Background Recovery colleges (RCs) support personal recovery through education, skill development and social support for people with mental health problems, carers and staff. Guided by co-production and adult learning...Background Recovery colleges (RCs) support personal recovery through education, skill development and social support for people with mental health problems, carers and staff. Guided by co-production and adult learning principles, RCs represent a recent mental health innovation. Since the first RC opened in England in 2009, RCs have expanded to 28 countries and territories. However, most RC research has been conducted in Western countries with similar cultural characteristics, limiting understanding of how RCs can be culturally adapted. The 12-item Recovery Colleges Characterisation and Testing (RECOLLECT) Fidelity Measure (RFM) evaluates the operational fidelity of RCs based on 12 components, but cultural influences on these components remain underexplored.Aims To assess associations between Hofstede’s cultural dimensions and RFM items to identify cultural influences on fidelity components.Methods A cross-sectional survey of RC managers was conducted across all 221 RCs. Mixed-effects regression models examined associations between Hofstede’s country-level cultural dimensions and item-level RFM scores, adjusted for healthcare expenditure and income inequality. Four cultural dimensions, obtained from Hofstede, were analysed: individualism (prioritising personal needs), indulgence (enjoyment-oriented), uncertainty avoidance (preference for predictability) and long-term orientation (future-focused).Results The RFM was completed by 169 (76%) RC managers. Seven RFM items showed associations with cultural dimensions. Equality was linked to short-term orientation, while learning was associated with individualism and uncertainty avoidance. Both individualism and indulgence influenced co-production and community focus. Commitment to recovery was shaped by all four cultural dimensions, with the strongest associations seen for individualism and indulgence. Individualism enhanced explicit focus on strengths-based practice, while uncertainty avoidance influenced course distinctiveness.Conclusions This study demonstrates how culture shapes RC fidelity components, providing actionable insights for cultural adaptation. Incorporating under-represented dimensions, such as collectivism and restraint, could improve the RFM’s global applicability, facilitating implementation. Future research should explore cultural nuances, engage diverse stakeholders and refine fidelity measures to enhance RC inclusivity and effectiveness worldwide.展开更多
High-fidelity tactile rendering offers significant potential for improving the richness and immersion of touchscreen interactions.This study focuses on a quantitative description of tactile rendering fidelity using a ...High-fidelity tactile rendering offers significant potential for improving the richness and immersion of touchscreen interactions.This study focuses on a quantitative description of tactile rendering fidelity using a custom-designed hybrid electrovibration and mechanical vibration(HEM)device.An electrovibration and mechanical vibration(EMV)algorithm that renders 3D gratings with different physical heights was proposed and shown to achieve 81%accuracy in shape recognition.Models of tactile rendering fidelity were established based on the evaluation of the height discrimination threshold,and the psychophysical-physical relationships between the discrimination and reference heights were well described by a modification of Weber’s law,with correlation coefficients higher than 0.9.The physiological-physical relationship between the pulse firing rate and the physical stimulation voltage was modeled using the Izhikevich spiking model with a logarithmic relationship.展开更多
For the quantum error correction and noisy intermediate-scale quantum algorithms to function with high efficiency,the raw fidelity of quantum logic gates on physical qubits needs to satisfy strict requirements.The neu...For the quantum error correction and noisy intermediate-scale quantum algorithms to function with high efficiency,the raw fidelity of quantum logic gates on physical qubits needs to satisfy strict requirements.The neutral atom quantum computing equipped with Rydberg blockade gates has made impressive progress recently,which makes it worthwhile to explore its potential in the two-qubit entangling gates,including the controlledphase gate,and in particular,the CZ gate.Provided the quantum coherence is well preserved,improving the fidelity of Rydberg blockade gates calls for special mechanisms to deal with adverse effects caused by realistic experimental conditions.Here,the heralded very-high-fidelity Rydberg blockade controlled-phase gate is designed to address these issues,which contains self-correction and projection as the key steps.This trailblazing method builds upon the previously established buffer-atom-mediated gate framework,with a special form of symmetry under parity–time transformation playing a crucial role in the process.We further analyze the performance with respect to a few typical sources of imperfections.This procedure can also be regarded as quantum hardware error correction or mitigation.While this paper by itself does not cover every single subtle issue and still contains many oversimplifications,we find it reasonable to anticipate a very-high-fidelity two-qubit quantum logic gate operated in the sense of heralded but probabilistic,whose gate error can be reduced to the level of 10^(-4)–10^(-6)or even lower with reasonably high possibilities.展开更多
