Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factor...Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factorization (SNMF). SNMF was used to extract features from LFPs recorded from the prefrontal cortex of four SpragueDawley rats during a memory task in a Y maze, with 10 trials for each rat. Then the powerincreased LFP components were selected as working memoryrelated features and the other components were removed. After that, the inverse operation of SNMF was used to study the encoding of working memory in the time frequency domain. We demonstrated that theta and gamma power increased significantly during the working memory task. The results suggested that postsynaptic activity was simulated well by the sparse activity model. The theta and gamma bands were meaningful for encoding working memory.展开更多
Jujuboside A (JuA) is a main component of Jujubogenin extracted from the seeds of Ziziphus. The authors have not seen any report on JuA's direct effect on the neurons of the central nervous system. This study aime...Jujuboside A (JuA) is a main component of Jujubogenin extracted from the seeds of Ziziphus. The authors have not seen any report on JuA's direct effect on the neurons of the central nervous system. This study aimed to assess the effect of JuA on paired pulse responses of dentate gyrus granule cells in urethane anaesthetized rats, used intracerebroventricular (i.c.v.) JuA to mimic in vitro bath conditions in vivo. Paired pulse stimuli with 80ms interpulse interval were used to stimulate the perforant pathway. Evoked responses were recorded in the dentate gyrus cell layer after i.c.v. administration of 0.9% normal saline or JuA. In the first responses, the slopes of excitatory postsynaptic potential (EPSP1) and the amplitudes of population spike (PS1) decreased significantly after administration of JuA while the PS1 latencies increased significantly. In the second responses, the EPSP2 slopes and PS2 latencies were changed similarly to those of the first ones, but PS2 amplitudes increased. The results showed that JuA may have some inhibitory effect on the granule cell excitability mediated by presynaptic mechanism but may have little effect on the excitability mediated by postsynaptic mechanism since the second evoked N methyl D aspartic mediating paired pulse facilitation is a postsynaptic mechanism.展开更多
The local field potential(LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are or...The local field potential(LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood(SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit(GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes,delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals(like EEG and f MRI) using similar recording techniques.展开更多
The concept of receptive field(RF) is central to sensory neuroscience. Neuronal RF properties have been substantially studied in animals,while those in humans remain nearly unexplored. Here, we measured neuronal RFs w...The concept of receptive field(RF) is central to sensory neuroscience. Neuronal RF properties have been substantially studied in animals,while those in humans remain nearly unexplored. Here, we measured neuronal RFs with intracranial local field potentials(LFPs) and spiking activity in human visual cortex(V1/V2/V3). We recorded LFPs via macro-contacts and discovered that RF sizes estimated from lowfrequency activity(LFA, 0.5–30 Hz) were larger than those estimated from low-gamma activity(LGA, 30–60 Hz) and high-gamma activity(HGA, 60–150 Hz). We then took a rare opportunity to record LFPs and spiking activity via microwires in V1 simultaneously. We found that RF sizes and temporal profiles measured from LGA and HGA closely matched those from spiking activity. In sum, this study reveals that spiking activity of neurons in human visual cortex could be well approximated by LGA and HGA in RF estimation and temporal profile measurement, implying the pivotal functions of LGA and HGA in early visual information processing.展开更多
The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivativ...The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivative operator.Additionally,time delays in the potential field force and coupling force transmission are both considered.Firstly,based on the delay decoupling formula,combined with statistical mean method and the fractional-order Shapiro–Loginov formula,the“statistic synchronization”among particles is obtained,revealing the statistical equivalence between the mean field behavior of the system and the behavior of individual particles.Due to the existence of the coupling delay,the impact of the coupling force on synchronization exhibits non-monotonic,which is different from the previous monotonic effects.Then,two kinds of theoretical expression of output amplitude gains G and G are derived by time-delay decoupling formula and small delay approximation theorem,respectively.Compared to G,G is an exact theoretical solution,which means that G is not only more accurate in the region of small delay,but also applies to the region of large delay.Finally,the study of the output amplitude gain G and its resonance behavior are explored.Due to the presence of the potential field delay,a new resonance phenomenon termed“periodic resonance”is discovered,which arises from the periodic matching between the potential field delay and the driving frequency.This resonance phenomenon is analyzed qualitatively and quantitatively,uncovering undiscovered characteristics in previous studies.展开更多
