A full-scale research study was conducted during the bored tunnelling of the Klang Valley Mass Rapid Transit-Putrajaya Line beneath an existing building structure in Kuala Lumpur,Malaysia.The primary objective was to ...A full-scale research study was conducted during the bored tunnelling of the Klang Valley Mass Rapid Transit-Putrajaya Line beneath an existing building structure in Kuala Lumpur,Malaysia.The primary objective was to investigate the tunnel-soil-pile interaction at various stages of tunnel excavation.This study combined field measurements and three-dimensional(3D)numerical analysis to understand the transient effects of TBM tunnelling on a loaded pile.An experimental pile was instrumented with vibrating wire strain gauges,an inclinometer,and distributed fibre optic sensors using Brillouin optical time domain analysis.The pile was pre-loaded and continuously monitored in real-time throughout the tunnel construction process.The 3D finite element modelling was used to simulate the pile’s transient responses based on actual tunnel boring machine(TBM)driving data.The study revealed that the zone of influence due to tunnelling effects extended from y¼2D to y¼4D,with the peak effect observed at y¼1D to 1.5D,where D represents the tunnel diameter.The analysis of axial load patterns highlighted transient responses,including tensile loads below the tunnel invert,which propagated upward and subsided due to negative skin friction.The maximum downdrag load observed reached 56%e71%of the pile’s working load.Additionally,pile movement patterns indicated outward deflections as the TBM approached and a return toward the tunnel post-passage,aligning with the predicted behaviour in a negative face loss scenario.This validated numerical framework provides a solid foundation for further parametric studies and enhances the understanding of tunnel-soil-pile interactions.展开更多
Field measurements on thermal comfort were carried out in a building with double-skin faade from January 14th to 16th,2009.Data are obtained by measurements of physical parameters and a questionnaire survey is conduct...Field measurements on thermal comfort were carried out in a building with double-skin faade from January 14th to 16th,2009.Data are obtained by measurements of physical parameters and a questionnaire survey is conducted at the same time in 27 offices of the building.The subjective survey involves questions on demographic information of the occupants,health status,environmental comfort conditions and acceptance.A total of 150 occupants are investigated and 131 questionnaires are completed.The statistical data presents the distributions of predicted mean vote,mean thermal sensation vote,mean thermal comfort vote,thermal acceptability,etc.The results show that low relative humidity is the main reason causing thermal discomfort.The greatest discomfort is dry mouth and eye dryness which are caused by low relative humidity.The females are verified to be more sensitive than the males.Meanwhile,a double-skin faade represents a good noise insulation effect while the glare problem is still unresolved.展开更多
This paper presents a method for measuring stress fields within the framework of coupled data models,aimed at determining stress fields in isotropic material structures exhibiting localized deterioration behavior with...This paper presents a method for measuring stress fields within the framework of coupled data models,aimed at determining stress fields in isotropic material structures exhibiting localized deterioration behavior without relying on constitutive equations in the deteriorated region.This approach contributes to advancing the field of intrinsic equation-free mechanics.The methodology combines measured strain fields with data-model coupling driven algorithms.The gradient and Canny operators are utilized to process the strain field data,enabling the determination of the deterioration region's location.Meanwhile,an adaptive model building method is proposed for constructing coupling driven models.To address the issue of unknown datasets during computation,a dataset updating strategy based on a differential evolutionary algorithm is introduced.The resulting optimal dataset is then used to generate stress field results.Validation against finite element method calculations demonstrates the accuracy of the proposed method in obtaining full-field stresses in specimens with local degradation behavior.展开更多
The structure of wind-sand flow under different total sand transport rates was measured with field vertical anemometer and sand trap on the crest of typical coastal transverse ridge in Changli Gold Coast of Hebei Prov...The structure of wind-sand flow under different total sand transport rates was measured with field vertical anemometer and sand trap on the crest of typical coastal transverse ridge in Changli Gold Coast of Hebei Province, which is one of the most typical coastal aeolian distribution regions in China and famous for the tall and typical coastal transverse ridges. The measurement results show that, on the conditions of approximate wind velocities and same surface materials and environments, some changes happen to the structure of wind-sand flow with the increase of total sand transport rate on the crest of coastal transverse ridge. First, the sand transport rates of layers at different heights in the wind-sand flow increase, with the maximum increase at the height layer of 4-8cm. Second, the ratios of sand trans-port rates of layers at different heights to total sand transport rate decrease at the low height layer (0-4cm), but increase at the high height layer (4-60cm). Third, the distribution of the sand transport rate in the wind-sand flow can be expressed by an exponential function at the height layer of 0-40cm, but it changes from power function model to ex-ponential function model in the whole height layer (0-60cm) and changes into polynomial function model at the height layer of 40-60cm with the increase of total sand transport rate. Those changes have a close relationship with the limit of sand grain size of wind flow transporting and composition of sand grain size in the wind-sand flow.展开更多
This paper reports the results of field-based absolute gravity measurements aimed at detecting gravity change and crustal displacement caused by glacial isostatic adjustment. The project was initiated within the frame...This paper reports the results of field-based absolute gravity measurements aimed at detecting gravity change and crustal displacement caused by glacial isostatic adjustment. The project was initiated within the framework of the 53rd Japanese Antarctic Research Expedition (JARE53). Absolute gravity measurements, together with GPS measurements, were planned at several outcrops along the Prince Olav Coast and S6ya Coast of East Antarctica, including at Syowa Station. Since the icebreaker Shirase (AGB 5003) was unable to moor alongside Syowa Station, operations were somewhat restricted during JARE53. However, despite this setback, we were able to complete measurements at two sites: Syowa Station and Langhovde. The absolute gravity value at the Syowa Station IAGBN (A) site, observed using an FG-5 absolute gravimeter (serial number 210; FG-5 #210), was 982 524 322.7+0.1 ktGal, and the gravity change rate at the beginning of 2012 was -0.26 gGal.a-1. An absolute gravity value of 982 535 584.2~0.7 ktGal was obtained using a portable A-10 absolute gravimeter (serial number 017; A-10 #017) at the newly located site AGS01 in Langhovde.展开更多