Achieving exact printing fidelity in polymer-based bone regeneration scaffolds through additive manufacturing,particularly those of dispensing-type,remains a significant challenge.During fabrication,scaffolds often de...Achieving exact printing fidelity in polymer-based bone regeneration scaffolds through additive manufacturing,particularly those of dispensing-type,remains a significant challenge.During fabrication,scaffolds often deviate from the intended design geometry,which can negatively affect their performance.Additionally,achieving mechanical properties similar to natural bone in scaffolds remains challenging.Therefore,this study introduces the Hybrid Modified Cubic-Honeycomb Plate(hybrid MCHP)structure to improve printing fidelity and mechanical properties over previous bone regeneration scaffolds through innovative geometry design.This hybrid MCHP scaffold was inspired by cubic honeycomb and plate-lattice structures due to their excellent mechanical performance and well-optimized geometry,which ensure optimal printability.The effective elastic stiffness of the proposed structure and control group was predicted using a numerical Asymptotic Expansion Homogenization(AEH)model.Bone regeneration scaffolds were fabricated using Polycaprolactone(PCL)and a 3D printer with a Precision Extrusion Deposition(PED)system.Printing fidelity in manufactured scaffolds was then evaluated,resulting in a printing fidelity of 97.93±1.1%for the hybrid MCHP-structure scaffold(compared to 82.31±3.6%and 92.00±2.5%in the case of Kagome-structure and modified honeycomb(MHC)-structure scaffolds,which are the control groups).Mechanical testing of the hybrid MCHP-structure scaffold using a Universal Testing Machine(UTM)depicted similarity with 91.1%of the numerical estimated effective elastic stiffness(compared to 82.8%and 79.0%in the case of Kagome-structure and MHC-structure scaffolds,which serve as the control groups).The biological potential of the scaffolds was evaluated through in vitro studies using MC3T3-E1 pre-osteoblasts.The CCK-8 assay showed significantly enhanced cell viability and proliferation on the hybrid MCHP scaffold at all time points(days 1,7,and 14),consistently outperforming the Kagome and MHC scaffolds.Additionally,immunofluorescence staining analysis revealed abundant focal adhesions and uniform nuclear distribution,highlighting the superior cytocompatibility and effective support for cellular activity of the hybrid MCHP scaffold.展开更多
Super-resolution structured illumination microscopy(SR-SIM)relies heavily on post-processing reconstruction to obtain high-quality SR images from raw data.Although many SIM reconstruction algorithms have been develope...Super-resolution structured illumination microscopy(SR-SIM)relies heavily on post-processing reconstruction to obtain high-quality SR images from raw data.Although many SIM reconstruction algorithms have been developed to recover fine cellular structures with high fidelity even from the noisy data,whether the pixel intensities of reconstructed SR images are still proportional to the original fluorescence intensity has been less explored.The linearity between the intensity before and after reconstruction is de fined as the intensity fidelity.Here,we proposed a method to evaluate the reconstructed SR image intensity fidelity at different spatial frequencies.With the proposed metric,we systematically investigated the impact of the key factors on the intensity fidelity in the standard Wiener-SIM reconstructions with simulated data,then evaluated the intensity fidelity of the SR images reconstructed by representative open-source packages.Our work provides a reference for SR-SIM image intensity fidelity improvement.展开更多
Quantum circuit fidelity is a crucial metric for assessing the accuracy of quantum computation results and indicating the precision of quantum algorithm execution. The primary methods for assessing quantum circuit fid...Quantum circuit fidelity is a crucial metric for assessing the accuracy of quantum computation results and indicating the precision of quantum algorithm execution. The primary methods for assessing quantum circuit fidelity include direct fidelity estimation and mirror circuit fidelity estimation. The former is challenging to implement in practice, while the latter requires substantial classical computational resources and numerous experimental runs. In this paper, we propose a fidelity estimation method based on Layer Interleaved Randomized Benchmarking, which decomposes a complex quantum circuit into multiple sublayers. By independently evaluating the fidelity of each layer, one can comprehensively assess the performance of the entire quantum circuit. This layered evaluation strategy not only enhances accuracy but also effectively identifies and analyzes errors in specific quantum gates or qubits through independent layer evaluation. Simulation results demonstrate that the proposed method improves circuit fidelity by an average of 6.8% and 4.1% compared to Layer Randomized Benchmarking and Interleaved Randomized Benchmarking methods in a thermal relaxation noise environment, and by 40% compared to Layer RB in a bit-flip noise environment. Moreover, the method detects preset faulty quantum gates in circuits generated by the Munich Quantum Toolkit Benchmark, verifying the model’s validity and providing a new tool for faulty gate detection in quantum circuits.展开更多
In[Phys.Rev.A 107012427(2023)],Baldwin and Jones prove that Uhlmann–Jozsa’s fidelity between two quantum statesρandσ,i.e.,F(ρ,σ)=(Tr√√ρσ√ρ)^(2),can be written in a simplified form as F(ρ,σ)=(Tr√ρσ)^(2...In[Phys.Rev.A 107012427(2023)],Baldwin and Jones prove that Uhlmann–Jozsa’s fidelity between two quantum statesρandσ,i.e.,F(ρ,σ)=(Tr√√ρσ√ρ)^(2),can be written in a simplified form as F(ρ,σ)=(Tr√ρσ)^(2).In this article,we give an alternative proof of this result,using a function power series expansion and the properties of the trace function.Our approach not only reinforces the validity of the simplified expression but also facilitates the exploration of novel dissimilarity functions for quantum states and more complex trace functions of density operators.展开更多
