The Toroidal Field (TF) coil case of the HT-7U superconducting tokamak device is made of austenitic stainless steel 316LN and is designed to operate at cryogenic temperature (4 K). 316LN can retain high strength and f...The Toroidal Field (TF) coil case of the HT-7U superconducting tokamak device is made of austenitic stainless steel 316LN and is designed to operate at cryogenic temperature (4 K). 316LN can retain high strength and fracture toughness at 4 K. Feasibility study on technical process of welding has been experimentally considered as a hopeful joint method for suppression of post-welding deformation and reduction of over-heating. Meanwhile the final range of stress intensity and the stress intensity factor (K) for pre-cracks of welding structure have been determined by using J-integral. These related results are optimistic and have shown that there's no problem in strength and fracture toughness at the vicinity of the pre-crack tip. This paper introduces the welding structure of TF coil case in detail.展开更多
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
Horizontal fracture-simulated completions remain the most reliable method of producing hydrocarbons from shale formations. The vast majority of unconventional wells are completed using the “Plug and Perf” method. Th...Horizontal fracture-simulated completions remain the most reliable method of producing hydrocarbons from shale formations. The vast majority of unconventional wells are completed using the “Plug and Perf” method. This method involves using either a coiled tubing (CT) with a positive displacement motor or a jointed pipe to mill out composite plugs after fracturing operations are completed. An estimated average of 120,000 composite plugs is installed in the US alone each year. Bridge plug drillouts from milling operations tend to accumulate in horizontal wells and can cause stuck pipe incidents and loss of well control. Efficient removal of composite plugs’ debris is crucial in achieving operational efficacies and full production potential. This paper provides an overview of the various bridge plug drillouts cleaning practices adopted in horizontal wells. It discusses several case histories, showcasing how operators solved cleanout challenges. Developed mechanistic models to better understand hole cleaning are also reviewed. As more unconventional wells are being set at more extensive depths, an economical and optimized coiled tubing process becomes increasingly important. This paper focuses on delivering a more conclusive set of recommendations to increase efficiency and improve current composite plug coiled tubing cleaning-milling practices, increase operational efficiency and reduce cost.展开更多
The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD)...The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD) casing and PD casing after being immersed in NACE A solution saturated with H2S(PD+H2S). Instrumented impact method was employed to evaluate the impact behaviors of the specimens, meanwhile, dynamic fracture toughness(JId) was calculated by using Rice model and Schindler model. The experimental results show that dynamic fracture toughness of the casing decreases after plastic deformation. Compared with that of the original casing and PD casing, the dynamic fracture toughness decreases further when the PD casing immersed in H2 S, moreover, there are ridge-shaped feature and many secondary cracks present on the fracture surface of the specimens. Impact fracture mechanism of the casing is proposed as follows: the plastic deformation results in the increase of defect density of materials where the atomic hydrogen can accumulate in reversible or irreversible traps and even recombine to form molecular hydrogen, subsequently, the casing material toughness decreases greatly.展开更多
This article introduces a portable wind turbine condition monitoring system(CMS)and its applications in wind turbine drivetrain damage detection.The portable CMS based on vibration detection and analysis has a long ap...This article introduces a portable wind turbine condition monitoring system(CMS)and its applications in wind turbine drivetrain damage detection.The portable CMS based on vibration detection and analysis has a long application history in conventional rotating machineries,but it is not widely used in wind turbines.There are several reasons why it is not used,including the labor-and knowledge-intensive requirements for test setup and result interpretation.There are also reasons specific to wind turbines,such as the structural diversity of drivetrains,the uncertainty of operational conditions,and the complexity of the damage mechanism of different parts that make the conventional vibration-based CMS inefficient and not cost-effective.All these factors affect the wide application of the portable system.The portable wind turbine CMS discussed in this article is integrated using advanced vibration measurement and analysis methodology.Fault detection for the acquired acceleration response and high-speed shaft speed signal is carried out by a suite of data analysis techniques specifically designed for a wind turbine gearbox.Using these techniques,damage detection accuracy for all the components inside a gearbox is improved significantly,especially for those related to medium-and low-speed shafts.The new data processing techniques also are briefly described with the developed methodologies verified by three wind turbines with typical low-speed shaft-related component damages.These damage assessments include the low-and medium-speed planetary stage ring gear,the low-speed planetary stage planet gear and damage to the main bearing.展开更多
Production from unconventional formations,such as shales,has significantly increased in recent years by stimulating large portions of a reservoir through the application of horizontal drilling and hydraulic fracturing...Production from unconventional formations,such as shales,has significantly increased in recent years by stimulating large portions of a reservoir through the application of horizontal drilling and hydraulic fracturing.Although oil shales are heavily dependent on oil prices,production forecasts remain positive in the North-American region.Due to the complexity of hydraulically fractured tight formations,reservoir numerical simulation has become the standard tool to assess and predict production performance from these unconventional resources.Many of these unconventional fields are immense,consisting of multistage and multiwell projects,which results in impractical simulation run times.Hence,simplification of large-scale simulation models is now common both in the industry and academia.Typical simplified models such as the“single fracture”approach do not often capture the physics of large-scale projects which results in inaccurate results.In this paper we present a simple,yet rigorous workflow that generates simplified representative models in order to achieve low simulation run times while capturing physical phenomena which is fundamental for accurate calculations.The proposed workflow is based on consideration of representative portions of a large-scale model followed by postprocess scaling to obtain desired full model results.The simplified models that result from the application of the proposed workflow for a single well and a multiwell case are compared to full-scale models and the“single fracture”model.Comparison of fluid rates and cumulative production show that accurate results are possible for simplified models if all important components for a particular case are taken into account.Finally,application of the workflow is shown for a heterogeneous field case where prediction studies can be carried out.展开更多
文摘The Toroidal Field (TF) coil case of the HT-7U superconducting tokamak device is made of austenitic stainless steel 316LN and is designed to operate at cryogenic temperature (4 K). 316LN can retain high strength and fracture toughness at 4 K. Feasibility study on technical process of welding has been experimentally considered as a hopeful joint method for suppression of post-welding deformation and reduction of over-heating. Meanwhile the final range of stress intensity and the stress intensity factor (K) for pre-cracks of welding structure have been determined by using J-integral. These related results are optimistic and have shown that there's no problem in strength and fracture toughness at the vicinity of the pre-crack tip. This paper introduces the welding structure of TF coil case in detail.