Path planning for recovery is studied on the engineering background of double unmanned surface vehicles(USVs)towing oil booms for oil spill recovery.Given the influence of obstacles on the sea,the improved artificial ...Path planning for recovery is studied on the engineering background of double unmanned surface vehicles(USVs)towing oil booms for oil spill recovery.Given the influence of obstacles on the sea,the improved artificial potential field(APF)method is used for path planning.For addressing the two problems of unreachable target and local minimum in the APF,three improved algorithms are proposed by combining the motion performance constraints of the double USV system.These algorithms are then combined as the final APF-123 algorithm for oil spill recovery.Multiple sets of simulation tests are designed according to the flaws of the APF and the process of oil spill recovery.Results show that the proposed algorithms can ensure the system’s safety in tracking oil spills in a complex environment,and the speed is increased by more than 40%compared with the APF method.展开更多
Frequent flood disasters caused by climate change may lead to tremendous economic and human losses along inland waterways.Emergency response and rescue vessels(ERRVs)play an essential role in minimizing losses and pro...Frequent flood disasters caused by climate change may lead to tremendous economic and human losses along inland waterways.Emergency response and rescue vessels(ERRVs)play an essential role in minimizing losses and protecting lives and property.However,the path planning of ERRVs has mainly depended on expert experiences instead of rational decision making.This paper proposes an improved artificial potential field(APF)algorithm to optimize the shortest path for ERRVs in the rescue process.To verify the feasibility of the proposed model,eight tests were carried out in two water areas of the Yangtze River.The results showed that the improved APF algorithm was efficient with fewer iterations and that the response time of path planning was reduced to around eight seconds.The improved APF algorithm performed better in the ERRV’s goal achievement,compared with the traditional algorithm.The path planning method for ERRVs proposed in this paper has theoretical and practical value in flood relief.It can be applied in the emergency management of ERRVs to accelerate flood management efficiency and improve capacity to prevent,mitigate,and relieve flood disasters.展开更多
In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization tec...In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement.展开更多
This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network ...This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network could reduce or even control seizures. (2) Local field potential coupling is a very common phenomenon during synchronization in networks. Removal of neurons or neuronal networks that are coupled can significantly alter the extracellular field potential. Interventions of coupling mediated by local field potentials could result in desynchronization of epileptic seizures. (3) The synchronized electrical activity generated by neurons is sensitive to changes in the size of the extracellular space, which affects the efficiency of field potential transmission and the threshold of cell excitability. (4) Manipulations of the field potential fluctuations could help block synchronization at seizure onset.展开更多
Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivati...Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative which has the functions of both edge detection and enhancement techniques. First, we calculate the total horizontal derivative (THDR) of the potential-field data and then compute the n-order vertical derivative (VDRn) of the THDR. For the n-order vertical derivative, the peak value of total horizontal derivative (PTHDR) is obtained using a threshold value greater than 0. This PTHDR can be used for edge detection. Second, the PTHDR value is divided by the total horizontal derivative and normalized by the maximum value. Finally, we used different kinds of numerical models to verify the effectiveness and reliability of the new edge recognition technology.展开更多
The long-term enhancement in glutamate receptor mediated excitatory responses has been observed in stroke model. This pathological form of plasticity, termed post-ischemic long-term potentiation (i-LTP), points to f...The long-term enhancement in glutamate receptor mediated excitatory responses has been observed in stroke model. This pathological form of plasticity, termed post-ischemic long-term potentiation (i-LTP), points to functional reorganization after stroke. Little is known, however, about whether and how this i-LTP would affect subsequent induction of synaptic plasticity. Here, we first directly confirmed that i-LTP was induced in the endothelin-l-induced ischemia model as in other in vitro models. We also demonstrated increased expression of NR2B, CaMKII and p-CaMKII, which are reminiscent of i-LTP. We further induced LTP of field excitatory post- synaptic potentials (fEPSPs) on CA1 hippocampal neurons in peri-infarct regions of the endothelin-l-induced mini-stroke model. We found that LTP of fEPSPs, induced by high-frequency stimulation, displayed a progressive impairment at 12 and 24 hours after ischemia. Moreover, using in vivo multi-channel recording, we found that the local field potential, which represents electrical property of cell ensembles in more restricted regions, was also dam- pened at these two time points. These results suggest that i-LTP elevates the induction threshold of subsequent synap- tic plasticity. Our data helps to deepen the knowledge of meta-synaptic regulation of plasticity after focal ischemia.展开更多
Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Fir...Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.展开更多
A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation.Through ap...A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation.Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments.展开更多
A shift sampling theory established by author (1997a) is a generalization of Fourier transform computation theory. Based on this theory, I develop an Algorithm-Error (A-E) equation of potential field transformatio...A shift sampling theory established by author (1997a) is a generalization of Fourier transform computation theory. Based on this theory, I develop an Algorithm-Error (A-E) equation of potential field transformations in the wavenumber domain, which not only gives a more flexible algorithm of potential field transformations, but also reveals the law of error of potential field transformations in the wavenumber domain. The DFT0η η(0.5, 0.5) reduction-to-pole (RTP) technique derived from the A-E equation significantly improves the resolution and accuracy of RTP anomalies at low magnetic latitudes, including the magnetic equator. The law (origin, form mechanism, and essential properties) of the edge oscillation revealed by the A-E equation points out theoretically a way of improving the effect of existing padding methods in high-pass transformations in the wavenumber domain.展开更多
Air route crossing waypoint optimization is one of the effective ways to improve airspace utilization,capacity and resilience in dealing with air traffic congestion and delay.However,research is lacking on the optimiz...Air route crossing waypoint optimization is one of the effective ways to improve airspace utilization,capacity and resilience in dealing with air traffic congestion and delay.However,research is lacking on the optimization of multiple Crossing Waypoints(CWPs)in the fragmented airspace separated by Prohibited,Restricted and Dangerous areas(PRDs).To tackle this issue,this paper proposes an Artificial Potential Field(APF)model considering attractive forces produced by the optimal routes and repulsive forces generated by obstacles.An optimization framework based on the APF model is proposed to optimize the different airspace topologies varying the number of CWPs,air route segments and PRDs.Based on the framework,an adaptive method is developed to dynamically control the optimization process in minimizing the total air route cost.The proposed model is applied to a busy controlled airspace.And the obtained results show that after optimization the safety-related indicators:conflict number and controller workload reduced by 7.75%and 6.51%respectively.As for the cost-effectiveness indicators:total route length,total air route cost and non-linear coefficient,declined by 1.74%,3.13%and 1.70%respectively.While the predictability indicator,total flight delay,saw a notable reduction by 7.96%.The proposed framework and methodology can also provide an insight in the understanding of the optimization to other network systems.展开更多
Formation keeping is important for multiple Unmanned Aerial Vehicles(multi-UAV)to fully play their roles in cooperative combats and improve their mission success rate.However,in practical applications,it is difficult ...Formation keeping is important for multiple Unmanned Aerial Vehicles(multi-UAV)to fully play their roles in cooperative combats and improve their mission success rate.However,in practical applications,it is difficult to achieve formation keeping precisely and obstacle avoidance autonomously at the same time.This paper proposes a joint control method based on robust H∞ controller and improved Artificial Potential Field(APF)method.Firstly,we build a formation flight model based on the “Leader-Follower”structure and design a robust H∞ controller with three channels X,Y and Z to eliminate dynamic uncertainties,so as to realize high-precision formation keeping.Secondly,to fulfill obstacle avoidance efficiently in complex situations where UAVs fly at high speed with high inertia,this paper comes up with the improved APF method with deformation factor considered.The judgment criterion is proposed and applied to ensure flight safety.In the end,the simulation results show that the designed controller is effective with the formation keeping a high accuracy and in the meantime,it enables UAVs to avoid obstacles autonomously and recover the formation rapidly when coming close to obstacles.Therefore,the method proposed here boasts good engineering application prospect.展开更多
