The systemic effects of gastrointestinal(GI)microbiota in health and during chronic diseases is increasingly recognised.Dietary strategies to modulate the GI microbiota during chronic diseases have demonstrated promis...The systemic effects of gastrointestinal(GI)microbiota in health and during chronic diseases is increasingly recognised.Dietary strategies to modulate the GI microbiota during chronic diseases have demonstrated promise.While changes in dietary intake can rapidly change the GI microbiota,the impact of dietary changes during acute critical illness on the microbiota remain uncertain.Dietary fibre is metabolised by carbohydrate-active enzymes and,in health,can alter GI microbiota.The aim of this scoping review was to describe the effects of dietary fibre supplementation in health and disease states,specifically during critical illness.Randomised controlled trials and prospective cohort studies that include adults(>18 years age)and reported changes to GI microbiota as one of the study outcomes using non-culture methods,were identified.Studies show dietary fibres have an impact on faecal microbiota in health and disease.The fibre,inulin,has a marked and specific effect on increasing the abundance of faecal Bifidobacteria.Short chain fatty acids produced by Bifidobacteria have been shown to be beneficial in other patient populations.Very few trials have evaluated the effect of dietary fibre on the GI microbiota during critical illness.More research is necessary to establish optimal fibre type,doses,duration of intervention in critical illness.展开更多
Real-time assessment of slope reinforcements to diagnose their state in all stages of service life is imperative for prompt evaluation of slope stability and establishing an efficient early warning(EW)system.Many poin...Real-time assessment of slope reinforcements to diagnose their state in all stages of service life is imperative for prompt evaluation of slope stability and establishing an efficient early warning(EW)system.Many point-based monitoring instruments have been used in the last few decades.However,these sensors suffer from a particular risk of detection failures and practical limitations.Fibre-optic sensing(FOS)technologies have been developed,tested,and validated across various geoengineering applications,including slope monitoring,as they offer exceptional advantages,such as high data-carrying capacity,precise mapping of physical parameters,durability,and immunity to electromagnetic interference.The deformation of rock/soil causes the deformation and fracture of reinforcement materials,which are subsequently transferred to the encapsulated fibre-optic(FO)sensors,providing valuable information on reinforcements'safety state and performance for early failure detection.This paper is devoted to critically analysing the application of cutting-edge FOS technologies for slope reinforcement monitoring.Firstly,a concise overview of the fundamental principles underlying discrete and distributed FOS methods is provided.The key considerations for selecting FO cables and the appropriate packaging techniques necessary to withstand the challenges posed by complex geological environments are also summarised.We delve into the details of three distinct cable installation techniques within slope reinforcement components:surface bonding,slot embedment,and clamping.The recent advancements in FOS methods for monitoring slope reinforcements such as rock bolts,soil nails,anti-slide piles,geosynthetics,and retaining walls are extensively reviewed.The paper addresses this novel sensing technique's challenges and comprehensively explores its prospects.This review is anticipated to be a valuable resource for geoengineers and researchers involved in slope monitoring through FOS technology,offering insightful perspectives and guidance.展开更多
The growing environmental awareness,the search for alternatives to fossil resources,and the goal of achieving a circular economy have all contributed to the increasing valorization of biowaste to produce bio-based pol...The growing environmental awareness,the search for alternatives to fossil resources,and the goal of achieving a circular economy have all contributed to the increasing valorization of biowaste to produce bio-based polymers and other high-value products.Among the various biowaste materials,lignin has gained significant attention due to its high aromatic carbon content,low cost,and abundance.Lignin is predominantly sourced as a byproduct from the paper industry,available in large quantities from hardwood and softwood,with variations in chemical structure and susceptibility to hydrolysis.This study focuses on softwood lignin obtained through the LignoForce^(TM) technology,comparing the thermal and chemical characteristics,and stability,of a recently produced batch with that of a batch that has been stored for four years.Additionally,the development of lignin-based thermoplastic polymer mixtures using Polyethylene Terephthalate Glycol(PET-G)and a blend of Polycarbonate and Acrylonitrile-Butadiene-Styrene(PC/ABS)with high lignin content(50–60 wt%)is explored,as well as the production of filaments for carbon fiber production.For this purpose,following melt mixing,the lignin-based mixtures were spun into filaments,which were subsequently subjected to thermal stabilization in an oxidative atmosphere.The lignin phase was well distributed in the PET-Gmatrix and the twomaterials presented a good interface,which further improved after thermal treatment under an oxidative atmosphere.After thermal treatment an increase in tensile modulus,tensile strength,and elongation at break of approximately 160%,200%,and 100%,respectively,was observed,confirming the good interface established,and consistent with structural changes such as cross-linking.Conversely,the PC/ABS blend did not form a good interface with the lignin domains after melt mixing.Although the interactions improved after thermal treatment,the tensile strength and elongation at break decreased by approximately 30%,while themodulus increased by approximately 20%.Overall,the good processability of the lignin/polymer mixtures into filaments,and their physical,chemical,and mechanical characterization before and after thermal oxidation are good indicators of the potential as precursors for carbon fiber production.展开更多