In this paper, we analyze the sub-fidelity and super-fidelity of an arbitrary pair of n-mode Gaussian states.Particularly, an explicit formula for the sub-fidelity and super-fidelity between any two-mode Gaussian stat...In this paper, we analyze the sub-fidelity and super-fidelity of an arbitrary pair of n-mode Gaussian states.Particularly, an explicit formula for the sub-fidelity and super-fidelity between any two-mode Gaussian states is obtained.展开更多
In this paper,we introduce some new metrics between quantum states based on partial fidelity and partial super-fidelity and discuss their properties.We show that the new metrics are useful measures in quantum informat...In this paper,we introduce some new metrics between quantum states based on partial fidelity and partial super-fidelity and discuss their properties.We show that the new metrics are useful measures in quantum information processing.展开更多
In their seminal publication describing the structure of the DNA double helix , Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our...In their seminal publication describing the structure of the DNA double helix , Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Half a century later, we more fully appreciate what a huge challenge it is to replicate six billion nucleotides with the accuracy needed to stably maintain the human genome over many generations. This challenge is perhaps greater than was realized 50 years ago, because subsequent studies have revealed that the genome can be destabilized not only by environmental stresses that generate a large number and variety of potentially cytotoxic and mutagenic lesions in DNA but also by various sequence motifs of normal DNA that present challenges to replication. Towards a better understanding of the many determinants of genome stability, this chapter reviews the fidelity with which undamaged and damaged DNA is copied, with a focus on the eukaryotic B- and Y-family DNA polymerases, and considers how this fidelity is achieved.展开更多
Encoding information in light polarization is of great importance in facilitating optical data storage(ODS)for information security and data storage capacity escalation.However,despite recent advances in nanophotonic ...Encoding information in light polarization is of great importance in facilitating optical data storage(ODS)for information security and data storage capacity escalation.However,despite recent advances in nanophotonic techniques vastly en-hancing the feasibility of applying polarization channels,the data fidelity in reconstructed bits has been constrained by severe crosstalks occurring between varied polarization angles during data recording and reading process,which gravely hindered the utilization of this technique in practice.In this paper,we demonstrate an ultra-low crosstalk polarization-en-coding multilayer ODS technique for high-fidelity data recording and retrieving by utilizing a nanofibre-based nanocom-posite film involving highly aligned gold nanorods(GNRs).With parallelizing the gold nanorods in the recording medium,the information carrier configuration minimizes miswriting and misreading possibilities for information input and output,respectively,compared with its randomly self-assembled counterparts.The enhanced data accuracy has significantly im-proved the bit recall fidelity that is quantified by a correlation coefficient higher than 0.99.It is anticipated that the demon-strated technique can facilitate the development of multiplexing ODS for a greener future.展开更多
Using rain-gauge-observation daily precipitation data from the Global Historical Climatology Network(V3.25)and the Chinese Surface Daily Climate Dataset(V3.0),this study investigates the fidelity of the AHPRODITE data...Using rain-gauge-observation daily precipitation data from the Global Historical Climatology Network(V3.25)and the Chinese Surface Daily Climate Dataset(V3.0),this study investigates the fidelity of the AHPRODITE dataset in representing extreme precipitation,in terms of the extreme precipitation threshold value,occurrence number,probability of detection,and extremal dependence index during the cool(October to April)and warm(May to September)seasons in Central Asia during 1961–90.The distribution of extreme precipitation is characterized by large extreme precipitation threshold values and high occurrence numbers over the mountainous areas.The APHRODITE dataset is highly correlated with the gauge-observation precipitation data and can reproduce the spatial distributions of the extreme precipitation threshold value and total occurrence number.However,APHRODITE generally underestimates the extreme precipitation threshold values,while it overestimates the total numbers of extreme precipitation events,particularly over the mountainous areas.These biases can be attributed to the overestimation of light rainfall and the underestimation of heavy rainfall induced by the rainfall distribution–based interpolation.Such deficits are more evident for the warm season than the cool season,and thus the biases are more pronounced in the warm season than in the cool season.The probability of detection and extremal dependence index reveal that APHRODITE has a good capability of detecting extreme precipitation,particularly in the cool season.展开更多
