the material world.The paper critically assesses Mocombe’s consciousness field theory within the larger body of contemporary o...This work explores the epistemology of consciousness in Mocombe’s consciousness field in the material world.The paper critically assesses Mocombe’s consciousness field theory within the larger body of contemporary ontological debates regarding the nature,origin,and constitution of consciousness in the universe.The work goes on to highlight the manifestation of Mocombe’s consciousness field from the absolute vacuum to and in the material resource framework that is the earth,and how we come to know about and experience both(the absolute vacuum and the material worlds that it creates).展开更多
This work explores the axiology of consciousness in Mocombe’s consciousness field in the material world.The paper critically assesses Mocombe’s consciousness field theory(CFT)within the larger body of contemporary o...This work explores the axiology of consciousness in Mocombe’s consciousness field in the material world.The paper critically assesses Mocombe’s consciousness field theory(CFT)within the larger body of contemporary ontological debates regarding the nature,origin,and constitution of consciousness in the universe.The work goes on to highlight the manifestation of Mocombe’s consciousness field in the material resource framework that is the earth,and the nature and origins of ethics and values.展开更多
If the singularity of the cosmic Big Bang is taken as the origin of the reference coordinate system,the surrounding vacuum in the initial moments of it would exhibit radially-outward right-handed spiral motion at ligh...If the singularity of the cosmic Big Bang is taken as the origin of the reference coordinate system,the surrounding vacuum in the initial moments of it would exhibit radially-outward right-handed spiral motion at light speed.Based on this spatial motion hypothesis,we derive a unified field equation and a set of Maxwell’s equations for vacuum SWs(Scalar Waves)generating a huge spiral force field that drives the energy to spiral inwardly and distort,leading to the formation of mass.Furthermore,they also uncover that mass is fundamentally an ultimate expression of energy,manifesting as the result of spiral motion of space at light speed.And then,we indirectly validate the theory that coherent light waves’collision generate SWs and subsequently mass through the experiment verifying the Breit-Wheeler process.The establishment of our theory offers a new analytical tool for the exploration of mass origin,the cosmic Big Bang,unified field theories.展开更多
We are going to prove that the Monopole and the Coulomb fields are duals within the unifying structure provided by the Reissner–Nordstr¨om spacetime. This is accomplished when noticing that in order to produce t...We are going to prove that the Monopole and the Coulomb fields are duals within the unifying structure provided by the Reissner–Nordstr¨om spacetime. This is accomplished when noticing that in order to produce the tetrad that locally and covariantly diagonalizes the stress-energy tensor, both the Monopole and the Coulomb fields are necessary in the construction. Without any of them it would be impossible to express the tetrad vectors that locally and covariantly diagonalize the stress-energy tensor. Then, both electromagnetic fields are an integral part of the same structure, the Reissner–Nordstr¨om geometry.展开更多
We consider a relativistic two-fluid model of superfluidity,in which the superfluid is described by an order parameter that is a complex scalar field satisfying the nonlinear Klein-Gordon equation(NLKG).The coupling t...We consider a relativistic two-fluid model of superfluidity,in which the superfluid is described by an order parameter that is a complex scalar field satisfying the nonlinear Klein-Gordon equation(NLKG).The coupling to the normal fluid is introduced via a covariant current-current interaction,which results in the addition of an effective potential,whose imaginary part describes particle transfer between superfluid and normal fluid.Quantized vorticity arises in a class of singular solutions and the related vortex dynamics is incorporated in the modified NLKG,facilitating numerical analysis which is usually very complicated in the phenomenology of vortex filaments.The dual transformation to a string theory description(Kalb-Ramond)of quantum vorticity,the Magnus force,and the mutual friction between quantized vortices and normal fluid are also studied.展开更多
This work describes and explains how the concept of God as utilized amongst the human species emerged using Mocombe’s consciousness field theory.I conclude the work by positing,from the revelations of near-death expe...This work describes and explains how the concept of God as utilized amongst the human species emerged using Mocombe’s consciousness field theory.I conclude the work by positing,from the revelations of near-death experiences and other aspects of the categories of the in-itself,how consciousness is manifested as a universal consciousness in the absolute vacuum once it is no longer a part of the world of phenomena,which humans equate with the God concept and phenomenon.Hence,in Mocombeian epistemology and ontology God is the human reification of the universality of the absolute vacuum,which is ontologically real.展开更多