This review provides a comprehensive overview of natural rubber(NR)composites,focusing on their properties,compounding aspects,and renewable practices involving natural fibre reinforcement.The properties of NR are inf...This review provides a comprehensive overview of natural rubber(NR)composites,focusing on their properties,compounding aspects,and renewable practices involving natural fibre reinforcement.The properties of NR are influenced by the compounding process,which incorporates ingredients such as elastomers,vulcanizing agents,accelerators,activators,and fillers like carbon black and silica.While effective in enhancing properties,these fillers lack biodegradability,prompting the exploration of sustainable alternatives.The potential of natural fibres as renewable reinforcements in NR composites is thoroughly covered in this review,highlighting both their advan-tages,such as improved sustainability,and the challenges they present,such as compatibility with the rubber matrix.Surface treatment methods,including alkali and silane treatments,are also discussed as solutions to improve fibre-matrix adhesion and mitigate these challenges.Additionally,the review highlights the potential of oil palm empty fruit bunch(EFB)fibres as a natural fibre reinforcement.The abundance of EFB fibres and their alignment with sustainable practices make them promising substitutes for conventional fillers,contributing to valuable knowledge and supporting the broader move towards renewable reinforcement to improve sustain-ability without compromising the key properties of rubber composites.展开更多
Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with sustainable development goals(SDGs).Due to their renewable resources and biodegradability,natural fiberrei...Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with sustainable development goals(SDGs).Due to their renewable resources and biodegradability,natural fiberreinforced composites have been investigated as a sustainable alternative to synthetic materials to reduce the usage of hazardous waste and environmental pollution.Among the natural fibre,jute fibre obtained from a bast plant has an increasing trend in the application,especially as a reinforcement material.Numerous research works have been performed on jute fibre with regard to reinforced thermoset and thermoplastic composites.Nevertheless,current demands on sustainable materials have required new developments in thermoplastic composites.In this paper,the author reviews jute plants as reinforcement materials for thermoplastic matrix polymers.This review provides an overview of the sustainability of jute plants as reinforcement material for thermoplastic matrix polymers.The overview on jute based thermoplastic composites focused on the thermal behavior and mechanical properties.Apart from physical,chemical,and mechanical properties,the study also covers the current and perspectives for future research challenges faced by the researchers on jute fibre reinforced thermoplastic composites.展开更多
Background: Despite considerable advancements in identifying factors contributing to the development of hepatocellular carcinoma(HCC), the pathogenesis of HCC remains unclear. In many cases, HCC is a consequence of pr...Background: Despite considerable advancements in identifying factors contributing to the development of hepatocellular carcinoma(HCC), the pathogenesis of HCC remains unclear. In many cases, HCC is a consequence of prolonged liver fibrosis, resulting in the formation of an intricate premalignant microenvironment. The accumulation of extracellular matrix(ECM) is a hallmark of premalignant microenvironment. Given the critical role of different matrix components in regulating cell phenotype and function, this study aimed to elucidate the interplay between the fibrotic matrix and malignant features in HCC. Methods: Liver tissues from both control(normal) and carbon tetrachloride(CCl_(4))-induced fibrotic rats were decellularized using sodium dodecyl sulfate(SDS) and Triton X-100. The resulting hydrogel from decellularized ECM was processed into micro-particles via the water-in-oil emulsion method. Microparticles were subsequently incorporated into three-dimensional liver biomimetic micro-tissues(MTs) comprising Huh-7 cells, human umbilical vein endothelial cells(HUVECs), and LX-2 cells. The MTs were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium(MTS) assay at day 11, immunofluorescence staining, immunoblotting, and spheroid migration assay at day 14 after co-culture. Results: Fibrotic matrix from CCl4-treated rat livers significantly enhanced the growth rate of the MTs and their expression of CCND1 as compared to the normal one. Fibrotic matrix, also induced the expression of epithelial-to-mesenchymal transition(EMT)-associated genes such as TWIST1, ACTA2, MMP9, CDH2, and VIMENTIN in the MTs as compared to the normal matrix. Conversely, the expression of CDH1 and hepatic maturation genes HNF4A, ALB, CYP3A4 was decreased in the MTs when the fibrotic matrix was used. Furthermore, the fibrotic matrix increased the migration of the MTs and their secretion of alpha-fetoprotein. Conclusions: Our findings suggest a regulatory role for the fibrotic matrix in promoting cancerous phenotype, which could potentially accelerate the progression of malignancy in the liver.展开更多
