Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factor...Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factorization (SNMF). SNMF was used to extract features from LFPs recorded from the prefrontal cortex of four SpragueDawley rats during a memory task in a Y maze, with 10 trials for each rat. Then the powerincreased LFP components were selected as working memoryrelated features and the other components were removed. After that, the inverse operation of SNMF was used to study the encoding of working memory in the time frequency domain. We demonstrated that theta and gamma power increased significantly during the working memory task. The results suggested that postsynaptic activity was simulated well by the sparse activity model. The theta and gamma bands were meaningful for encoding working memory.展开更多
Jujuboside A (JuA) is a main component of Jujubogenin extracted from the seeds of Ziziphus. The authors have not seen any report on JuA's direct effect on the neurons of the central nervous system. This study aime...Jujuboside A (JuA) is a main component of Jujubogenin extracted from the seeds of Ziziphus. The authors have not seen any report on JuA's direct effect on the neurons of the central nervous system. This study aimed to assess the effect of JuA on paired pulse responses of dentate gyrus granule cells in urethane anaesthetized rats, used intracerebroventricular (i.c.v.) JuA to mimic in vitro bath conditions in vivo. Paired pulse stimuli with 80ms interpulse interval were used to stimulate the perforant pathway. Evoked responses were recorded in the dentate gyrus cell layer after i.c.v. administration of 0.9% normal saline or JuA. In the first responses, the slopes of excitatory postsynaptic potential (EPSP1) and the amplitudes of population spike (PS1) decreased significantly after administration of JuA while the PS1 latencies increased significantly. In the second responses, the EPSP2 slopes and PS2 latencies were changed similarly to those of the first ones, but PS2 amplitudes increased. The results showed that JuA may have some inhibitory effect on the granule cell excitability mediated by presynaptic mechanism but may have little effect on the excitability mediated by postsynaptic mechanism since the second evoked N methyl D aspartic mediating paired pulse facilitation is a postsynaptic mechanism.展开更多
The local field potential(LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are or...The local field potential(LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood(SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit(GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes,delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals(like EEG and f MRI) using similar recording techniques.展开更多
The concept of receptive field(RF) is central to sensory neuroscience. Neuronal RF properties have been substantially studied in animals,while those in humans remain nearly unexplored. Here, we measured neuronal RFs w...The concept of receptive field(RF) is central to sensory neuroscience. Neuronal RF properties have been substantially studied in animals,while those in humans remain nearly unexplored. Here, we measured neuronal RFs with intracranial local field potentials(LFPs) and spiking activity in human visual cortex(V1/V2/V3). We recorded LFPs via macro-contacts and discovered that RF sizes estimated from lowfrequency activity(LFA, 0.5–30 Hz) were larger than those estimated from low-gamma activity(LGA, 30–60 Hz) and high-gamma activity(HGA, 60–150 Hz). We then took a rare opportunity to record LFPs and spiking activity via microwires in V1 simultaneously. We found that RF sizes and temporal profiles measured from LGA and HGA closely matched those from spiking activity. In sum, this study reveals that spiking activity of neurons in human visual cortex could be well approximated by LGA and HGA in RF estimation and temporal profile measurement, implying the pivotal functions of LGA and HGA in early visual information processing.展开更多
The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivativ...The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivative operator.Additionally,time delays in the potential field force and coupling force transmission are both considered.Firstly,based on the delay decoupling formula,combined with statistical mean method and the fractional-order Shapiro–Loginov formula,the“statistic synchronization”among particles is obtained,revealing the statistical equivalence between the mean field behavior of the system and the behavior of individual particles.Due to the existence of the coupling delay,the impact of the coupling force on synchronization exhibits non-monotonic,which is different from the previous monotonic effects.Then,two kinds of theoretical expression of output amplitude gains G and G are derived by time-delay decoupling formula and small delay approximation theorem,respectively.Compared to G,G is an exact theoretical solution,which means that G is not only more accurate in the region of small delay,but also applies to the region of large delay.Finally,the study of the output amplitude gain G and its resonance behavior are explored.Due to the presence of the potential field delay,a new resonance phenomenon termed“periodic resonance”is discovered,which arises from the periodic matching between the potential field delay and the driving frequency.This resonance phenomenon is analyzed qualitatively and quantitatively,uncovering undiscovered characteristics in previous studies.展开更多