The self-assembly of block copolymers serves as an effective approach for fabricating various periodic ordered nanostructures. By employing self-consistent field theory (SCFT) to calculate the phase diagrams of block ...The self-assembly of block copolymers serves as an effective approach for fabricating various periodic ordered nanostructures. By employing self-consistent field theory (SCFT) to calculate the phase diagrams of block copolymers, one can accurately predict their self-assembly behaviors, thus providing guidance for the fabrication of various novel structures. However, SCFT is highly sensitive to initial conditions because it finds the free energy minima through an iterative process. Consequently, constructing phase diagrams using SCFT typically requires predefined candidate structures based on the experience of researchers. Such experience-dependent strategies often miss some structures and thus result in inaccurate phase diagrams. Recently, artificial intelligence (AI) techniques have demonstrated significant potential across diverse fields of science and technology. By leveraging AI methods, it is possible to reduce reliance on human experience, thereby constructing more robust and reliable phase diagrams. In this work, we demonstrate how to combine AI with SCFT to automatically search for self-assembled structures of block copolymers and construct phase diagrams. Our aim is to realize automatic construction of block copolymer phase diagrams while minimizing reliance on human prior knowledge.展开更多
Based on the mass-energy equation of special relativity and the assumption of the helical motion of light speed in cosmic space,we have theoretically demonstrated the true implications of Planck’s physical quantities...Based on the mass-energy equation of special relativity and the assumption of the helical motion of light speed in cosmic space,we have theoretically demonstrated the true implications of Planck’s physical quantities:Planck length and time represent the step size and period of the helical motion of light speed in the earliest cosmic space following the Big Bang;Planck energy constitutes the minimum energy unit associated with this spatial helical motion;Planck mass is the mass derived from this minimum energy unit.In accordance with the expression of Planck time,we have derived the relationship formula between gravitational acceleration and the speed of light,thereby uncovering an inevitable intrinsic connection between the gravitational field and the electromagnetic field,and indicating that the four fundamental forces in the universe can be unified.Finally,through our spatial helical motion model,we computed the specific values of the four fundamental forces at the moment of strong nuclear force separation.The results reveal that they are in complete agreement with the theoretical calculation values or experimental values in modern physics and quantum mechanics,thereby providing an interesting hint for the unified field theories.展开更多
文摘We analyze the significance of supersymmetry in two topological models and the standard model (SM). We conclude that the two topological field theory models favor hidden supersymmetry. The SM superpartners, instead, have not been found.
文摘The absolute vacuum is the Mocombeian ontological name for the fifth dimensional probability wavefunction(the world of noumena,i.e.,the in-itself)that gives rise to the material worlds,their facts,relations of ideas,and mathematical principles,we as a species experience.In this article,I utilize Mocombe’s phenomenological structural epistemology emanating out of the aforementioned ontology of the absolute vacuum to refute Kant’s epistemological unknowability of the noumenal world,i.e.,the absolute vacuum in Mocombeian epistemology.
文摘Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that each material object, including living creatures, is concomitant with a fraction of the charged complex masses of DM and DE in proportion to its mass. This perception provides new insights into the physics of nature and its constituents from subatomic to cosmic scales. This complex nature of DM and DE explains our inability to see DM or harvest DE for the last several decades. The positive complex DM is responsible for preserving the integrity of galaxies and all material systems. The negative complex charged DE induces a positive repelling force with the positively charged DM and contributes to the universe’s expansion. Both fields are Lorentz invariants in all directions and entangle the whole universe. The paper uses CFT to investigate zero-point energy, particle-wave duality, relativistic mass increase, and entanglement phenomenon and unifies Coulomb’s and Newton’s laws. The paper also verifies the existence of tachyons and explains the spooky action of quantum mechanics at a distance. The paper encourages further research into how CFT might resolve several physical mysteries in physics.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274472,12494594,12494591,and 92165204)National Key Research and Development Program of China(Grant No.2022YFA1402802)+2 种基金Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices(Grant No.2022B1212010008)Guangdong Fundamental Research Center for Magnetoelectric Physics(Grant No.2024B0303390001)Guangdong Provincial Quantum Science Strategic Initiative(Grant No.GDZX2401010)。
文摘We investigate the interplay between the pseudogap state and d-wave superconductivity in the two-dimensional doped Hubbard model by employing an eight-site cluster dynamical mean-field theory method.By tuning electron hopping parameters,the strong-coupling pseudogap in the two-dimensional Hubbard model can be either enhanced or suppressed in the doped Mott insulator regime.We find that in underdoped cases,the closing of pseudogap leads to a significant enhancement of superconductivity,indicating competition between the two in the underdoped regime.In contrast,at large dopings,suppressing the pseudogap is accompanied by a concurrent decrease in the superconducting transition temperature Tc,which can be attributed to a reduction in antiferromagnetic correlations behind both the pseudogap and superconductivity.We elucidate this evolving relationship between pseudogap and superconductivity across different doping regimes.