In this paper, field measurements and pullout tests of a new type of reinforced earth retaining wall, which is reinforced by trapezoid concrete blocks connected by steel bar, are described. Field measurements included...In this paper, field measurements and pullout tests of a new type of reinforced earth retaining wall, which is reinforced by trapezoid concrete blocks connected by steel bar, are described. Field measurements included settlements of the earth fill, tensile forces in the ties and earth pressures on the facing panels during the construction and at completion. Based on the measurements, the following statements can be made: (1) the tensile forces in the ties increased with the height of backfill above the tie and there is a tensile force crest in most ties; (2) at completion, the measured earth pressures along the wall face were between the values of the active earth pressures and the pressures at rest; (3) larger settlements occurred near the face of the wall where a zone of drainage sand and gravel was not compacted properly and smaller settlements occurred in the well-compacted backfill. The results of field pullout tests indicated that the magnitudes of pullout resistances as well as tensile forces induced in the ties were strongly influenced by the relative displacements between the ties and the backfill, and pullout resistances increased with the height of backfill above the ties and the length of ties.展开更多
A range of partial top full bottom electrodes are used to explore the use of bi-polar Polarisation-Electricfield(PeE)measurements to quantify recoverable energy(Wrec),energy loss(W_(loss))and the efficiency(h)of ferro...A range of partial top full bottom electrodes are used to explore the use of bi-polar Polarisation-Electricfield(PeE)measurements to quantify recoverable energy(Wrec),energy loss(W_(loss))and the efficiency(h)of ferroelectric BaTiO_(3)ceramics.The values obtained are dependent on the ratio of sample thickness(S)and top contact radius(r).With increasing S/r from 0.17 to 1.96 the P-E responses become increasingly distorted and broader.Measurements show Wrec increases by a factor of~1.4 but Wloss increases by a factor of~7 with h decreasing from~29%to 8%.Finite element modelling was used to simulate the experimental set-up of the sample/electrode arrangements using the Jiles-Atherton model to replicate the ferroelectric behaviour of BaTiO_(3).These models demonstrate the experimentally applied electricfield using a simple geometric correction for sample thickness is an underestimation of the actualfield experienced by the material under the top contact at high S/r values.We stress the importance of reporting the contact sizes and thicknesses of samples when using PeE measurements to assess Wrec,W_(loss)andηin non-linear dielectric materials.This will allow a fairer comparison of performances between various types of materials being considered for high-energy-density ceramic capacitors.展开更多
The editorial office regrets that mistakes occurred during the presentation of Figs.1 and 4.Specifically,a typographic error in Figs.1 and 4 was mistakenly taken from a different article.The editorial office would lik...The editorial office regrets that mistakes occurred during the presentation of Figs.1 and 4.Specifically,a typographic error in Figs.1 and 4 was mistakenly taken from a different article.The editorial office would like to apologise for any inconvenience caused,and the corrected figures are pending as below.展开更多
The high-level biosafety laboratory is not only the basic support for infectious disease prevention and control,but also interrelated with key areas such as environmental security and social security,which has attract...The high-level biosafety laboratory is not only the basic support for infectious disease prevention and control,but also interrelated with key areas such as environmental security and social security,which has attracted increasing attention.A good indoor environment is the premise to ensure the smooth progress of the experiment and biological risk prevention and control.In order to better understand the indoor environment of high-level biosafety laboratories,19 high-level biosafety laboratories in China(with a total of 65 main rooms)were carefully selected as the test objects from December 2020 to December 2022.According to the test methods specified in the Chinese standard GB 50346,the air change,cleanliness,static pressure difference,temperature,relative humidity,and illumination were tested and analyzed.The results showed that all the measured parameters met the requirements of the Chinese standard GB 50346,and the bio-safety performance was completely satisfactory.However,individual parameters showed some overlarge values:the proportion of main rooms with cleanliness levels of 7 and 8 exceeding 50%of the lower limit for air changes was 54.5%and 69.8%,respectively;the proportion of main rooms in BSL-3-b1 laboratories with atmospheric pressure differentials exceeding 50%of the standard lower limit was 94.7%;and the atmospheric pressure differential in the main rooms of BSL-3-b2 laboratories reached a maximum of nearly-160 Pa.On the premise of ensuring the cleanliness and pressure gradient of the main room,it may be possible to reduce the air change.This study,for the first time,reveals the environmental parameters of various types and levels of biosafety laboratories,which can provide reference for the design and operation of such facilities.展开更多
Nitrogen-vacancy color centers can perform highly sensitive and spatially resolved quantum measurements of physical quantities such as magnetic field,temperature,and pressure.Meanwhile,sensing so many variables at the...Nitrogen-vacancy color centers can perform highly sensitive and spatially resolved quantum measurements of physical quantities such as magnetic field,temperature,and pressure.Meanwhile,sensing so many variables at the same time often introduces additional noise,causing a reduced accuracy.Here,a dual-microwave time-division multiplexing protocol is used in conjunction with a lock-in amplifier in order to decouple temperature from the magnetic field and vice versa.In this protocol,dual-frequency driving and frequency modulation are used to measure the magnetic and temperature field simultaneously in real time.The sensitivity of our system is about 3.4 nT=√Hz p and 1.3 mK=√Hz p,respectively.Our detection protocol not only enables multifunctional quantum sensing,but also extends more practical applications.展开更多