For real-time and distributed features of multi-robot system,the strategy of combining the improved artificial potential field method and the rules based on priority is proposed to study the collision avoidance planni...For real-time and distributed features of multi-robot system,the strategy of combining the improved artificial potential field method and the rules based on priority is proposed to study the collision avoidance planning in multi-robot systems. The improved artificial potential field based on simulated annealing algorithm satisfactorily overcomes the drawbacks of traditional artificial potential field method,so that robots can find a local collision-free path in the complex environment. According to the movement vector trail of robots,collisions between robots can be detected,thereby the collision avoidance rules can be obtained. Coordination between robots by the priority based rules improves the real-time property of multi-robot system. The combination of these two methods can help a robot to find a collision-free path from a starting point to the goal quickly in an environment with many obstacles. The feasibility of the proposed method is validated in the VC-based simulated environment.展开更多
An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed...An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed architecture where each UAV is considered as an ant and makes decision autonomously.At each decision step,the ants choose the next gird according to the state transition rule and update its own artificial potential field and pheromone map based on the current search results.Through iterations of this process,the cooperative search of UAV swarm for mission area is realized.The state transition rule is divided into two types.If the artificial potential force is larger than a threshold,the deterministic transition rule is adopted,otherwise a heuristic transition rule is used.The deterministic transition rule can ensure UAVs to avoid the threat or approach the target quickly.And the heuristics transition rule considering the pheromone and heuristic information ensures the continuous search of area with the goal of covering more unknown area and finding more targets.Finally,simulations are carried out to verify the effectiveness of the proposed ACOAPF algorithm for cooperative search mission of UAV swarm.展开更多
We evaluated 2011-2015 mobile relative gravity data from the Hexi monitoring network that covers the epicenter of the 2016 Menyuan Ms6.4 earthquake, Qinghai Province, China and examined the spatiotemporal characterist...We evaluated 2011-2015 mobile relative gravity data from the Hexi monitoring network that covers the epicenter of the 2016 Menyuan Ms6.4 earthquake, Qinghai Province, China and examined the spatiotemporal characteristics of the gravity field at the focal depth. In addition, we assessed the regional gravity field and its variation the half-year before the earthquake. We use first different interpolation algorithms to build a grid for the gravity data and then introduce potential field interpolation-cutting separation techniques and adaptive noise filtering. The results suggest that the gravity filed at the focal depth of 11.12 km separated from the total gravity field at about -400-150 ×10^-8 m/s^2 in the second half of 2015, which is larger than that in the same period in 2011 to 2014 (±30×10^-8 m/s^2). Moreover, at the same time, the gravity field changed fast from September 2014 to May 2015 and May 2015 to September 2015, reflecting to some extent material migration deep in the crust before the Menyuan earthquake.展开更多
A thorough understanding on the mechanical properties of carbon nanotube (CNT) is essential in extending the advanced applications of CNT based systems. However, conducting experiments to estimate mechanical propert...A thorough understanding on the mechanical properties of carbon nanotube (CNT) is essential in extending the advanced applications of CNT based systems. However, conducting experiments to estimate mechanical properties at this scale is extremely challenging. Therefore, development of mechanistic models to estimate the mechanical properties of CNTs along with the integration of existing continuum mechanics concepts is critically important. This paper presents a comprehensive molecular dynamics simulation study on the size dependency and potential function influence of mechanical properties of CNT. Commonly used reactive bond order (REBO) and adaptive intermolecular reactive bond order (A1REBO) potential functions were considered in this regard. Young's modulus and shear modulus of CNTs are derived by integrating classical continuum mechanics concepts with molecular dynamics simulations. The results indicate that the potential function has a significant influence on the estimated mechanical properties of CNTs, and the influence of potential field is much higher when studying the torsional behaviour of CNTs than the tensile behaviour.展开更多
基金supported by the National Natural Science Foundation of China (61074131 and 91132722)the Doctoral Fund of the Ministry of Education of China (21101202110007)
文摘Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factorization (SNMF). SNMF was used to extract features from LFPs recorded from the prefrontal cortex of four SpragueDawley rats during a memory task in a Y maze, with 10 trials for each rat. Then the powerincreased LFP components were selected as working memoryrelated features and the other components were removed. After that, the inverse operation of SNMF was used to study the encoding of working memory in the time frequency domain. We demonstrated that theta and gamma power increased significantly during the working memory task. The results suggested that postsynaptic activity was simulated well by the sparse activity model. The theta and gamma bands were meaningful for encoding working memory.