基金the Australian Government through the Australian Research Council's Discovery Projects funding scheme(Project DP190101592)the National Natural Science Foundation of China(Grant Nos.41972280 and 52179103).
文摘The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.
基金Supported by the National Natural Science Foundation of China(NSFC)(11735001)supported by the UCAS program of special research associate and by the internal funds of the KITS。
文摘In this work,we attempt to construct the Lax connections of TT-deformed integrable field theories in two different ways.With reasonable assumptions,we make an ansatz and find the Lax pairs in the TT-deformed affine Toda theories and the principal chiral model by solving the Lax equations directly.This method is straightforward,but it may be difficult to apply for general models.We then make use of a dynamic coordinate transformation to read the Lax connection in the deformed theory from the undeformed one.We find that once the inverse of the transformation is available,the Lax connection can be read easily.We show the construction explicitly for a few classes of scalar models and find consistency with those determined using the first method.
基金Project supported by the Open Project of the Key Laboratory of Xinjiang Uygur Autonomous Region,China(Grant No.2021D04015)the Yili Kazakh Autonomous Prefecture Science and Technology Program Project,China(Grant No.YZ2022B021).
文摘Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to verify the feasibility of this theory,this paper fits it to the Monte Carlo simulations of specific heat and susceptibility versus temperature of two-dimensional(2D)random-site Ising model(2D-RSIM).The results indicate that the FMFT deviates from the 2D-RSIM significantly.The main reason for the deviation is that the 2D-RSIM is a typical system of component random distribution,where the real order parameter is spatially heterogeneous and has no symmetry of space translation,but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation.
文摘This study considers an-particle jump-diffusion system with mean field interaction,where the coefficients are locally Lipschitz continuous.We address the convergence as n→∞of the empirical measure of the jump-diffusions to the solution of a deterministic McKean-Vlasov equation.The strong well-posedness of the associated McKean-Vlasov equation and a corresponding propagation of chaos result are proven.In particular,we also provide precise estimates of the convergence speed with respect to a Wasserstein-like metric.
基金supported by the National Natural Science Foundation of China(No.21774067)The Foundation of Key Laboratory of Flexible Electronics of Zhejiang Province(No.2023FE004)C.T.acknowledges the support from K.C.Wong Magna at Ningbo University。
文摘The self-consistent field theory(SCFT)was employed to numerically study the interaction and interpenetration between two opposing weak polyelectrolyte(PE)brushes formed by grafting weak PE chains onto the surfaces of two long and parallel columns with rectangularshaped cross-section immersed in a salty aqueous solution.The dependences of the brush heights and the average degree of ionization on various system parameters were also investigated.When the brush separation is relatively large compared with the unperturbed brush height,the degree of interpenetration between the two opposing PE brushes was found to increase with increasing grafting density and bulk degree of ionization.The degree of interpenetration also increases with the bulk salt concentration in the osmotic brush regime.Numerical results further revealed that,at a brush separation comparable to the unperturbed brush height,the degree of interpenetration does not increase further with increasing bulk degree of ionization,bulk salt concentration in the osmotic regime and grafting density.The saturation of the degree of interpenetration with these system parameters indicates that the grafted PE chains in the gap between the two columns retract and tilt in order to reduce the unfavorable electrostatic and steric repulsions between the two opposing PE brushes.Based on salt ion concentrations at the midpoint between the two opposing brushes,a quantitative criterion in terms of the unperturbed brush height and Debye screening length was established to determine the threshold value of the brush separation beyond which they are truly independent from each other.
文摘We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.
文摘Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix elements from a dual fermion-boson Lagrangian. In this formalism, the fermion binding energies are compensated by boson energies, indicating that particles can be generated out of the vacuum. This yields quantitative solutions for various mesons ω (0.78 GeV) - Υ (9.46 GeV) and all leptons e, μ and τ, with uncertainties in the extracted properties of less than 1‰. For transparency, a Web-page with the address htpps://h2909473.stratoserver.net has been constructed, where all calculations can be run on line and also the underlying fortran source code can be inspected.
文摘This work explores the epistemology of consciousness in Mocombe’s consciousness field in the material world.The paper critically assesses Mocombe’s consciousness field theory within the larger body of contemporary ontological debates regarding the nature,origin,and constitution of consciousness in the universe.The work goes on to highlight the manifestation of Mocombe’s consciousness field from the absolute vacuum to and in the material resource framework that is the earth,and how we come to know about and experience both(the absolute vacuum and the material worlds that it creates).
文摘This work explores the axiology of consciousness in Mocombe’s consciousness field in the material world.The paper critically assesses Mocombe’s consciousness field theory(CFT)within the larger body of contemporary ontological debates regarding the nature,origin,and constitution of consciousness in the universe.The work goes on to highlight the manifestation of Mocombe’s consciousness field in the material resource framework that is the earth,and the nature and origins of ethics and values.