Almost all conventional open-loop particle image velocimetry(PIV) methods employ fixed-interval-time optical imaging technology and the time-consuming cross-correlation-based PIV measurement algorithm to calculate the...Almost all conventional open-loop particle image velocimetry(PIV) methods employ fixed-interval-time optical imaging technology and the time-consuming cross-correlation-based PIV measurement algorithm to calculate the velocity field.In this study,a novel real-time adaptive particle image velocity(RTA-PIV) method is proposed to accurately measure the instantaneous velocity field of an unsteady flow field.In the proposed closed-loop RTA-PIV method,a new correlation-filter-based PIV measurement algorithm is introduced to calculate the velocity field in real time.Then,a Kalman predictor model is established to predict the velocity of the next time instant and a suitable interval time can be determined.To adaptively adjust the interval time for capturing two particle images,a new high-speed frame-straddling vision system is developed for the proposed RTA-PIV method.To fully analyze the performance of the RTA-PIV method,we conducted a series of numerical experiments on ground-truth image pairs and on real-world image sequences.展开更多
Background Leaf area index(LAI)is a key indicator for the assessment of the canopy’s processes such as net primary production and evapotranspiration.For this reason,the LAI is often used as a key input parameter in e...Background Leaf area index(LAI)is a key indicator for the assessment of the canopy’s processes such as net primary production and evapotranspiration.For this reason,the LAI is often used as a key input parameter in ecosystem services’modeling,which is emerging as a critical tool for steering upcoming urban reforestation strategies.However,LAI field measures are extremely time-consuming and require remarkable economic and human resources.In this context,spectral indices computed using high-resolution multispectral satellite imagery like Sentinel-2 and Landsat 8,may represent a feasible and economic solution for estimating the LAI at the city scale.Nonetheless,as far as we know,only a few studies have assessed the potential of Sentinel-2 and Landsat 8 data doing so in Mediterranean forest ecosystems.To fill such a gap,we assessed the performance of 10 spectral indices derived from Sentinel-2 and Landsat 8 data in estimating the LAI,using field measurements collected with the LI-COR LAI 2200c as a reference.We hypothesized that Sentinel-2 data,owing to their finer spatial and spectral resolution,perform better in estimating vegetation’s structural parameters compared to Landsat 8.Results We found that Landsat 8-derived models have,on average,a slightly better performance,with the best model(the one based on NDVI)showing an R^(2) of 0.55 and NRMSE of 14.74%,compared to R^(2) of 0.52 and NRMSE of 15.15%showed by the best Sentinel-2 model,which is based on the NBR.All models were affected by spectrum saturation for high LAI values(e.g.,above 5).Conclusion In Mediterranean ecosystems,Sentinel-2 and Landsat 8 data produce moderately accurate LAI estimates during the peak of the growing season.Therefore,the uncertainty introduced using satellite-derived LAI in ecosystem services’assessments should be systematically accounted for.展开更多
In order to provide a reliable basis for wind resistant evaluation of a long-span suspension bridge, a structural health monitoring system is installed on a bridge in the East China Sea and the simultaneous wind data ...In order to provide a reliable basis for wind resistant evaluation of a long-span suspension bridge, a structural health monitoring system is installed on a bridge in the East China Sea and the simultaneous wind data at the bridge deck and at the top of the bridge tower are recorded. The average wind speeds and directions, variations of wind speeds with height, turbulent characteristics, spatial correlation and characteristics of wind flow around the bridge deck are analyzed by using statistical methods and spectral analysis. It is found that the average wind speeds along the bridge girder are almost identical; however, the mean wind directions vary greatly at different locations. The dimensionless exponent decreases as the average wind speed increases. The measured turbulence intensities are greater than the recommended values, and the turbulence power spectrum can well fit the standard spectrum. However, the measured spectral values are considerably smaller in low frequency ranges. The mean wind speed of the wake flow decreases and the turbulence intensity increases significantly, and the spectral characteristics of the wake flow change obviously while the feature frequency of vortex shedding has not yet been observed.展开更多
This paper presents a study of the characteristics of a railway vibration at three key sections containing different track structures in a metro depot.The results show that the vertical and horizontal vibration accele...This paper presents a study of the characteristics of a railway vibration at three key sections containing different track structures in a metro depot.The results show that the vertical and horizontal vibration acceleration levels are proportional to train speed.The Z-weighted vertical acceleration levels obtained showed that the vibration source strengths at the ballast foot of the testing line and the throat area were very close.The vibration attenuation at the repair line was larger than that of the testing line.In the throat area,the peak frequency of vibration obtained at the ballast foot(2.5 m)could be shifted to a lower frequency band by using polyurethane sleepers instead of standard concrete sleepers.Polyurethane sleepers can help to reduce vertical vibration in a frequency band of 0-10 Hz.The vibration levels would satisfy the limits given in the ISO2631-2-2003(2013)for any location more than 5 m away from the source at the testing line and 2.5 m away from the source at the repair line and throat area.展开更多
Given the 7123 working face in the Qidong Coal Mine of the Wanbei Mining Group, nine dynamic roof monitors were installed in the crossheading to measure the amount and velocity of roof convergence in different positio...Given the 7123 working face in the Qidong Coal Mine of the Wanbei Mining Group, nine dynamic roof monitors were installed in the crossheading to measure the amount and velocity of roof convergence in different positions and at different times and three steel bored stress sensors were installed in the return airway to measure rock stress at depth. On the basis of this arrange- ment, the rule of change of the distribution of the side abutment pressure with the advance of the working face and movement of overlying strata was studied. The rule of change and the stability of rock stress at depth were measured. Secondly, the affected area and stability time of the side abutment pressure were also studied. The results show that: 1) During working, the face advanced distance was from 157 m to 99 m, the process was not effected by mining induced pressure. When the distance was 82 m, the posi- tion of peak stress was 5 m away from the coal wall. When the distance was 37 m, the position of peak stress away from the coal wall was about 15 m to 20 m and finally reached a steady state; 2) the time and the range of the peak of side rock pressure obtained from stress sensors were consistent with the results from the dynamic roof monitors; 3) the position of the peak pressure was 25 m away from the coal wall.展开更多