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
文摘Horizontal fracture-simulated completions remain the most reliable method of producing hydrocarbons from shale formations. The vast majority of unconventional wells are completed using the “Plug and Perf” method. This method involves using either a coiled tubing (CT) with a positive displacement motor or a jointed pipe to mill out composite plugs after fracturing operations are completed. An estimated average of 120,000 composite plugs is installed in the US alone each year. Bridge plug drillouts from milling operations tend to accumulate in horizontal wells and can cause stuck pipe incidents and loss of well control. Efficient removal of composite plugs’ debris is crucial in achieving operational efficacies and full production potential. This paper provides an overview of the various bridge plug drillouts cleaning practices adopted in horizontal wells. It discusses several case histories, showcasing how operators solved cleanout challenges. Developed mechanistic models to better understand hole cleaning are also reviewed. As more unconventional wells are being set at more extensive depths, an economical and optimized coiled tubing process becomes increasingly important. This paper focuses on delivering a more conclusive set of recommendations to increase efficiency and improve current composite plug coiled tubing cleaning-milling practices, increase operational efficiency and reduce cost.
基金Funded by the Construction of Key Disciplines for Young Teacher Science Foundation of the Southwest Petroleum University(No.P209)the Research Fund for the Doctoral Program of Higher Education(No.20105121120002)the National Natural Science Foundation of China(Nos.51004084 and 51374177)
文摘The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD) casing and PD casing after being immersed in NACE A solution saturated with H2S(PD+H2S). Instrumented impact method was employed to evaluate the impact behaviors of the specimens, meanwhile, dynamic fracture toughness(JId) was calculated by using Rice model and Schindler model. The experimental results show that dynamic fracture toughness of the casing decreases after plastic deformation. Compared with that of the original casing and PD casing, the dynamic fracture toughness decreases further when the PD casing immersed in H2 S, moreover, there are ridge-shaped feature and many secondary cracks present on the fracture surface of the specimens. Impact fracture mechanism of the casing is proposed as follows: the plastic deformation results in the increase of defect density of materials where the atomic hydrogen can accumulate in reversible or irreversible traps and even recombine to form molecular hydrogen, subsequently, the casing material toughness decreases greatly.
文摘This article introduces a portable wind turbine condition monitoring system(CMS)and its applications in wind turbine drivetrain damage detection.The portable CMS based on vibration detection and analysis has a long application history in conventional rotating machineries,but it is not widely used in wind turbines.There are several reasons why it is not used,including the labor-and knowledge-intensive requirements for test setup and result interpretation.There are also reasons specific to wind turbines,such as the structural diversity of drivetrains,the uncertainty of operational conditions,and the complexity of the damage mechanism of different parts that make the conventional vibration-based CMS inefficient and not cost-effective.All these factors affect the wide application of the portable system.The portable wind turbine CMS discussed in this article is integrated using advanced vibration measurement and analysis methodology.Fault detection for the acquired acceleration response and high-speed shaft speed signal is carried out by a suite of data analysis techniques specifically designed for a wind turbine gearbox.Using these techniques,damage detection accuracy for all the components inside a gearbox is improved significantly,especially for those related to medium-and low-speed shafts.The new data processing techniques also are briefly described with the developed methodologies verified by three wind turbines with typical low-speed shaft-related component damages.These damage assessments include the low-and medium-speed planetary stage ring gear,the low-speed planetary stage planet gear and damage to the main bearing.
文摘Production from unconventional formations,such as shales,has significantly increased in recent years by stimulating large portions of a reservoir through the application of horizontal drilling and hydraulic fracturing.Although oil shales are heavily dependent on oil prices,production forecasts remain positive in the North-American region.Due to the complexity of hydraulically fractured tight formations,reservoir numerical simulation has become the standard tool to assess and predict production performance from these unconventional resources.Many of these unconventional fields are immense,consisting of multistage and multiwell projects,which results in impractical simulation run times.Hence,simplification of large-scale simulation models is now common both in the industry and academia.Typical simplified models such as the“single fracture”approach do not often capture the physics of large-scale projects which results in inaccurate results.In this paper we present a simple,yet rigorous workflow that generates simplified representative models in order to achieve low simulation run times while capturing physical phenomena which is fundamental for accurate calculations.The proposed workflow is based on consideration of representative portions of a large-scale model followed by postprocess scaling to obtain desired full model results.The simplified models that result from the application of the proposed workflow for a single well and a multiwell case are compared to full-scale models and the“single fracture”model.Comparison of fluid rates and cumulative production show that accurate results are possible for simplified models if all important components for a particular case are taken into account.Finally,application of the workflow is shown for a heterogeneous field case where prediction studies can be carried out.