Path planning for recovery is studied on the engineering background of double unmanned surface vehicles(USVs)towing oil booms for oil spill recovery.Given the influence of obstacles on the sea,the improved artificial ...Path planning for recovery is studied on the engineering background of double unmanned surface vehicles(USVs)towing oil booms for oil spill recovery.Given the influence of obstacles on the sea,the improved artificial potential field(APF)method is used for path planning.For addressing the two problems of unreachable target and local minimum in the APF,three improved algorithms are proposed by combining the motion performance constraints of the double USV system.These algorithms are then combined as the final APF-123 algorithm for oil spill recovery.Multiple sets of simulation tests are designed according to the flaws of the APF and the process of oil spill recovery.Results show that the proposed algorithms can ensure the system’s safety in tracking oil spills in a complex environment,and the speed is increased by more than 40%compared with the APF method.展开更多
Anti-rollover is a critical factor to consider when planning the motion of autonomous heavy trucks.This paper proposed a method for autonomous heavy trucks to generate a path that avoids collisions and minimizes rollo...Anti-rollover is a critical factor to consider when planning the motion of autonomous heavy trucks.This paper proposed a method for autonomous heavy trucks to generate a path that avoids collisions and minimizes rollover risk.The corresponding rollover index is deduced from a 5-DOF heavy truck dynamic model that includes longitudinal motion,lateral motion,yaw motion,sprung mass roll motion,unsprung mass roll motion,and an anti-rollover artificial potential field(APF)is proposed based on this.The motion planning method,which is based on model predictive control(MPC),combines trajectory tracking,anti-rollover APF,and the improved obstacle avoidance APF and considers the truck dynamics constraints,obstacle avoidance,and anti-rollover.Furthermore,by using game theory,the coefficients of the two APF functions are optimised,and an optimal path is planned.The effectiveness of the optimised motion planning method is demonstrated in a variety of scenarios.The results demonstrate that the optimised motion planning method can effectively and efficiently avoid collisions and prevent rollover.展开更多
The Tethered Space Net Robot(TSNR)is an innovative solution for active space debris capture and removal.Its large envelope and simple capture method make it an attractive option for this task.However,capturing maneuve...The Tethered Space Net Robot(TSNR)is an innovative solution for active space debris capture and removal.Its large envelope and simple capture method make it an attractive option for this task.However,capturing maneuverable debris with the flexible and elastic underactuated net poses significant challenges.To address this,a novel formation control method for the TSNR is proposed through the integration of differential game theory and robust adaptive control in this paper.Specifically,the trajectory of the TSNR is obtained through the solution of a real-time feedback pursuit-evasion game with a dynamic target,where the primary condition is to ensure the stability of the TSNR.Furthermore,to minimize tracking errors and maintain a specific configuration,a robust adaptive formation control scheme with Artificial Potential Field(APF)based on a Finite-Time Convergent Extended State Observer(FTCESO)is investigated.The proposed control method has a key advantage in suppressing complex oscillations by a new adaptive law,thus precisely maintaining the configuration.Finally,numerical simulations are performed to demonstrate the effectiveness of the proposed scheme.展开更多
Dealing with both elemental and high-Tc superconductors (SCs) - Sn, Nb and Pb belonging to the former category, and MgB2 and different samples of YBCO to the latter - we show that the difference in the values of their...Dealing with both elemental and high-Tc superconductors (SCs) - Sn, Nb and Pb belonging to the former category, and MgB2 and different samples of YBCO to the latter - we show that the difference in the values of their critical magnetic field Hc1,c2 and the penetration depth λL(0) is, remarkably, attributable predominantly to the difference in the values of a single parameter, viz., the chemical potential (μ) close to their critical temperatures (Tcs). Based directly on the dynamics of pairing in a magnetic field and the corresponding number equation, our approach relates Hc1,c2 of an SC with the following set of its properties: S1 = {μ, Tc, Debye temperature, effective mass of the electron, magnetic interaction parameter, Landau index}. Hence, it provides an alternative to the approach followed by Talantsev [Mod. Phys. Lett. B 33, 1950195 (2019)] who has shown by ingeniously combining the results of various well-established theories that Hc2 of an SC can be calculated via four different equations, each of which invokes two or more properties from its sample-specific set S2 = {Tc, gap, coherence length, λL(0), jump in sp. ht.}, which is radically different from S1.展开更多