We demonstrate a method to preserve entanglement and improve fidelity of three-qubit quantum states undergoing amplitude-damping decoherence using weak measurement and quantum measurement reversal. It is shown that we...We demonstrate a method to preserve entanglement and improve fidelity of three-qubit quantum states undergoing amplitude-damping decoherence using weak measurement and quantum measurement reversal. It is shown that we are able to enhance entanglement to the greatest extent, and to circumvent entanglement sudden death by increasing the weak measurement strength both for the GHZ state and the W state. The weak measurement technique can also enhance the fidelity to the quantum region and even close to 1 for the whole range of the decoherence parameter in both of the two cases. In addition, the W state can maintain more fidelity than the GHZ state in the protection protocol. However, the GHZ state has a higher success probability than the W state.展开更多
The dynamics of four fidelities is studied for mixed coherent states and mixed squeezed states of Fermi-resonance coupling vibrations in molecule CS2. It is demonstrated that those fidelities are dominant-positively c...The dynamics of four fidelities is studied for mixed coherent states and mixed squeezed states of Fermi-resonance coupling vibrations in molecule CS2. It is demonstrated that those fidelities are dominant-positively correlated with each other, one of which by Wang et al. (Phys. Lett. A 373, 58 (2008)) is the most striking in dominant anti-correlation with quantum mutual entropy. That is useful for molecular quantum computing and quantum information.展开更多
The effects of amplitude damping in quantum noise channels on average fidelity of quantum teleportation are analyzed in Bloeh sphere representation for every stage of teleportation. When the quantum channels are varie...The effects of amplitude damping in quantum noise channels on average fidelity of quantum teleportation are analyzed in Bloeh sphere representation for every stage of teleportation. When the quantum channels are varied from maximally entangled states to non-maximally entangled states, it is found that the effects of noise channels on the fidelity are nearly equivalent to each other for strong quantum noise. The degree of damage on the fidelity of non-maximally entangled channels is smaller than that of maximally entangled channels. The average fidelity of values larger than 2/3 may be one representation indirectly showing how much the unavoidable quantum noise is.展开更多
Poly(methyl methacrylate-b-styrene) (PMMA-b-PS) block copolymers are synthesized by two consecutive ATRPs and fractionated into four fractions. The halogen chain end fidelity (CEF) in PMMA-b-PS is quantified bas...Poly(methyl methacrylate-b-styrene) (PMMA-b-PS) block copolymers are synthesized by two consecutive ATRPs and fractionated into four fractions. The halogen chain end fidelity (CEF) in PMMA-b-PS is quantified based on the analysis of each fraction. Compared to ethyl 2-phenyl-2-bromoacetate/CuBr/2,2'-bipyridine (EPBA/CuBr/bpy) and CuBr/N,N,N',N",N"-pentamethyldiethylene- triamine (CuBr/PMDETA) catalysts, PMMA-b-PS synthesized using p-toluenesulfonyl chloride/CuCl/bpy (TsC1/CuC1/bpy) and CuC1/PMDETA catalysts has a higher halogen CEF and a better control on molecular weight.展开更多
Adaptive sampling is an iterative process for the construction of a global approximation model. Most of engineering analysis tools computes multiple parameters in a single run. This research proposes a novel multi-res...Adaptive sampling is an iterative process for the construction of a global approximation model. Most of engineering analysis tools computes multiple parameters in a single run. This research proposes a novel multi-response adaptive sampling algorithm for simultaneous construction of multiple surrogate models in a time-efficient and accurate manner. The new algorithm uses the Jackknife cross-validation variance and a minimum distance metric to construct a sampling criterion function. A weighted sum of the function is used to consider the characteristics of multiple surrogate models. The proposed algorithm demonstrates good performance on total 22 numerical problems in comparison with three existing adaptive sampling algorithms. The numerical problems include several two-dimensional and six-dimensional functions which are combined into singleresponse and multi-response systems. Application of the proposed algorithm for construction of aerodynamic tables for 2 D airfoil is demonstrated. Scaling-based variable-fidelity modeling is implemented to enhance the accuracy of surrogate modeling. The algorithm succeeds in constructing a system of three highly nonlinear aerodynamic response surfaces within a reasonable amount of time while preserving high accuracy of approximation.展开更多
In this paper the evolution characteristics of the fidelity of quantum information for the V-type three-level atom interacting with number state light field in Kerr meddium are investigated. It shows that the periodic...In this paper the evolution characteristics of the fidelity of quantum information for the V-type three-level atom interacting with number state light field in Kerr meddium are investigated. It shows that the periodicity of the evolutions of fidelity of quantum information is influenced by the Kerr coefficient, the photon number of the initial field and intensity of light. The evolutions of the fidelity of quantum information are modulated by the initial number state field. The Rabi oscillation frequency and the modulation frequency of fidelity for the field and the system vary with the value of the Kerr coefficient. The evolutions of fidelity of quantum information obviously show the quantum collapse and revival behaviours in the system of atom interacting with light field.展开更多
基金This study is part of the RECOLLECT 2 programme,a five-year(2020-2025)project funded by the National Institute for Health and Care Research,which investigates the effectiveness and cost-effectiveness of recovery colleges.