文摘Jujuboside A (JuA) is a main component of Jujubogenin extracted from the seeds of Ziziphus. The authors have not seen any report on JuA's direct effect on the neurons of the central nervous system. This study aimed to assess the effect of JuA on paired pulse responses of dentate gyrus granule cells in urethane anaesthetized rats, used intracerebroventricular (i.c.v.) JuA to mimic in vitro bath conditions in vivo. Paired pulse stimuli with 80ms interpulse interval were used to stimulate the perforant pathway. Evoked responses were recorded in the dentate gyrus cell layer after i.c.v. administration of 0.9% normal saline or JuA. In the first responses, the slopes of excitatory postsynaptic potential (EPSP1) and the amplitudes of population spike (PS1) decreased significantly after administration of JuA while the PS1 latencies increased significantly. In the second responses, the EPSP2 slopes and PS2 latencies were changed similarly to those of the first ones, but PS2 amplitudes increased. The results showed that JuA may have some inhibitory effect on the granule cell excitability mediated by presynaptic mechanism but may have little effect on the excitability mediated by postsynaptic mechanism since the second evoked N methyl D aspartic mediating paired pulse facilitation is a postsynaptic mechanism.
基金supported by Grants from the National Natural Science Foundation of China(81230023,81571067,and 81521063)National Basic Research Development Program(973 Program)of China(2013CB531905)the‘‘111’’Project of China
文摘The local field potential(LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood(SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit(GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes,delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals(like EEG and f MRI) using similar recording techniques.
基金supported by the National Science and Technology Innovation 2030 Major Program(2022ZD0204802,2022ZD0204804)the National Natural Science Foundation of China(31930053,32171039)Beijing Academy of Artificial Intelligence(BAAI)。
文摘The concept of receptive field(RF) is central to sensory neuroscience. Neuronal RF properties have been substantially studied in animals,while those in humans remain nearly unexplored. Here, we measured neuronal RFs with intracranial local field potentials(LFPs) and spiking activity in human visual cortex(V1/V2/V3). We recorded LFPs via macro-contacts and discovered that RF sizes estimated from lowfrequency activity(LFA, 0.5–30 Hz) were larger than those estimated from low-gamma activity(LGA, 30–60 Hz) and high-gamma activity(HGA, 60–150 Hz). We then took a rare opportunity to record LFPs and spiking activity via microwires in V1 simultaneously. We found that RF sizes and temporal profiles measured from LGA and HGA closely matched those from spiking activity. In sum, this study reveals that spiking activity of neurons in human visual cortex could be well approximated by LGA and HGA in RF estimation and temporal profile measurement, implying the pivotal functions of LGA and HGA in early visual information processing.
基金supported by the Natural Science Foundation of Sichuan Province,China(Youth Science Foundation)(Grant No.2022NSFSC1952).
文摘The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivative operator.Additionally,time delays in the potential field force and coupling force transmission are both considered.Firstly,based on the delay decoupling formula,combined with statistical mean method and the fractional-order Shapiro–Loginov formula,the“statistic synchronization”among particles is obtained,revealing the statistical equivalence between the mean field behavior of the system and the behavior of individual particles.Due to the existence of the coupling delay,the impact of the coupling force on synchronization exhibits non-monotonic,which is different from the previous monotonic effects.Then,two kinds of theoretical expression of output amplitude gains G and G are derived by time-delay decoupling formula and small delay approximation theorem,respectively.Compared to G,G is an exact theoretical solution,which means that G is not only more accurate in the region of small delay,but also applies to the region of large delay.Finally,the study of the output amplitude gain G and its resonance behavior are explored.Due to the presence of the potential field delay,a new resonance phenomenon termed“periodic resonance”is discovered,which arises from the periodic matching between the potential field delay and the driving frequency.This resonance phenomenon is analyzed qualitatively and quantitatively,uncovering undiscovered characteristics in previous studies.