This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from t...This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from the Bouguer anomaly map, which is strongly affected by a regional gradient. The residual anomaly map generated provides information on the variation in subsurface density, but does not provide sufficient information, hence the interest in using filtering with the aim of highlighting the structures affecting the area of south-west Cameroon. Three interpretation methods were used: vertical gradient, horizontal gradient coupled with upward continuation and Euler deconvolution. The application of these treatments enabled us to map a large number of gravimetric lineaments materializing density discontinuities. These lineaments are organized along main preferential directions: NW-SE, NNE-SSW, ENE-WSW and secondary directions: NNW-SSE, NE-SW, NS and E-W. Euler solutions indicate depths of up to 7337 m. Thanks to the results of this research, significant information has been acquired, contributing to a deeper understanding of the structural composition of the study area. The resulting structural map vividly illustrates the major tectonic events that shaped the geological framework of the study area. It also serves as a guide for prospecting subsurface resources (water and hydrocarbons). .展开更多
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
Among the existing research on the treatment of disorders of consciousness(DOC),deep brain stimulation(DBS)offers a highly promising therapeutic approach.This comprehensive review documents the historical development ...Among the existing research on the treatment of disorders of consciousness(DOC),deep brain stimulation(DBS)offers a highly promising therapeutic approach.This comprehensive review documents the historical development of DBS and its role in the treatment of DOC,tracing its progression from an experimental therapy to a detailed modulation approach based on the mesocircuit model hypothesis.The mesocircuit model hypothesis suggests that DOC arises from disruptions in a critical network of brain regions,providing a framework for refining DBS targets.We also discuss the multimodal approaches for assessing patients with DOC,encompassing clinical behavioral scales,electrophysiological assessment,and neuroimaging techniques methods.During the evolution of DOC therapy,the segmentation of central nuclei,the recording of single-neurons,and the analysis of local field potentials have emerged as favorable technical factors that enhance the efficacy of DBS treatment.Advances in computational models have also facilitated a deeper exploration of the neural dynamics associated with DOC,linking neuron-level dynamics with macroscopic behavioral changes.Despite showing promising outcomes,challenges remain in patient selection,precise target localization,and the determination of optimal stimulation parameters.Future research should focus on conducting large-scale controlled studies to delve into the pathophysiological mechanisms of DOC.It is imperative to further elucidate the precise modulatory effects of DBS on thalamo-cortical and cortico-cortical functional connectivity networks.Ultimately,by optimizing neuromodulation strategies,we aim to substantially enhance therapeutic outcomes and greatly expedite the process of consciousness recovery in patients.展开更多
In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization tec...In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement.展开更多
This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network ...This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network could reduce or even control seizures. (2) Local field potential coupling is a very common phenomenon during synchronization in networks. Removal of neurons or neuronal networks that are coupled can significantly alter the extracellular field potential. Interventions of coupling mediated by local field potentials could result in desynchronization of epileptic seizures. (3) The synchronized electrical activity generated by neurons is sensitive to changes in the size of the extracellular space, which affects the efficiency of field potential transmission and the threshold of cell excitability. (4) Manipulations of the field potential fluctuations could help block synchronization at seizure onset.展开更多
An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and coll...An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.展开更多
Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivati...Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative which has the functions of both edge detection and enhancement techniques. First, we calculate the total horizontal derivative (THDR) of the potential-field data and then compute the n-order vertical derivative (VDRn) of the THDR. For the n-order vertical derivative, the peak value of total horizontal derivative (PTHDR) is obtained using a threshold value greater than 0. This PTHDR can be used for edge detection. Second, the PTHDR value is divided by the total horizontal derivative and normalized by the maximum value. Finally, we used different kinds of numerical models to verify the effectiveness and reliability of the new edge recognition technology.展开更多
The long-term enhancement in glutamate receptor mediated excitatory responses has been observed in stroke model. This pathological form of plasticity, termed post-ischemic long-term potentiation (i-LTP), points to f...The long-term enhancement in glutamate receptor mediated excitatory responses has been observed in stroke model. This pathological form of plasticity, termed post-ischemic long-term potentiation (i-LTP), points to functional reorganization after stroke. Little is known, however, about whether and how this i-LTP would affect subsequent induction of synaptic plasticity. Here, we first directly confirmed that i-LTP was induced in the endothelin-l-induced ischemia model as in other in vitro models. We also demonstrated increased expression of NR2B, CaMKII and p-CaMKII, which are reminiscent of i-LTP. We further induced LTP of field excitatory post- synaptic potentials (fEPSPs) on CA1 hippocampal neurons in peri-infarct regions of the endothelin-l-induced mini-stroke model. We found that LTP of fEPSPs, induced by high-frequency stimulation, displayed a progressive impairment at 12 and 24 hours after ischemia. Moreover, using in vivo multi-channel recording, we found that the local field potential, which represents electrical property of cell ensembles in more restricted regions, was also dam- pened at these two time points. These results suggest that i-LTP elevates the induction threshold of subsequent synap- tic plasticity. Our data helps to deepen the knowledge of meta-synaptic regulation of plasticity after focal ischemia.展开更多
Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Fir...Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.展开更多
A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation.Through ap...A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation.Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments.展开更多
Air route crossing waypoint optimization is one of the effective ways to improve airspace utilization,capacity and resilience in dealing with air traffic congestion and delay.However,research is lacking on the optimiz...Air route crossing waypoint optimization is one of the effective ways to improve airspace utilization,capacity and resilience in dealing with air traffic congestion and delay.However,research is lacking on the optimization of multiple Crossing Waypoints(CWPs)in the fragmented airspace separated by Prohibited,Restricted and Dangerous areas(PRDs).To tackle this issue,this paper proposes an Artificial Potential Field(APF)model considering attractive forces produced by the optimal routes and repulsive forces generated by obstacles.An optimization framework based on the APF model is proposed to optimize the different airspace topologies varying the number of CWPs,air route segments and PRDs.Based on the framework,an adaptive method is developed to dynamically control the optimization process in minimizing the total air route cost.The proposed model is applied to a busy controlled airspace.And the obtained results show that after optimization the safety-related indicators:conflict number and controller workload reduced by 7.75%and 6.51%respectively.As for the cost-effectiveness indicators:total route length,total air route cost and non-linear coefficient,declined by 1.74%,3.13%and 1.70%respectively.While the predictability indicator,total flight delay,saw a notable reduction by 7.96%.The proposed framework and methodology can also provide an insight in the understanding of the optimization to other network systems.展开更多
基金supported by the National Natural Science Foundation of China (61074131 and 91132722)the Doctoral Fund of the Ministry of Education of China (21101202110007)
文摘Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factorization (SNMF). SNMF was used to extract features from LFPs recorded from the prefrontal cortex of four SpragueDawley rats during a memory task in a Y maze, with 10 trials for each rat. Then the powerincreased LFP components were selected as working memoryrelated features and the other components were removed. After that, the inverse operation of SNMF was used to study the encoding of working memory in the time frequency domain. We demonstrated that theta and gamma power increased significantly during the working memory task. The results suggested that postsynaptic activity was simulated well by the sparse activity model. The theta and gamma bands were meaningful for encoding working memory.