文摘Background Recovery colleges (RCs) support personal recovery through education, skill development and social support for people with mental health problems, carers and staff. Guided by co-production and adult learning principles, RCs represent a recent mental health innovation. Since the first RC opened in England in 2009, RCs have expanded to 28 countries and territories. However, most RC research has been conducted in Western countries with similar cultural characteristics, limiting understanding of how RCs can be culturally adapted. The 12-item Recovery Colleges Characterisation and Testing (RECOLLECT) Fidelity Measure (RFM) evaluates the operational fidelity of RCs based on 12 components, but cultural influences on these components remain underexplored.Aims To assess associations between Hofstede’s cultural dimensions and RFM items to identify cultural influences on fidelity components.Methods A cross-sectional survey of RC managers was conducted across all 221 RCs. Mixed-effects regression models examined associations between Hofstede’s country-level cultural dimensions and item-level RFM scores, adjusted for healthcare expenditure and income inequality. Four cultural dimensions, obtained from Hofstede, were analysed: individualism (prioritising personal needs), indulgence (enjoyment-oriented), uncertainty avoidance (preference for predictability) and long-term orientation (future-focused).Results The RFM was completed by 169 (76%) RC managers. Seven RFM items showed associations with cultural dimensions. Equality was linked to short-term orientation, while learning was associated with individualism and uncertainty avoidance. Both individualism and indulgence influenced co-production and community focus. Commitment to recovery was shaped by all four cultural dimensions, with the strongest associations seen for individualism and indulgence. Individualism enhanced explicit focus on strengths-based practice, while uncertainty avoidance influenced course distinctiveness.Conclusions This study demonstrates how culture shapes RC fidelity components, providing actionable insights for cultural adaptation. Incorporating under-represented dimensions, such as collectivism and restraint, could improve the RFM’s global applicability, facilitating implementation. Future research should explore cultural nuances, engage diverse stakeholders and refine fidelity measures to enhance RC inclusivity and effectiveness worldwide.
基金Supported by the National Natural Science Foundation of China under Grants 61631010 and 61806085.
文摘High-fidelity tactile rendering offers significant potential for improving the richness and immersion of touchscreen interactions.This study focuses on a quantitative description of tactile rendering fidelity using a custom-designed hybrid electrovibration and mechanical vibration(HEM)device.An electrovibration and mechanical vibration(EMV)algorithm that renders 3D gratings with different physical heights was proposed and shown to achieve 81%accuracy in shape recognition.Models of tactile rendering fidelity were established based on the evaluation of the height discrimination threshold,and the psychophysical-physical relationships between the discrimination and reference heights were well described by a modification of Weber’s law,with correlation coefficients higher than 0.9.The physiological-physical relationship between the pulse firing rate and the physical stimulation voltage was modeled using the Izhikevich spiking model with a logarithmic relationship.
基金supported by the Science and Technology Commission of Shanghai Municipality(Grant No.24DP2600202)the National Key R&D Program of China(Grant No.2024YFB4504002)the National Natural Science Foundation of China(Grant No.92165107)。
文摘For the quantum error correction and noisy intermediate-scale quantum algorithms to function with high efficiency,the raw fidelity of quantum logic gates on physical qubits needs to satisfy strict requirements.The neutral atom quantum computing equipped with Rydberg blockade gates has made impressive progress recently,which makes it worthwhile to explore its potential in the two-qubit entangling gates,including the controlledphase gate,and in particular,the CZ gate.Provided the quantum coherence is well preserved,improving the fidelity of Rydberg blockade gates calls for special mechanisms to deal with adverse effects caused by realistic experimental conditions.Here,the heralded very-high-fidelity Rydberg blockade controlled-phase gate is designed to address these issues,which contains self-correction and projection as the key steps.This trailblazing method builds upon the previously established buffer-atom-mediated gate framework,with a special form of symmetry under parity–time transformation playing a crucial role in the process.We further analyze the performance with respect to a few typical sources of imperfections.This procedure can also be regarded as quantum hardware error correction or mitigation.While this paper by itself does not cover every single subtle issue and still contains many oversimplifications,we find it reasonable to anticipate a very-high-fidelity two-qubit quantum logic gate operated in the sense of heralded but probabilistic,whose gate error can be reduced to the level of 10^(-4)–10^(-6)or even lower with reasonably high possibilities.
基金supported by a National Research Foundation of Korea(NRF)grant funded by Korean government(Nos.NRF-2022R1A4A1028747 and RS-2024-00344151).