基金Supported by the National Natural Science Foundation of China (Grant No. 52071097)Hainan Provincial Natural Science Foundation of China (Grant No. 522MS162)Research Fund from Science and Technology on Underwater Vehicle Technology Laboratory (Grant No. 2021JCJQ-SYSJJ-LB06910)。
文摘Path planning for recovery is studied on the engineering background of double unmanned surface vehicles(USVs)towing oil booms for oil spill recovery.Given the influence of obstacles on the sea,the improved artificial potential field(APF)method is used for path planning.For addressing the two problems of unreachable target and local minimum in the APF,three improved algorithms are proposed by combining the motion performance constraints of the double USV system.These algorithms are then combined as the final APF-123 algorithm for oil spill recovery.Multiple sets of simulation tests are designed according to the flaws of the APF and the process of oil spill recovery.Results show that the proposed algorithms can ensure the system’s safety in tracking oil spills in a complex environment,and the speed is increased by more than 40%compared with the APF method.
基金The National Natural Science Foundation of China(Grant No.72274052)the National Natural Science Foundation of China(Grant No.72174173).
文摘Frequent flood disasters caused by climate change may lead to tremendous economic and human losses along inland waterways.Emergency response and rescue vessels(ERRVs)play an essential role in minimizing losses and protecting lives and property.However,the path planning of ERRVs has mainly depended on expert experiences instead of rational decision making.This paper proposes an improved artificial potential field(APF)algorithm to optimize the shortest path for ERRVs in the rescue process.To verify the feasibility of the proposed model,eight tests were carried out in two water areas of the Yangtze River.The results showed that the improved APF algorithm was efficient with fewer iterations and that the response time of path planning was reduced to around eight seconds.The improved APF algorithm performed better in the ERRV’s goal achievement,compared with the traditional algorithm.The path planning method for ERRVs proposed in this paper has theoretical and practical value in flood relief.It can be applied in the emergency management of ERRVs to accelerate flood management efficiency and improve capacity to prevent,mitigate,and relieve flood disasters.
基金This work is supported by the research project (grant No. G20000467) of the Institute of Geology and Geophysics, CAS and bythe China Postdoctoral Science Foundation (No. 2004036083).
文摘In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement.
基金supported by grants from the National Natural Science Foundation of China,No. 30971534125 Project of the Third Xiangya Hospital of Central South University,China
文摘This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network could reduce or even control seizures. (2) Local field potential coupling is a very common phenomenon during synchronization in networks. Removal of neurons or neuronal networks that are coupled can significantly alter the extracellular field potential. Interventions of coupling mediated by local field potentials could result in desynchronization of epileptic seizures. (3) The synchronized electrical activity generated by neurons is sensitive to changes in the size of the extracellular space, which affects the efficiency of field potential transmission and the threshold of cell excitability. (4) Manipulations of the field potential fluctuations could help block synchronization at seizure onset.
基金supported by the National Science and Technology Major Projects (2008ZX05025)the Project of National Oil and Gas Resources Strategic Constituency Survey and Evaluation of the Ministry of Land and Resources,China (XQ-2007-05)
文摘Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative which has the functions of both edge detection and enhancement techniques. First, we calculate the total horizontal derivative (THDR) of the potential-field data and then compute the n-order vertical derivative (VDRn) of the THDR. For the n-order vertical derivative, the peak value of total horizontal derivative (PTHDR) is obtained using a threshold value greater than 0. This PTHDR can be used for edge detection. Second, the PTHDR value is divided by the total horizontal derivative and normalized by the maximum value. Finally, we used different kinds of numerical models to verify the effectiveness and reliability of the new edge recognition technology.