In order to investigate the wind characteristics of coastal areas of China, a long-term field measurement of natural wind was carried out. Based on the field measurement results, this paper presents the natural wind c...In order to investigate the wind characteristics of coastal areas of China, a long-term field measurement of natural wind was carried out. Based on the field measurement results, this paper presents the natural wind characteristics of typhoons and strong monsoons at the site of Xi-hou-men Bridge, including mean wind speed, mean wind direction, mean wind elevation angle, turbulent intensity, gust factor, turbulence integral length scales, power spectrum of wind speed and spatial correlation of gusty wind, the profiles of mean wind speed and turbulent intensity, etc. The correlation among wind characteristics is analyzed in detail, and the similarities and differences of wind characteristics between typhoons and monsoons are analyzed. These results can pro- vide detailed wind characteristics of coastal areas of China.展开更多
This paper presents a comparative analysis of ground vibration in three directions generated by a heavy-duty railway with various track sections.The vibration characteristics in the plane area were investigated by usi...This paper presents a comparative analysis of ground vibration in three directions generated by a heavy-duty railway with various track sections.The vibration characteristics in the plane area were investigated by using matrix test measurements.Acceleration peak attenuation was faster within 25 m from the embankment,and the high-frequency vibration attenuates faster with increased distance.For the cutting section with multi-stage soil slope,decay rate of acceleration was relatively larger.The acceleration level of the plane region ranged to 82.2-89.1 dB by the single C80 train.Yet the acceleration level caused by the C80 trains running parallel after meeting showed a distinct increment.The increment of the cutting section was much larger compared with the embankment section,with the increment ranging from 1.2-2.5 dB.In terms of the cutting section,Y direction acceleration was dominant closer to the track.Within 10-30 m of the track,the Y direction acceleration(perpendicular to the rail)decreased rapidly and became comparable to the X direction(parallel to the rail)and Z direction.Additionally,the cutting case generated a higher level of vibration in all three directions compared to the embankment,but as the distance from track increased,the deviation between acceleration gradually decreased.展开更多
NO3 and N2O5 are important participants in nocturnal atmospheric chemical processes,and their concentrations are of great significance in the study of the mechanism of nocturnal atmospheric chemical reactions.A two-ch...NO3 and N2O5 are important participants in nocturnal atmospheric chemical processes,and their concentrations are of great significance in the study of the mechanism of nocturnal atmospheric chemical reactions.A two-channel diode laser based cavity ring-down spectroscopy(CRDS)instrument was developed to monitor the concentrations of NO3 and N2O5 in the atmosphere.The effective absorption length ratio and the total loss coefficient of the instrument were calibrated using laboratory standard samples.The effective absorption cross section of NO3 at 662 nm was derived.A detection sensitivity of 1.1 pptv NO3 in air was obtained at a time resolution of 1 s.N2O5 was converted to NO3 and detected online in the second CRDS channel.The instrument was used to monitor the concentrations of NO3 and N2O5 in the atmosphere of winter in Hefei in real time.By comparing the concentration changes of pollutants such as nitrogen oxides,ozone,PM2:5 in a rapid air cleaning process,the factors affecting the concentrations of NO3 and N2O5 in the atmosphere were discussed.展开更多
We demonstrate a simple method to measure electric field intensity by using doublet electromagnetically induced transparency(EIT) spectra of cold Rb Rydberg atoms, where the frequency of the coupling laser does not ne...We demonstrate a simple method to measure electric field intensity by using doublet electromagnetically induced transparency(EIT) spectra of cold Rb Rydberg atoms, where the frequency of the coupling laser does not need to be locked. Based on the Stark splitting of the Rb Rydberg state, 10D_(3/2), under electric fields and the corresponding calculated polarizabilities, the real electric field intensity is calculated using the difference in radio-frequency diffraction between two acousto-optic modulators, which acts as a frequency criterion that allows us to measure the electrical field without locking the coupling laser. The value measured by this simple method shows a good agreement with our previous work [Opt.Express 29 1558(2021)] where the frequency of the coupling laser needs to be locked with an additional EIT spectrum based on atom vapor and a proportional–integral–differential feedback circuit. Our presented method can also be extended to the measurement of electric field based on hot Rydberg atom vapor, which has application in industry.展开更多
文摘A full-scale research study was conducted during the bored tunnelling of the Klang Valley Mass Rapid Transit-Putrajaya Line beneath an existing building structure in Kuala Lumpur,Malaysia.The primary objective was to investigate the tunnel-soil-pile interaction at various stages of tunnel excavation.This study combined field measurements and three-dimensional(3D)numerical analysis to understand the transient effects of TBM tunnelling on a loaded pile.An experimental pile was instrumented with vibrating wire strain gauges,an inclinometer,and distributed fibre optic sensors using Brillouin optical time domain analysis.The pile was pre-loaded and continuously monitored in real-time throughout the tunnel construction process.The 3D finite element modelling was used to simulate the pile’s transient responses based on actual tunnel boring machine(TBM)driving data.The study revealed that the zone of influence due to tunnelling effects extended from y¼2D to y¼4D,with the peak effect observed at y¼1D to 1.5D,where D represents the tunnel diameter.The analysis of axial load patterns highlighted transient responses,including tensile loads below the tunnel invert,which propagated upward and subsided due to negative skin friction.The maximum downdrag load observed reached 56%e71%of the pile’s working load.Additionally,pile movement patterns indicated outward deflections as the TBM approached and a return toward the tunnel post-passage,aligning with the predicted behaviour in a negative face loss scenario.This validated numerical framework provides a solid foundation for further parametric studies and enhances the understanding of tunnel-soil-pile interactions.