文摘Achieving exact printing fidelity in polymer-based bone regeneration scaffolds through additive manufacturing,particularly those of dispensing-type,remains a significant challenge.During fabrication,scaffolds often deviate from the intended design geometry,which can negatively affect their performance.Additionally,achieving mechanical properties similar to natural bone in scaffolds remains challenging.Therefore,this study introduces the Hybrid Modified Cubic-Honeycomb Plate(hybrid MCHP)structure to improve printing fidelity and mechanical properties over previous bone regeneration scaffolds through innovative geometry design.This hybrid MCHP scaffold was inspired by cubic honeycomb and plate-lattice structures due to their excellent mechanical performance and well-optimized geometry,which ensure optimal printability.The effective elastic stiffness of the proposed structure and control group was predicted using a numerical Asymptotic Expansion Homogenization(AEH)model.Bone regeneration scaffolds were fabricated using Polycaprolactone(PCL)and a 3D printer with a Precision Extrusion Deposition(PED)system.Printing fidelity in manufactured scaffolds was then evaluated,resulting in a printing fidelity of 97.93±1.1%for the hybrid MCHP-structure scaffold(compared to 82.31±3.6%and 92.00±2.5%in the case of Kagome-structure and modified honeycomb(MHC)-structure scaffolds,which are the control groups).Mechanical testing of the hybrid MCHP-structure scaffold using a Universal Testing Machine(UTM)depicted similarity with 91.1%of the numerical estimated effective elastic stiffness(compared to 82.8%and 79.0%in the case of Kagome-structure and MHC-structure scaffolds,which serve as the control groups).The biological potential of the scaffolds was evaluated through in vitro studies using MC3T3-E1 pre-osteoblasts.The CCK-8 assay showed significantly enhanced cell viability and proliferation on the hybrid MCHP scaffold at all time points(days 1,7,and 14),consistently outperforming the Kagome and MHC scaffolds.Additionally,immunofluorescence staining analysis revealed abundant focal adhesions and uniform nuclear distribution,highlighting the superior cytocompatibility and effective support for cellular activity of the hybrid MCHP scaffold.
基金supported by the National Natural Science Foundation of China[Grant Nos.62205367 and 62141506]Suzhou Basic Research Pilot Project[Grant Nos.SSD2023006 and SJC2021013]Jiangsu Provincial Key Research and Development Program[Grant No.BE2020664].
文摘Super-resolution structured illumination microscopy(SR-SIM)relies heavily on post-processing reconstruction to obtain high-quality SR images from raw data.Although many SIM reconstruction algorithms have been developed to recover fine cellular structures with high fidelity even from the noisy data,whether the pixel intensities of reconstructed SR images are still proportional to the original fluorescence intensity has been less explored.The linearity between the intensity before and after reconstruction is de fined as the intensity fidelity.Here,we proposed a method to evaluate the reconstructed SR image intensity fidelity at different spatial frequencies.With the proposed metric,we systematically investigated the impact of the key factors on the intensity fidelity in the standard Wiener-SIM reconstructions with simulated data,then evaluated the intensity fidelity of the SR images reconstructed by representative open-source packages.Our work provides a reference for SR-SIM image intensity fidelity improvement.
文摘Quantum circuit fidelity is a crucial metric for assessing the accuracy of quantum computation results and indicating the precision of quantum algorithm execution. The primary methods for assessing quantum circuit fidelity include direct fidelity estimation and mirror circuit fidelity estimation. The former is challenging to implement in practice, while the latter requires substantial classical computational resources and numerous experimental runs. In this paper, we propose a fidelity estimation method based on Layer Interleaved Randomized Benchmarking, which decomposes a complex quantum circuit into multiple sublayers. By independently evaluating the fidelity of each layer, one can comprehensively assess the performance of the entire quantum circuit. This layered evaluation strategy not only enhances accuracy but also effectively identifies and analyzes errors in specific quantum gates or qubits through independent layer evaluation. Simulation results demonstrate that the proposed method improves circuit fidelity by an average of 6.8% and 4.1% compared to Layer Randomized Benchmarking and Interleaved Randomized Benchmarking methods in a thermal relaxation noise environment, and by 40% compared to Layer RB in a bit-flip noise environment. Moreover, the method detects preset faulty quantum gates in circuits generated by the Munich Quantum Toolkit Benchmark, verifying the model’s validity and providing a new tool for faulty gate detection in quantum circuits.
文摘In[Phys.Rev.A 107012427(2023)],Baldwin and Jones prove that Uhlmann–Jozsa’s fidelity between two quantum statesρandσ,i.e.,F(ρ,σ)=(Tr√√ρσ√ρ)^(2),can be written in a simplified form as F(ρ,σ)=(Tr√ρσ)^(2).In this article,we give an alternative proof of this result,using a function power series expansion and the properties of the trace function.Our approach not only reinforces the validity of the simplified expression but also facilitates the exploration of novel dissimilarity functions for quantum states and more complex trace functions of density operators.
基金Supported by Natural Science Foundation of China under Grant Nos.11171249,11201329Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi
文摘In this paper, we analyze the sub-fidelity and super-fidelity of an arbitrary pair of n-mode Gaussian states.Particularly, an explicit formula for the sub-fidelity and super-fidelity between any two-mode Gaussian states is obtained.