基金supported by Major State Basic Research Program of China(Grant No.2013CB733801)
文摘The long-term enhancement in glutamate receptor mediated excitatory responses has been observed in stroke model. This pathological form of plasticity, termed post-ischemic long-term potentiation (i-LTP), points to functional reorganization after stroke. Little is known, however, about whether and how this i-LTP would affect subsequent induction of synaptic plasticity. Here, we first directly confirmed that i-LTP was induced in the endothelin-l-induced ischemia model as in other in vitro models. We also demonstrated increased expression of NR2B, CaMKII and p-CaMKII, which are reminiscent of i-LTP. We further induced LTP of field excitatory post- synaptic potentials (fEPSPs) on CA1 hippocampal neurons in peri-infarct regions of the endothelin-l-induced mini-stroke model. We found that LTP of fEPSPs, induced by high-frequency stimulation, displayed a progressive impairment at 12 and 24 hours after ischemia. Moreover, using in vivo multi-channel recording, we found that the local field potential, which represents electrical property of cell ensembles in more restricted regions, was also dam- pened at these two time points. These results suggest that i-LTP elevates the induction threshold of subsequent synap- tic plasticity. Our data helps to deepen the knowledge of meta-synaptic regulation of plasticity after focal ischemia.
文摘Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.
文摘A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation.Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments.
文摘A shift sampling theory established by author (1997a) is a generalization of Fourier transform computation theory. Based on this theory, I develop an Algorithm-Error (A-E) equation of potential field transformations in the wavenumber domain, which not only gives a more flexible algorithm of potential field transformations, but also reveals the law of error of potential field transformations in the wavenumber domain. The DFT0η η(0.5, 0.5) reduction-to-pole (RTP) technique derived from the A-E equation significantly improves the resolution and accuracy of RTP anomalies at low magnetic latitudes, including the magnetic equator. The law (origin, form mechanism, and essential properties) of the edge oscillation revealed by the A-E equation points out theoretically a way of improving the effect of existing padding methods in high-pass transformations in the wavenumber domain.
基金the Civil Aviation Authority of Singapore and the Nanyang Technological University,Singapore under their collaboration in the Air Traffic Management Research Institute。
文摘Air route crossing waypoint optimization is one of the effective ways to improve airspace utilization,capacity and resilience in dealing with air traffic congestion and delay.However,research is lacking on the optimization of multiple Crossing Waypoints(CWPs)in the fragmented airspace separated by Prohibited,Restricted and Dangerous areas(PRDs).To tackle this issue,this paper proposes an Artificial Potential Field(APF)model considering attractive forces produced by the optimal routes and repulsive forces generated by obstacles.An optimization framework based on the APF model is proposed to optimize the different airspace topologies varying the number of CWPs,air route segments and PRDs.Based on the framework,an adaptive method is developed to dynamically control the optimization process in minimizing the total air route cost.The proposed model is applied to a busy controlled airspace.And the obtained results show that after optimization the safety-related indicators:conflict number and controller workload reduced by 7.75%and 6.51%respectively.As for the cost-effectiveness indicators:total route length,total air route cost and non-linear coefficient,declined by 1.74%,3.13%and 1.70%respectively.While the predictability indicator,total flight delay,saw a notable reduction by 7.96%.The proposed framework and methodology can also provide an insight in the understanding of the optimization to other network systems.
基金supported by Funding from the National Key Laboratory of Rotorcraft Aeromechanics,China(No.61422202108)the National Natural Science Foundation of China(No.52176009).
文摘Formation keeping is important for multiple Unmanned Aerial Vehicles(multi-UAV)to fully play their roles in cooperative combats and improve their mission success rate.However,in practical applications,it is difficult to achieve formation keeping precisely and obstacle avoidance autonomously at the same time.This paper proposes a joint control method based on robust H∞ controller and improved Artificial Potential Field(APF)method.Firstly,we build a formation flight model based on the “Leader-Follower”structure and design a robust H∞ controller with three channels X,Y and Z to eliminate dynamic uncertainties,so as to realize high-precision formation keeping.Secondly,to fulfill obstacle avoidance efficiently in complex situations where UAVs fly at high speed with high inertia,this paper comes up with the improved APF method with deformation factor considered.The judgment criterion is proposed and applied to ensure flight safety.In the end,the simulation results show that the designed controller is effective with the formation keeping a high accuracy and in the meantime,it enables UAVs to avoid obstacles autonomously and recover the formation rapidly when coming close to obstacles.Therefore,the method proposed here boasts good engineering application prospect.