基金The National Key Technology R&D Program of Chinaduring the 11th Five-Year Plan Period(No.2008BAJ12B05)
文摘Field measurements on thermal comfort were carried out in a building with double-skin faade from January 14th to 16th,2009.Data are obtained by measurements of physical parameters and a questionnaire survey is conducted at the same time in 27 offices of the building.The subjective survey involves questions on demographic information of the occupants,health status,environmental comfort conditions and acceptance.A total of 150 occupants are investigated and 131 questionnaires are completed.The statistical data presents the distributions of predicted mean vote,mean thermal sensation vote,mean thermal comfort vote,thermal acceptability,etc.The results show that low relative humidity is the main reason causing thermal discomfort.The greatest discomfort is dry mouth and eye dryness which are caused by low relative humidity.The females are verified to be more sensitive than the males.Meanwhile,a double-skin faade represents a good noise insulation effect while the glare problem is still unresolved.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51479035)the Scientific Research Foundation of the Graduate School of Southeast University(Grant No.YBPY1883).
基金supported by the Fundamental Research Fund for the Central Universities(Grant No.BLX202226)。
文摘This paper presents a method for measuring stress fields within the framework of coupled data models,aimed at determining stress fields in isotropic material structures exhibiting localized deterioration behavior without relying on constitutive equations in the deteriorated region.This approach contributes to advancing the field of intrinsic equation-free mechanics.The methodology combines measured strain fields with data-model coupling driven algorithms.The gradient and Canny operators are utilized to process the strain field data,enabling the determination of the deterioration region's location.Meanwhile,an adaptive model building method is proposed for constructing coupling driven models.To address the issue of unknown datasets during computation,a dataset updating strategy based on a differential evolutionary algorithm is introduced.The resulting optimal dataset is then used to generate stress field results.Validation against finite element method calculations demonstrates the accuracy of the proposed method in obtaining full-field stresses in specimens with local degradation behavior.
基金Under the auspices of National Natural Science Foundation of China (No 40571019)
文摘The structure of wind-sand flow under different total sand transport rates was measured with field vertical anemometer and sand trap on the crest of typical coastal transverse ridge in Changli Gold Coast of Hebei Province, which is one of the most typical coastal aeolian distribution regions in China and famous for the tall and typical coastal transverse ridges. The measurement results show that, on the conditions of approximate wind velocities and same surface materials and environments, some changes happen to the structure of wind-sand flow with the increase of total sand transport rate on the crest of coastal transverse ridge. First, the sand transport rates of layers at different heights in the wind-sand flow increase, with the maximum increase at the height layer of 4-8cm. Second, the ratios of sand trans-port rates of layers at different heights to total sand transport rate decrease at the low height layer (0-4cm), but increase at the high height layer (4-60cm). Third, the distribution of the sand transport rate in the wind-sand flow can be expressed by an exponential function at the height layer of 0-40cm, but it changes from power function model to ex-ponential function model in the whole height layer (0-60cm) and changes into polynomial function model at the height layer of 40-60cm with the increase of total sand transport rate. Those changes have a close relationship with the limit of sand grain size of wind flow transporting and composition of sand grain size in the wind-sand flow.
文摘This paper reports the results of field-based absolute gravity measurements aimed at detecting gravity change and crustal displacement caused by glacial isostatic adjustment. The project was initiated within the framework of the 53rd Japanese Antarctic Research Expedition (JARE53). Absolute gravity measurements, together with GPS measurements, were planned at several outcrops along the Prince Olav Coast and S6ya Coast of East Antarctica, including at Syowa Station. Since the icebreaker Shirase (AGB 5003) was unable to moor alongside Syowa Station, operations were somewhat restricted during JARE53. However, despite this setback, we were able to complete measurements at two sites: Syowa Station and Langhovde. The absolute gravity value at the Syowa Station IAGBN (A) site, observed using an FG-5 absolute gravimeter (serial number 210; FG-5 #210), was 982 524 322.7+0.1 ktGal, and the gravity change rate at the beginning of 2012 was -0.26 gGal.a-1. An absolute gravity value of 982 535 584.2~0.7 ktGal was obtained using a portable A-10 absolute gravimeter (serial number 017; A-10 #017) at the newly located site AGS01 in Langhovde.