基金Supported by the Natural Science Foundation of China under Grant Nos.11361042,11071108,11171301the Natural Science Foundation of Jiangxi Province of China under Grant Nos.2013BAB201001,2010GZS0147the Youth Foundation of the Education Department of Jiangxi under Grant No.GJJ13012
文摘In this paper,we introduce some new metrics between quantum states based on partial fidelity and partial super-fidelity and discuss their properties.We show that the new metrics are useful measures in quantum information processing.
文摘In their seminal publication describing the structure of the DNA double helix , Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Half a century later, we more fully appreciate what a huge challenge it is to replicate six billion nucleotides with the accuracy needed to stably maintain the human genome over many generations. This challenge is perhaps greater than was realized 50 years ago, because subsequent studies have revealed that the genome can be destabilized not only by environmental stresses that generate a large number and variety of potentially cytotoxic and mutagenic lesions in DNA but also by various sequence motifs of normal DNA that present challenges to replication. Towards a better understanding of the many determinants of genome stability, this chapter reviews the fidelity with which undamaged and damaged DNA is copied, with a focus on the eukaryotic B- and Y-family DNA polymerases, and considers how this fidelity is achieved.
基金financial supports from the National Natural Science Foundation of China(Grant Nos.62174073,61875073,11674130,91750110 and 61522504)the National Key R&D Program of China(Grant No.2018YFB1107200)+3 种基金the Guangdong Provincial Innovation and Entrepren-eurship Project(Grant No.2016ZT06D081)the Natural Science Founda-tion of Guangdong Province,China(Grant Nos.2016A030306016 and 2016TQ03X981)the Pearl River Nova Program of Guangzhou(Grant No.201806010040)the Technology Innovation and Development Plan of Yantai(Grant No.2020XDRH095).
文摘Encoding information in light polarization is of great importance in facilitating optical data storage(ODS)for information security and data storage capacity escalation.However,despite recent advances in nanophotonic techniques vastly en-hancing the feasibility of applying polarization channels,the data fidelity in reconstructed bits has been constrained by severe crosstalks occurring between varied polarization angles during data recording and reading process,which gravely hindered the utilization of this technique in practice.In this paper,we demonstrate an ultra-low crosstalk polarization-en-coding multilayer ODS technique for high-fidelity data recording and retrieving by utilizing a nanofibre-based nanocom-posite film involving highly aligned gold nanorods(GNRs).With parallelizing the gold nanorods in the recording medium,the information carrier configuration minimizes miswriting and misreading possibilities for information input and output,respectively,compared with its randomly self-assembled counterparts.The enhanced data accuracy has significantly im-proved the bit recall fidelity that is quantified by a correlation coefficient higher than 0.99.It is anticipated that the demon-strated technique can facilitate the development of multiplexing ODS for a greener future.
基金the two anonymous reviewers for their valuable comments and suggestions.This research was funded by the National Key Research and Development Program of China(Grant No.2018YFC1507101)the National Natural Science Foundation of China(Grant Nos.41861144014,41875078 and 41630424)+3 种基金the National Key Research and Development Program of China(Grant No.2016YFA0601501)We acknowledge Hirosaki University for providing the APHRODITE precipitation data(http://aphrodite.st.hirosaki-u.ac.jp/download/)We thank the China Meteorological Data Service Center for providing the Chinese Surface Daily Climate Dataset(V3.0)(https://data.cma.cn/en/?r=data/detail&data-Code=SURF_CLI_CHN_MUL_DAY_CES_V3.0)the National Oceanic and Atmospheric Administration,National Centers for Environmental Information,for providing the GHCN-D dataset(V3.25)(Menne et al.,2012).We convey our gratitude to the contributors of the SciPy ecosystem(Virtanen et al.,2020),which was used for data analysis and visualization.
文摘Using rain-gauge-observation daily precipitation data from the Global Historical Climatology Network(V3.25)and the Chinese Surface Daily Climate Dataset(V3.0),this study investigates the fidelity of the AHPRODITE dataset in representing extreme precipitation,in terms of the extreme precipitation threshold value,occurrence number,probability of detection,and extremal dependence index during the cool(October to April)and warm(May to September)seasons in Central Asia during 1961–90.The distribution of extreme precipitation is characterized by large extreme precipitation threshold values and high occurrence numbers over the mountainous areas.The APHRODITE dataset is highly correlated with the gauge-observation precipitation data and can reproduce the spatial distributions of the extreme precipitation threshold value and total occurrence number.However,APHRODITE generally underestimates the extreme precipitation threshold values,while it overestimates the total numbers of extreme precipitation events,particularly over the mountainous areas.These biases can be attributed to the overestimation of light rainfall and the underestimation of heavy rainfall induced by the rainfall distribution–based interpolation.Such deficits are more evident for the warm season than the cool season,and thus the biases are more pronounced in the warm season than in the cool season.The probability of detection and extremal dependence index reveal that APHRODITE has a good capability of detecting extreme precipitation,particularly in the cool season.