文摘Jujuboside A (JuA) is a main component of Jujubogenin extracted from the seeds of Ziziphus. The authors have not seen any report on JuA's direct effect on the neurons of the central nervous system. This study aimed to assess the effect of JuA on paired pulse responses of dentate gyrus granule cells in urethane anaesthetized rats, used intracerebroventricular (i.c.v.) JuA to mimic in vitro bath conditions in vivo. Paired pulse stimuli with 80ms interpulse interval were used to stimulate the perforant pathway. Evoked responses were recorded in the dentate gyrus cell layer after i.c.v. administration of 0.9% normal saline or JuA. In the first responses, the slopes of excitatory postsynaptic potential (EPSP1) and the amplitudes of population spike (PS1) decreased significantly after administration of JuA while the PS1 latencies increased significantly. In the second responses, the EPSP2 slopes and PS2 latencies were changed similarly to those of the first ones, but PS2 amplitudes increased. The results showed that JuA may have some inhibitory effect on the granule cell excitability mediated by presynaptic mechanism but may have little effect on the excitability mediated by postsynaptic mechanism since the second evoked N methyl D aspartic mediating paired pulse facilitation is a postsynaptic mechanism.
基金supported by Grants from the National Natural Science Foundation of China(81230023,81571067,and 81521063)National Basic Research Development Program(973 Program)of China(2013CB531905)the‘‘111’’Project of China
文摘The local field potential(LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood(SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit(GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes,delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals(like EEG and f MRI) using similar recording techniques.
基金supported by the National Science and Technology Innovation 2030 Major Program(2022ZD0204802,2022ZD0204804)the National Natural Science Foundation of China(31930053,32171039)Beijing Academy of Artificial Intelligence(BAAI)。
文摘The concept of receptive field(RF) is central to sensory neuroscience. Neuronal RF properties have been substantially studied in animals,while those in humans remain nearly unexplored. Here, we measured neuronal RFs with intracranial local field potentials(LFPs) and spiking activity in human visual cortex(V1/V2/V3). We recorded LFPs via macro-contacts and discovered that RF sizes estimated from lowfrequency activity(LFA, 0.5–30 Hz) were larger than those estimated from low-gamma activity(LGA, 30–60 Hz) and high-gamma activity(HGA, 60–150 Hz). We then took a rare opportunity to record LFPs and spiking activity via microwires in V1 simultaneously. We found that RF sizes and temporal profiles measured from LGA and HGA closely matched those from spiking activity. In sum, this study reveals that spiking activity of neurons in human visual cortex could be well approximated by LGA and HGA in RF estimation and temporal profile measurement, implying the pivotal functions of LGA and HGA in early visual information processing.
基金supported by the Natural Science Foundation of Sichuan Province,China(Youth Science Foundation)(Grant No.2022NSFSC1952).
文摘The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivative operator.Additionally,time delays in the potential field force and coupling force transmission are both considered.Firstly,based on the delay decoupling formula,combined with statistical mean method and the fractional-order Shapiro–Loginov formula,the“statistic synchronization”among particles is obtained,revealing the statistical equivalence between the mean field behavior of the system and the behavior of individual particles.Due to the existence of the coupling delay,the impact of the coupling force on synchronization exhibits non-monotonic,which is different from the previous monotonic effects.Then,two kinds of theoretical expression of output amplitude gains G and G are derived by time-delay decoupling formula and small delay approximation theorem,respectively.Compared to G,G is an exact theoretical solution,which means that G is not only more accurate in the region of small delay,but also applies to the region of large delay.Finally,the study of the output amplitude gain G and its resonance behavior are explored.Due to the presence of the potential field delay,a new resonance phenomenon termed“periodic resonance”is discovered,which arises from the periodic matching between the potential field delay and the driving frequency.This resonance phenomenon is analyzed qualitatively and quantitatively,uncovering undiscovered characteristics in previous studies.