基金Sponsored by the Science Foundation for Youths of Heilongjiang province (Grant No.QC08C05)
文摘For real-time and distributed features of multi-robot system,the strategy of combining the improved artificial potential field method and the rules based on priority is proposed to study the collision avoidance planning in multi-robot systems. The improved artificial potential field based on simulated annealing algorithm satisfactorily overcomes the drawbacks of traditional artificial potential field method,so that robots can find a local collision-free path in the complex environment. According to the movement vector trail of robots,collisions between robots can be detected,thereby the collision avoidance rules can be obtained. Coordination between robots by the priority based rules improves the real-time property of multi-robot system. The combination of these two methods can help a robot to find a collision-free path from a starting point to the goal quickly in an environment with many obstacles. The feasibility of the proposed method is validated in the VC-based simulated environment.
基金supported by the National Natural Science Foundation of China (Nos.61973158, 61673209)the Aeronautical Science Foundation (No.2016ZA52009)
文摘An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed architecture where each UAV is considered as an ant and makes decision autonomously.At each decision step,the ants choose the next gird according to the state transition rule and update its own artificial potential field and pheromone map based on the current search results.Through iterations of this process,the cooperative search of UAV swarm for mission area is realized.The state transition rule is divided into two types.If the artificial potential force is larger than a threshold,the deterministic transition rule is adopted,otherwise a heuristic transition rule is used.The deterministic transition rule can ensure UAVs to avoid the threat or approach the target quickly.And the heuristics transition rule considering the pheromone and heuristic information ensures the continuous search of area with the goal of covering more unknown area and finding more targets.Finally,simulations are carried out to verify the effectiveness of the proposed ACOAPF algorithm for cooperative search mission of UAV swarm.
基金supported by the Science for Earthquake Resilience(No.XH17058Y)Science and Technology Innovation Fund of the First Crust Monitoring and Application Center,CEA(No.FMC2016004)Special Program for Basic Work of the Ministry of Science and Technology,China(No.2015FY210403)
文摘We evaluated 2011-2015 mobile relative gravity data from the Hexi monitoring network that covers the epicenter of the 2016 Menyuan Ms6.4 earthquake, Qinghai Province, China and examined the spatiotemporal characteristics of the gravity field at the focal depth. In addition, we assessed the regional gravity field and its variation the half-year before the earthquake. We use first different interpolation algorithms to build a grid for the gravity data and then introduce potential field interpolation-cutting separation techniques and adaptive noise filtering. The results suggest that the gravity filed at the focal depth of 11.12 km separated from the total gravity field at about -400-150 ×10^-8 m/s^2 in the second half of 2015, which is larger than that in the same period in 2011 to 2014 (±30×10^-8 m/s^2). Moreover, at the same time, the gravity field changed fast from September 2014 to May 2015 and May 2015 to September 2015, reflecting to some extent material migration deep in the crust before the Menyuan earthquake.
基金financially supported by National Science Foundation(NSF)of Sri Lankathe Natural Sciences and Engineering Research Council(NSERC)of Canada
文摘A thorough understanding on the mechanical properties of carbon nanotube (CNT) is essential in extending the advanced applications of CNT based systems. However, conducting experiments to estimate mechanical properties at this scale is extremely challenging. Therefore, development of mechanistic models to estimate the mechanical properties of CNTs along with the integration of existing continuum mechanics concepts is critically important. This paper presents a comprehensive molecular dynamics simulation study on the size dependency and potential function influence of mechanical properties of CNT. Commonly used reactive bond order (REBO) and adaptive intermolecular reactive bond order (A1REBO) potential functions were considered in this regard. Young's modulus and shear modulus of CNTs are derived by integrating classical continuum mechanics concepts with molecular dynamics simulations. The results indicate that the potential function has a significant influence on the estimated mechanical properties of CNTs, and the influence of potential field is much higher when studying the torsional behaviour of CNTs than the tensile behaviour.