文摘In this paper, field measurements and pullout tests of a new type of reinforced earth retaining wall, which is reinforced by trapezoid concrete blocks connected by steel bar, are described. Field measurements included settlements of the earth fill, tensile forces in the ties and earth pressures on the facing panels during the construction and at completion. Based on the measurements, the following statements can be made: (1) the tensile forces in the ties increased with the height of backfill above the tie and there is a tensile force crest in most ties; (2) at completion, the measured earth pressures along the wall face were between the values of the active earth pressures and the pressures at rest; (3) larger settlements occurred near the face of the wall where a zone of drainage sand and gravel was not compacted properly and smaller settlements occurred in the well-compacted backfill. The results of field pullout tests indicated that the magnitudes of pullout resistances as well as tensile forces induced in the ties were strongly influenced by the relative displacements between the ties and the backfill, and pullout resistances increased with the height of backfill above the ties and the length of ties.
基金the EPSRC funding to support this work through a CASE conversion DTP grant EP/T517835/1.
文摘A range of partial top full bottom electrodes are used to explore the use of bi-polar Polarisation-Electricfield(PeE)measurements to quantify recoverable energy(Wrec),energy loss(W_(loss))and the efficiency(h)of ferroelectric BaTiO_(3)ceramics.The values obtained are dependent on the ratio of sample thickness(S)and top contact radius(r).With increasing S/r from 0.17 to 1.96 the P-E responses become increasingly distorted and broader.Measurements show Wrec increases by a factor of~1.4 but Wloss increases by a factor of~7 with h decreasing from~29%to 8%.Finite element modelling was used to simulate the experimental set-up of the sample/electrode arrangements using the Jiles-Atherton model to replicate the ferroelectric behaviour of BaTiO_(3).These models demonstrate the experimentally applied electricfield using a simple geometric correction for sample thickness is an underestimation of the actualfield experienced by the material under the top contact at high S/r values.We stress the importance of reporting the contact sizes and thicknesses of samples when using PeE measurements to assess Wrec,W_(loss)andηin non-linear dielectric materials.This will allow a fairer comparison of performances between various types of materials being considered for high-energy-density ceramic capacitors.
文摘The editorial office regrets that mistakes occurred during the presentation of Figs.1 and 4.Specifically,a typographic error in Figs.1 and 4 was mistakenly taken from a different article.The editorial office would like to apologise for any inconvenience caused,and the corrected figures are pending as below.
基金supported by special fund of“Research and Demon-stration of Green and Low Carbon Design Methods and Key Tech-nologies for Hospitals and Biosafety Laboratories”by CABR(No.20220106330730007)supported by Youth Fund Project of“Research on Key technologies of Low carbon design in Arthropod Biosafety Laboratory”by China Academy of Building Research.
文摘The high-level biosafety laboratory is not only the basic support for infectious disease prevention and control,but also interrelated with key areas such as environmental security and social security,which has attracted increasing attention.A good indoor environment is the premise to ensure the smooth progress of the experiment and biological risk prevention and control.In order to better understand the indoor environment of high-level biosafety laboratories,19 high-level biosafety laboratories in China(with a total of 65 main rooms)were carefully selected as the test objects from December 2020 to December 2022.According to the test methods specified in the Chinese standard GB 50346,the air change,cleanliness,static pressure difference,temperature,relative humidity,and illumination were tested and analyzed.The results showed that all the measured parameters met the requirements of the Chinese standard GB 50346,and the bio-safety performance was completely satisfactory.However,individual parameters showed some overlarge values:the proportion of main rooms with cleanliness levels of 7 and 8 exceeding 50%of the lower limit for air changes was 54.5%and 69.8%,respectively;the proportion of main rooms in BSL-3-b1 laboratories with atmospheric pressure differentials exceeding 50%of the standard lower limit was 94.7%;and the atmospheric pressure differential in the main rooms of BSL-3-b2 laboratories reached a maximum of nearly-160 Pa.On the premise of ensuring the cleanliness and pressure gradient of the main room,it may be possible to reduce the air change.This study,for the first time,reveals the environmental parameters of various types and levels of biosafety laboratories,which can provide reference for the design and operation of such facilities.
基金supported by the National Natural Science Foundation of China(Nos.12005218 and 52130510).
文摘Nitrogen-vacancy color centers can perform highly sensitive and spatially resolved quantum measurements of physical quantities such as magnetic field,temperature,and pressure.Meanwhile,sensing so many variables at the same time often introduces additional noise,causing a reduced accuracy.Here,a dual-microwave time-division multiplexing protocol is used in conjunction with a lock-in amplifier in order to decouple temperature from the magnetic field and vice versa.In this protocol,dual-frequency driving and frequency modulation are used to measure the magnetic and temperature field simultaneously in real time.The sensitivity of our system is about 3.4 nT=√Hz p and 1.3 mK=√Hz p,respectively.Our detection protocol not only enables multifunctional quantum sensing,but also extends more practical applications.