基金Supported by the National Natural Science Foundation of China (Grant No. 52071097)Hainan Provincial Natural Science Foundation of China (Grant No. 522MS162)Research Fund from Science and Technology on Underwater Vehicle Technology Laboratory (Grant No. 2021JCJQ-SYSJJ-LB06910)。
文摘Path planning for recovery is studied on the engineering background of double unmanned surface vehicles(USVs)towing oil booms for oil spill recovery.Given the influence of obstacles on the sea,the improved artificial potential field(APF)method is used for path planning.For addressing the two problems of unreachable target and local minimum in the APF,three improved algorithms are proposed by combining the motion performance constraints of the double USV system.These algorithms are then combined as the final APF-123 algorithm for oil spill recovery.Multiple sets of simulation tests are designed according to the flaws of the APF and the process of oil spill recovery.Results show that the proposed algorithms can ensure the system’s safety in tracking oil spills in a complex environment,and the speed is increased by more than 40%compared with the APF method.
基金Supported by National Natural Science Foundation of China(Grant No.51775269)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20211190).
文摘Anti-rollover is a critical factor to consider when planning the motion of autonomous heavy trucks.This paper proposed a method for autonomous heavy trucks to generate a path that avoids collisions and minimizes rollover risk.The corresponding rollover index is deduced from a 5-DOF heavy truck dynamic model that includes longitudinal motion,lateral motion,yaw motion,sprung mass roll motion,unsprung mass roll motion,and an anti-rollover artificial potential field(APF)is proposed based on this.The motion planning method,which is based on model predictive control(MPC),combines trajectory tracking,anti-rollover APF,and the improved obstacle avoidance APF and considers the truck dynamics constraints,obstacle avoidance,and anti-rollover.Furthermore,by using game theory,the coefficients of the two APF functions are optimised,and an optimal path is planned.The effectiveness of the optimised motion planning method is demonstrated in a variety of scenarios.The results demonstrate that the optimised motion planning method can effectively and efficiently avoid collisions and prevent rollover.
基金supported by the National Natural Science Foundation of China(Nos.62222313,62173275,62327809,62303381,and 62303312)in part by the China Postdoctoral Science Foundation(No.2023M732225).
文摘The Tethered Space Net Robot(TSNR)is an innovative solution for active space debris capture and removal.Its large envelope and simple capture method make it an attractive option for this task.However,capturing maneuverable debris with the flexible and elastic underactuated net poses significant challenges.To address this,a novel formation control method for the TSNR is proposed through the integration of differential game theory and robust adaptive control in this paper.Specifically,the trajectory of the TSNR is obtained through the solution of a real-time feedback pursuit-evasion game with a dynamic target,where the primary condition is to ensure the stability of the TSNR.Furthermore,to minimize tracking errors and maintain a specific configuration,a robust adaptive formation control scheme with Artificial Potential Field(APF)based on a Finite-Time Convergent Extended State Observer(FTCESO)is investigated.The proposed control method has a key advantage in suppressing complex oscillations by a new adaptive law,thus precisely maintaining the configuration.Finally,numerical simulations are performed to demonstrate the effectiveness of the proposed scheme.
文摘Dealing with both elemental and high-Tc superconductors (SCs) - Sn, Nb and Pb belonging to the former category, and MgB2 and different samples of YBCO to the latter - we show that the difference in the values of their critical magnetic field Hc1,c2 and the penetration depth λL(0) is, remarkably, attributable predominantly to the difference in the values of a single parameter, viz., the chemical potential (μ) close to their critical temperatures (Tcs). Based directly on the dynamics of pairing in a magnetic field and the corresponding number equation, our approach relates Hc1,c2 of an SC with the following set of its properties: S1 = {μ, Tc, Debye temperature, effective mass of the electron, magnetic interaction parameter, Landau index}. Hence, it provides an alternative to the approach followed by Talantsev [Mod. Phys. Lett. B 33, 1950195 (2019)] who has shown by ingeniously combining the results of various well-established theories that Hc2 of an SC can be calculated via four different equations, each of which invokes two or more properties from its sample-specific set S2 = {Tc, gap, coherence length, λL(0), jump in sp. ht.}, which is radically different from S1.