文摘If the singularity of the cosmic Big Bang is taken as the origin of the reference coordinate system,the surrounding vacuum in the initial moments of it would exhibit radially-outward right-handed spiral motion at light speed.Based on this spatial motion hypothesis,we derive a unified field equation and a set of Maxwell’s equations for vacuum SWs(Scalar Waves)generating a huge spiral force field that drives the energy to spiral inwardly and distort,leading to the formation of mass.Furthermore,they also uncover that mass is fundamentally an ultimate expression of energy,manifesting as the result of spiral motion of space at light speed.And then,we indirectly validate the theory that coherent light waves’collision generate SWs and subsequently mass through the experiment verifying the Breit-Wheeler process.The establishment of our theory offers a new analytical tool for the exploration of mass origin,the cosmic Big Bang,unified field theories.
文摘We are going to prove that the Monopole and the Coulomb fields are duals within the unifying structure provided by the Reissner–Nordstr¨om spacetime. This is accomplished when noticing that in order to produce the tetrad that locally and covariantly diagonalizes the stress-energy tensor, both the Monopole and the Coulomb fields are necessary in the construction. Without any of them it would be impossible to express the tetrad vectors that locally and covariantly diagonalize the stress-energy tensor. Then, both electromagnetic fields are an integral part of the same structure, the Reissner–Nordstr¨om geometry.
文摘We consider a relativistic two-fluid model of superfluidity,in which the superfluid is described by an order parameter that is a complex scalar field satisfying the nonlinear Klein-Gordon equation(NLKG).The coupling to the normal fluid is introduced via a covariant current-current interaction,which results in the addition of an effective potential,whose imaginary part describes particle transfer between superfluid and normal fluid.Quantized vorticity arises in a class of singular solutions and the related vortex dynamics is incorporated in the modified NLKG,facilitating numerical analysis which is usually very complicated in the phenomenology of vortex filaments.The dual transformation to a string theory description(Kalb-Ramond)of quantum vorticity,the Magnus force,and the mutual friction between quantized vortices and normal fluid are also studied.
文摘This work describes and explains how the concept of God as utilized amongst the human species emerged using Mocombe’s consciousness field theory.I conclude the work by positing,from the revelations of near-death experiences and other aspects of the categories of the in-itself,how consciousness is manifested as a universal consciousness in the absolute vacuum once it is no longer a part of the world of phenomena,which humans equate with the God concept and phenomenon.Hence,in Mocombeian epistemology and ontology God is the human reification of the universality of the absolute vacuum,which is ontologically real.
基金supported by the National Natural Science Foundation of China(Nos.52394272,22333002,22203018,22303017).
文摘The self-assembly of block copolymers serves as an effective approach for fabricating various periodic ordered nanostructures. By employing self-consistent field theory (SCFT) to calculate the phase diagrams of block copolymers, one can accurately predict their self-assembly behaviors, thus providing guidance for the fabrication of various novel structures. However, SCFT is highly sensitive to initial conditions because it finds the free energy minima through an iterative process. Consequently, constructing phase diagrams using SCFT typically requires predefined candidate structures based on the experience of researchers. Such experience-dependent strategies often miss some structures and thus result in inaccurate phase diagrams. Recently, artificial intelligence (AI) techniques have demonstrated significant potential across diverse fields of science and technology. By leveraging AI methods, it is possible to reduce reliance on human experience, thereby constructing more robust and reliable phase diagrams. In this work, we demonstrate how to combine AI with SCFT to automatically search for self-assembled structures of block copolymers and construct phase diagrams. Our aim is to realize automatic construction of block copolymer phase diagrams while minimizing reliance on human prior knowledge.
文摘Based on the mass-energy equation of special relativity and the assumption of the helical motion of light speed in cosmic space,we have theoretically demonstrated the true implications of Planck’s physical quantities:Planck length and time represent the step size and period of the helical motion of light speed in the earliest cosmic space following the Big Bang;Planck energy constitutes the minimum energy unit associated with this spatial helical motion;Planck mass is the mass derived from this minimum energy unit.In accordance with the expression of Planck time,we have derived the relationship formula between gravitational acceleration and the speed of light,thereby uncovering an inevitable intrinsic connection between the gravitational field and the electromagnetic field,and indicating that the four fundamental forces in the universe can be unified.Finally,through our spatial helical motion model,we computed the specific values of the four fundamental forces at the moment of strong nuclear force separation.The results reveal that they are in complete agreement with the theoretical calculation values or experimental values in modern physics and quantum mechanics,thereby providing an interesting hint for the unified field theories.