基金supported by the National Natural Science Foundation of China(Grant No.51875228)the National Key R&D Program of China(Grant No.2020YFA0405700)the National Defense Science and Technology Innovation Special Zone Project(Grant No.193-A14-202-01-23)。
文摘Almost all conventional open-loop particle image velocimetry(PIV) methods employ fixed-interval-time optical imaging technology and the time-consuming cross-correlation-based PIV measurement algorithm to calculate the velocity field.In this study,a novel real-time adaptive particle image velocity(RTA-PIV) method is proposed to accurately measure the instantaneous velocity field of an unsteady flow field.In the proposed closed-loop RTA-PIV method,a new correlation-filter-based PIV measurement algorithm is introduced to calculate the velocity field in real time.Then,a Kalman predictor model is established to predict the velocity of the next time instant and a suitable interval time can be determined.To adaptively adjust the interval time for capturing two particle images,a new high-speed frame-straddling vision system is developed for the proposed RTA-PIV method.To fully analyze the performance of the RTA-PIV method,we conducted a series of numerical experiments on ground-truth image pairs and on real-world image sequences.
基金Servizi Ecosistemici e Infrastrutture Verdi urbane e peri-urbane nell’area Metropolitana Romana:stima del contributo delle foreste naturali di Castelporziano nel miglioramento della qualitàdell’aria della cittàdi RomaAccademia Nazionale delle Scienze detta dei XL,in collaborazione con Segretariato Generale della Presidenza della Repubblica+1 种基金PRO-ICOS_MED Potenziamento della Rete di Osservazione ICOS-Italia nel Mediterraneo-Rafforzamento del capitale umano”funded by the Ministry of ResearchPNRR,Missione 4,Componente 2,Avviso 3264/2021,IR0000032-ITINERIS-Italian Integrated Environmental Research Infrastructures System CUP B53C22002150006。
文摘Background Leaf area index(LAI)is a key indicator for the assessment of the canopy’s processes such as net primary production and evapotranspiration.For this reason,the LAI is often used as a key input parameter in ecosystem services’modeling,which is emerging as a critical tool for steering upcoming urban reforestation strategies.However,LAI field measures are extremely time-consuming and require remarkable economic and human resources.In this context,spectral indices computed using high-resolution multispectral satellite imagery like Sentinel-2 and Landsat 8,may represent a feasible and economic solution for estimating the LAI at the city scale.Nonetheless,as far as we know,only a few studies have assessed the potential of Sentinel-2 and Landsat 8 data doing so in Mediterranean forest ecosystems.To fill such a gap,we assessed the performance of 10 spectral indices derived from Sentinel-2 and Landsat 8 data in estimating the LAI,using field measurements collected with the LI-COR LAI 2200c as a reference.We hypothesized that Sentinel-2 data,owing to their finer spatial and spectral resolution,perform better in estimating vegetation’s structural parameters compared to Landsat 8.Results We found that Landsat 8-derived models have,on average,a slightly better performance,with the best model(the one based on NDVI)showing an R^(2) of 0.55 and NRMSE of 14.74%,compared to R^(2) of 0.52 and NRMSE of 15.15%showed by the best Sentinel-2 model,which is based on the NBR.All models were affected by spectrum saturation for high LAI values(e.g.,above 5).Conclusion In Mediterranean ecosystems,Sentinel-2 and Landsat 8 data produce moderately accurate LAI estimates during the peak of the growing season.Therefore,the uncertainty introduced using satellite-derived LAI in ecosystem services’assessments should be systematically accounted for.
基金The National Natural Science Foundation of China (No.90815022, 50808160)
文摘In order to provide a reliable basis for wind resistant evaluation of a long-span suspension bridge, a structural health monitoring system is installed on a bridge in the East China Sea and the simultaneous wind data at the bridge deck and at the top of the bridge tower are recorded. The average wind speeds and directions, variations of wind speeds with height, turbulent characteristics, spatial correlation and characteristics of wind flow around the bridge deck are analyzed by using statistical methods and spectral analysis. It is found that the average wind speeds along the bridge girder are almost identical; however, the mean wind directions vary greatly at different locations. The dimensionless exponent decreases as the average wind speed increases. The measured turbulence intensities are greater than the recommended values, and the turbulence power spectrum can well fit the standard spectrum. However, the measured spectral values are considerably smaller in low frequency ranges. The mean wind speed of the wake flow decreases and the turbulence intensity increases significantly, and the spectral characteristics of the wake flow change obviously while the feature frequency of vortex shedding has not yet been observed.
基金National Natural Science Foundation of China under Grant Nos.52068029,51878277 and 52178423the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province Youth under Grant No.20194BCJ22008the Key Research and Development Program of Jiangxi Province under Grant No.20192BBE50008。
文摘This paper presents a study of the characteristics of a railway vibration at three key sections containing different track structures in a metro depot.The results show that the vertical and horizontal vibration acceleration levels are proportional to train speed.The Z-weighted vertical acceleration levels obtained showed that the vibration source strengths at the ballast foot of the testing line and the throat area were very close.The vibration attenuation at the repair line was larger than that of the testing line.In the throat area,the peak frequency of vibration obtained at the ballast foot(2.5 m)could be shifted to a lower frequency band by using polyurethane sleepers instead of standard concrete sleepers.Polyurethane sleepers can help to reduce vertical vibration in a frequency band of 0-10 Hz.The vibration levels would satisfy the limits given in the ISO2631-2-2003(2013)for any location more than 5 m away from the source at the testing line and 2.5 m away from the source at the repair line and throat area.