文摘This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from the Bouguer anomaly map, which is strongly affected by a regional gradient. The residual anomaly map generated provides information on the variation in subsurface density, but does not provide sufficient information, hence the interest in using filtering with the aim of highlighting the structures affecting the area of south-west Cameroon. Three interpretation methods were used: vertical gradient, horizontal gradient coupled with upward continuation and Euler deconvolution. The application of these treatments enabled us to map a large number of gravimetric lineaments materializing density discontinuities. These lineaments are organized along main preferential directions: NW-SE, NNE-SSW, ENE-WSW and secondary directions: NNW-SSE, NE-SW, NS and E-W. Euler solutions indicate depths of up to 7337 m. Thanks to the results of this research, significant information has been acquired, contributing to a deeper understanding of the structural composition of the study area. The resulting structural map vividly illustrates the major tectonic events that shaped the geological framework of the study area. It also serves as a guide for prospecting subsurface resources (water and hydrocarbons). .
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
基金supported by the Science and Technology Innovation 2030(2022ZD0205300)the International(Hong Kong,Macao,and Taiwan)Science and Technology Cooperation Project(Z221100002722014)+5 种基金the 2022 Open Project of Key Laboratory and Engineering Technology Research of the Ministry of Civil Affairs(2022GKZS0003)the Chinese Institute for Brain Research Youth Scholar Program(2022-NKX-XM-02)the Natural Science Foundation of Beijing municipality(7232049)the General Program of National Natural Science Foundation of China(82371197)the FundRef Organization name of Guarantors of Brain(HMR04170)the Royal Society(IES\R3\213123).
文摘Among the existing research on the treatment of disorders of consciousness(DOC),deep brain stimulation(DBS)offers a highly promising therapeutic approach.This comprehensive review documents the historical development of DBS and its role in the treatment of DOC,tracing its progression from an experimental therapy to a detailed modulation approach based on the mesocircuit model hypothesis.The mesocircuit model hypothesis suggests that DOC arises from disruptions in a critical network of brain regions,providing a framework for refining DBS targets.We also discuss the multimodal approaches for assessing patients with DOC,encompassing clinical behavioral scales,electrophysiological assessment,and neuroimaging techniques methods.During the evolution of DOC therapy,the segmentation of central nuclei,the recording of single-neurons,and the analysis of local field potentials have emerged as favorable technical factors that enhance the efficacy of DBS treatment.Advances in computational models have also facilitated a deeper exploration of the neural dynamics associated with DOC,linking neuron-level dynamics with macroscopic behavioral changes.Despite showing promising outcomes,challenges remain in patient selection,precise target localization,and the determination of optimal stimulation parameters.Future research should focus on conducting large-scale controlled studies to delve into the pathophysiological mechanisms of DOC.It is imperative to further elucidate the precise modulatory effects of DBS on thalamo-cortical and cortico-cortical functional connectivity networks.Ultimately,by optimizing neuromodulation strategies,we aim to substantially enhance therapeutic outcomes and greatly expedite the process of consciousness recovery in patients.
基金This work is supported by the research project (grant No. G20000467) of the Institute of Geology and Geophysics, CAS and bythe China Postdoctoral Science Foundation (No. 2004036083).
文摘In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement.