基金Project supported by the National Natural Science Foundation of China (Grant No.11074072)the Natural Science Foundation of Hunan Province of China (Grant No.10JJ3088)+1 种基金the Major Program for the Research Foundation of the Education Bureau of Hunan Province of China (Grant No.10A026)the Program for the Research Foundation of the Education Bureau of Hunan Province of China (Grant No.10C0658)
文摘We demonstrate a method to preserve entanglement and improve fidelity of three-qubit quantum states undergoing amplitude-damping decoherence using weak measurement and quantum measurement reversal. It is shown that we are able to enhance entanglement to the greatest extent, and to circumvent entanglement sudden death by increasing the weak measurement strength both for the GHZ state and the W state. The weak measurement technique can also enhance the fidelity to the quantum region and even close to 1 for the whole range of the decoherence parameter in both of the two cases. In addition, the W state can maintain more fidelity than the GHZ state in the protection protocol. However, the GHZ state has a higher success probability than the W state.
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.10675050).
文摘The dynamics of four fidelities is studied for mixed coherent states and mixed squeezed states of Fermi-resonance coupling vibrations in molecule CS2. It is demonstrated that those fidelities are dominant-positively correlated with each other, one of which by Wang et al. (Phys. Lett. A 373, 58 (2008)) is the most striking in dominant anti-correlation with quantum mutual entropy. That is useful for molecular quantum computing and quantum information.
基金The project supported by Special Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20050285002It is a pleasure to thank Profs. Yin-Sheng Ling and Jian-Xing Fang for their enlightening discussions on this topic.
文摘The effects of amplitude damping in quantum noise channels on average fidelity of quantum teleportation are analyzed in Bloeh sphere representation for every stage of teleportation. When the quantum channels are varied from maximally entangled states to non-maximally entangled states, it is found that the effects of noise channels on the fidelity are nearly equivalent to each other for strong quantum noise. The degree of damage on the fidelity of non-maximally entangled channels is smaller than that of maximally entangled channels. The average fidelity of values larger than 2/3 may be one representation indirectly showing how much the unavoidable quantum noise is.
基金financially supported by the National Natural Science Foundation of China(Nos.51173181 and 51373166)“The Hundred Talents Program”from the Chinese Academy of Sciences,and Department of Science and Technology of Jilin Province(No.20160414032GH),China
文摘Poly(methyl methacrylate-b-styrene) (PMMA-b-PS) block copolymers are synthesized by two consecutive ATRPs and fractionated into four fractions. The halogen chain end fidelity (CEF) in PMMA-b-PS is quantified based on the analysis of each fraction. Compared to ethyl 2-phenyl-2-bromoacetate/CuBr/2,2'-bipyridine (EPBA/CuBr/bpy) and CuBr/N,N,N',N",N"-pentamethyldiethylene- triamine (CuBr/PMDETA) catalysts, PMMA-b-PS synthesized using p-toluenesulfonyl chloride/CuCl/bpy (TsC1/CuC1/bpy) and CuC1/PMDETA catalysts has a higher halogen CEF and a better control on molecular weight.
基金supported by the Konkuk University Brain Pool 2018the National Research Foundation of Korea(NRF)[Grant NRF-2018R1D1A1B07046779]funded by the Korean government(MISP)
文摘Adaptive sampling is an iterative process for the construction of a global approximation model. Most of engineering analysis tools computes multiple parameters in a single run. This research proposes a novel multi-response adaptive sampling algorithm for simultaneous construction of multiple surrogate models in a time-efficient and accurate manner. The new algorithm uses the Jackknife cross-validation variance and a minimum distance metric to construct a sampling criterion function. A weighted sum of the function is used to consider the characteristics of multiple surrogate models. The proposed algorithm demonstrates good performance on total 22 numerical problems in comparison with three existing adaptive sampling algorithms. The numerical problems include several two-dimensional and six-dimensional functions which are combined into singleresponse and multi-response systems. Application of the proposed algorithm for construction of aerodynamic tables for 2 D airfoil is demonstrated. Scaling-based variable-fidelity modeling is implemented to enhance the accuracy of surrogate modeling. The algorithm succeeds in constructing a system of three highly nonlinear aerodynamic response surfaces within a reasonable amount of time while preserving high accuracy of approximation.
文摘In this paper the evolution characteristics of the fidelity of quantum information for the V-type three-level atom interacting with number state light field in Kerr meddium are investigated. It shows that the periodicity of the evolutions of fidelity of quantum information is influenced by the Kerr coefficient, the photon number of the initial field and intensity of light. The evolutions of the fidelity of quantum information are modulated by the initial number state field. The Rabi oscillation frequency and the modulation frequency of fidelity for the field and the system vary with the value of the Kerr coefficient. The evolutions of fidelity of quantum information obviously show the quantum collapse and revival behaviours in the system of atom interacting with light field.