基金Projects 106084 supported by the Scientific and Technological Research of the Ministry of EducationBK2007701 by the Natural Science Foundation ofJiangsu Province 2006CB2022010 by the National Basic Research Program of China and the Qing-lan Project of Jiangsu Province
文摘Given the 7123 working face in the Qidong Coal Mine of the Wanbei Mining Group, nine dynamic roof monitors were installed in the crossheading to measure the amount and velocity of roof convergence in different positions and at different times and three steel bored stress sensors were installed in the return airway to measure rock stress at depth. On the basis of this arrange- ment, the rule of change of the distribution of the side abutment pressure with the advance of the working face and movement of overlying strata was studied. The rule of change and the stability of rock stress at depth were measured. Secondly, the affected area and stability time of the side abutment pressure were also studied. The results show that: 1) During working, the face advanced distance was from 157 m to 99 m, the process was not effected by mining induced pressure. When the distance was 82 m, the posi- tion of peak stress was 5 m away from the coal wall. When the distance was 37 m, the position of peak stress away from the coal wall was about 15 m to 20 m and finally reached a steady state; 2) the time and the range of the peak of side rock pressure obtained from stress sensors were consistent with the results from the dynamic roof monitors; 3) the position of the peak pressure was 25 m away from the coal wall.
基金Project supported by the National Natural Science Foundation of China (No. 50808148)the National Key Technology R&D Program (No. 2008BAG07B02), China
文摘In order to investigate the wind characteristics of coastal areas of China, a long-term field measurement of natural wind was carried out. Based on the field measurement results, this paper presents the natural wind characteristics of typhoons and strong monsoons at the site of Xi-hou-men Bridge, including mean wind speed, mean wind direction, mean wind elevation angle, turbulent intensity, gust factor, turbulence integral length scales, power spectrum of wind speed and spatial correlation of gusty wind, the profiles of mean wind speed and turbulent intensity, etc. The correlation among wind characteristics is analyzed in detail, and the similarities and differences of wind characteristics between typhoons and monsoons are analyzed. These results can pro- vide detailed wind characteristics of coastal areas of China.
基金Natural Science Foundation of China under Grant No.51878242Hebei Natural Science Foundation of China under Grant Nos.E2017404013 and E2020404007。
文摘This paper presents a comparative analysis of ground vibration in three directions generated by a heavy-duty railway with various track sections.The vibration characteristics in the plane area were investigated by using matrix test measurements.Acceleration peak attenuation was faster within 25 m from the embankment,and the high-frequency vibration attenuates faster with increased distance.For the cutting section with multi-stage soil slope,decay rate of acceleration was relatively larger.The acceleration level of the plane region ranged to 82.2-89.1 dB by the single C80 train.Yet the acceleration level caused by the C80 trains running parallel after meeting showed a distinct increment.The increment of the cutting section was much larger compared with the embankment section,with the increment ranging from 1.2-2.5 dB.In terms of the cutting section,Y direction acceleration was dominant closer to the track.Within 10-30 m of the track,the Y direction acceleration(perpendicular to the rail)decreased rapidly and became comparable to the X direction(parallel to the rail)and Z direction.Additionally,the cutting case generated a higher level of vibration in all three directions compared to the embankment,but as the distance from track increased,the deviation between acceleration gradually decreased.
基金Hao Wu,Jian Chen,An-wen Liu,and Shui-ming Hu acknowledge the supports from the Ministry of Science and Technology of China(No.2013BAK12B00)the National Natural Science Foundation of China(No.21427804).
文摘NO3 and N2O5 are important participants in nocturnal atmospheric chemical processes,and their concentrations are of great significance in the study of the mechanism of nocturnal atmospheric chemical reactions.A two-channel diode laser based cavity ring-down spectroscopy(CRDS)instrument was developed to monitor the concentrations of NO3 and N2O5 in the atmosphere.The effective absorption length ratio and the total loss coefficient of the instrument were calibrated using laboratory standard samples.The effective absorption cross section of NO3 at 662 nm was derived.A detection sensitivity of 1.1 pptv NO3 in air was obtained at a time resolution of 1 s.N2O5 was converted to NO3 and detected online in the second CRDS channel.The instrument was used to monitor the concentrations of NO3 and N2O5 in the atmosphere of winter in Hefei in real time.By comparing the concentration changes of pollutants such as nitrogen oxides,ozone,PM2:5 in a rapid air cleaning process,the factors affecting the concentrations of NO3 and N2O5 in the atmosphere were discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12034012, 12074231, 12274272, and 61827824)Science and technology innovation plan of colleges and universities in Shanxi Province (Grant No. 2021L313)+2 种基金Science and Technology Project of State Grid (Grant No. 5700-202127198A-0-0-00)Fundamental Research Program of Shanxi Province (Grant No. 202203021222204)Taiyuan University of Science and Technology Scientific Research Initial Funding (Grant Nos. 20222008 and 20222132)。
文摘We demonstrate a simple method to measure electric field intensity by using doublet electromagnetically induced transparency(EIT) spectra of cold Rb Rydberg atoms, where the frequency of the coupling laser does not need to be locked. Based on the Stark splitting of the Rb Rydberg state, 10D_(3/2), under electric fields and the corresponding calculated polarizabilities, the real electric field intensity is calculated using the difference in radio-frequency diffraction between two acousto-optic modulators, which acts as a frequency criterion that allows us to measure the electrical field without locking the coupling laser. The value measured by this simple method shows a good agreement with our previous work [Opt.Express 29 1558(2021)] where the frequency of the coupling laser needs to be locked with an additional EIT spectrum based on atom vapor and a proportional–integral–differential feedback circuit. Our presented method can also be extended to the measurement of electric field based on hot Rydberg atom vapor, which has application in industry.