基金supported by grants from the National Natural Science Foundation of China,No. 30971534125 Project of the Third Xiangya Hospital of Central South University,China
文摘This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network could reduce or even control seizures. (2) Local field potential coupling is a very common phenomenon during synchronization in networks. Removal of neurons or neuronal networks that are coupled can significantly alter the extracellular field potential. Interventions of coupling mediated by local field potentials could result in desynchronization of epileptic seizures. (3) The synchronized electrical activity generated by neurons is sensitive to changes in the size of the extracellular space, which affects the efficiency of field potential transmission and the threshold of cell excitability. (4) Manipulations of the field potential fluctuations could help block synchronization at seizure onset.
基金founded by the National Science and Technology Council of the Republic of China under contract NSTC113-2221-E-019-032.
文摘An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.
基金supported by the National Science and Technology Major Projects (2008ZX05025)the Project of National Oil and Gas Resources Strategic Constituency Survey and Evaluation of the Ministry of Land and Resources,China (XQ-2007-05)
文摘Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative which has the functions of both edge detection and enhancement techniques. First, we calculate the total horizontal derivative (THDR) of the potential-field data and then compute the n-order vertical derivative (VDRn) of the THDR. For the n-order vertical derivative, the peak value of total horizontal derivative (PTHDR) is obtained using a threshold value greater than 0. This PTHDR can be used for edge detection. Second, the PTHDR value is divided by the total horizontal derivative and normalized by the maximum value. Finally, we used different kinds of numerical models to verify the effectiveness and reliability of the new edge recognition technology.
基金supported by Major State Basic Research Program of China(Grant No.2013CB733801)
文摘The long-term enhancement in glutamate receptor mediated excitatory responses has been observed in stroke model. This pathological form of plasticity, termed post-ischemic long-term potentiation (i-LTP), points to functional reorganization after stroke. Little is known, however, about whether and how this i-LTP would affect subsequent induction of synaptic plasticity. Here, we first directly confirmed that i-LTP was induced in the endothelin-l-induced ischemia model as in other in vitro models. We also demonstrated increased expression of NR2B, CaMKII and p-CaMKII, which are reminiscent of i-LTP. We further induced LTP of field excitatory post- synaptic potentials (fEPSPs) on CA1 hippocampal neurons in peri-infarct regions of the endothelin-l-induced mini-stroke model. We found that LTP of fEPSPs, induced by high-frequency stimulation, displayed a progressive impairment at 12 and 24 hours after ischemia. Moreover, using in vivo multi-channel recording, we found that the local field potential, which represents electrical property of cell ensembles in more restricted regions, was also dam- pened at these two time points. These results suggest that i-LTP elevates the induction threshold of subsequent synap- tic plasticity. Our data helps to deepen the knowledge of meta-synaptic regulation of plasticity after focal ischemia.
文摘Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.
文摘A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation.Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments.
基金the Civil Aviation Authority of Singapore and the Nanyang Technological University,Singapore under their collaboration in the Air Traffic Management Research Institute。
文摘Air route crossing waypoint optimization is one of the effective ways to improve airspace utilization,capacity and resilience in dealing with air traffic congestion and delay.However,research is lacking on the optimization of multiple Crossing Waypoints(CWPs)in the fragmented airspace separated by Prohibited,Restricted and Dangerous areas(PRDs).To tackle this issue,this paper proposes an Artificial Potential Field(APF)model considering attractive forces produced by the optimal routes and repulsive forces generated by obstacles.An optimization framework based on the APF model is proposed to optimize the different airspace topologies varying the number of CWPs,air route segments and PRDs.Based on the framework,an adaptive method is developed to dynamically control the optimization process in minimizing the total air route cost.The proposed model is applied to a busy controlled airspace.And the obtained results show that after optimization the safety-related indicators:conflict number and controller workload reduced by 7.75%and 6.51%respectively.As for the cost-effectiveness indicators:total route length,total air route cost and non-linear coefficient,declined by 1.74%,3.13%and 1.70%respectively.While the predictability indicator,total flight delay,saw a notable reduction by 7.96%.The proposed framework and methodology can also provide an insight in the understanding of the optimization to other network systems.