A novel steel–carbon fibre/polyetheretherketone(CF/PEEK)hybrid shaft is proposed,considering the thermal stability,negative coefficient of thermal expansion in fibre orientation,and high stiffness of CF/PEEK,which is...A novel steel–carbon fibre/polyetheretherketone(CF/PEEK)hybrid shaft is proposed,considering the thermal stability,negative coefficient of thermal expansion in fibre orientation,and high stiffness of CF/PEEK,which is expected to suppress the thermal deformation of shafts.A laser-assisted in-situ consolidation(LAC)process,together with its equipment,was developed to manufacture the hybrid shaft.Firstly,the optimal process parameters,including the laser-heated temperature and placement speed,were investigated.A maximum short-beam shear strength of 80.7 MPa was achieved when the laser-heated temperature was 500°C and the placement speed was 100 mm/s.In addition,the failure modes and the effect of environmental temperature on the CF/PEEK samples were analyzed.Both interlayer cracks and inelastic deformation failure modes were observed.The formation and propagation of cracks were further investigated through digital image correlation(DIC).Furthermore,internal defects of the CF/PEEK sample were detected using X-ray tomography scans,and a minimum porosity of 0.23%was achieved with the optimal process parameters.Finally,two steel–CF/PEEK hybrid shafts,with different fibre orientations,were manufactured based on the optimal process parameters.The surface temperature distributions and thermal deformations were investigated using a self-established deformation/temperature measurement platform.The hybrid shaft showed an 85.7%reduction in radial displacement with hoop fibre orientation and an 11.5%reduction in axial displacement with cross fibre orientation compared with the steel shaft.The results indicate that the proposed method has great potential to improve the thermal stability of hybrid shafts and the accuracy of machine tools.展开更多
Abnormal accumulation of collagen fibrils is a hallmark feature of oral submucous fibrosis(OSF).However,the precise characteristics and underlying mechanisms remain unclear,impeding the advancement of potential therap...Abnormal accumulation of collagen fibrils is a hallmark feature of oral submucous fibrosis(OSF).However,the precise characteristics and underlying mechanisms remain unclear,impeding the advancement of potential therapeutic approaches.Here,we observed that collagen Ⅰ,the main component of the extracellular matrix,first accumulated in the lamina propria and subsequently in the submucosa of OSF specimens as the disease progressed.Using RNA-seq and Immunofluorescence in OSF specimens,we screened the cartilage oligomeric matrix protein(COMP)responsible for the abnormal collagen accumulation.Genetic COMP deficiency reduced arecoline-stimulated collagen I deposition significantly in vivo.In comparison,both COMP and collagen Ⅰ were upregulated under arecoline stimulation in wild-type mice.Human oral buccal mucosal fibroblasts(hBMFs)also exhibited increased secretion of COMP and collagen I after stimulation in vitro.COMP knockdown in hBMFs downregulates arecoline-stimulated collagen Ⅰ secretion.We further demonstrated that hBMFs present heterogeneous responses to arecoline stimulation,of which COMP-positive fibroblasts secrete more collagen Ⅰ.Since COMP is a molecular bridge with Fibril-associated collagens with Interrupted Triple helices(FACIT)in the collagen network,we further screened and identified collagen XIV,a FACIT member,co-localizing with both COMP and collagen Ⅰ.Collagen XIV expression increased under arecoline stimulation in wild-type mice,whereas it was hardly expressed in the Comp^(-/-) mice,even with under stimulation.In summary,we found that COMP may mediates abnormal collagen Ⅰ deposition by functions with collagen XIV during the progression of OSF,suggesting its potential to be targeted in treating OSF.展开更多
BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy compos...BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy composites were investigated by scanning electron microscopy (SEM) and analytical transmission electron microscopy (TEM). It was found that the complicated chemical reactions and diffusion processes happened in the interface area between BN-layer and Ni25.8A19.6Ta8.3 during the hot pressing at 1 200-1 400 ℃. A continuous AlN-layer was formed at the interface due to the reaction between NiAl and BN. At the same time, Cr diffused extensively into the BN-layer and reacted with boron to form Cr boride precipitates (CrsB3). In addition, a few particles of Ta-rich phase were also precipitated in NiAl matrix near the interface.展开更多
The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a...The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a generalized channel structures strategy with optimized in situ polymerization technology in their recent study.The resultant FLBs can be woven into different-sized powering textiles,providing a high energy density output of 128 Wh kg^(-1) and simultaneously demonstrating good durability even under harsh conditions.Such a promising strategy expands the horizon in developing FLB with particular polymer gel electrolytes,and significantly ever-deepening understanding of the scaled wearable energy textile system toward a sustainable future.展开更多
Titanium metal matrix composites (TiMMCs) reinforced by continuous silicon carbide fibres are being developed for aerospace applications. TiMMCs manufactured by the consolidation of matrix-coated fibre (MCF) metho...Titanium metal matrix composites (TiMMCs) reinforced by continuous silicon carbide fibres are being developed for aerospace applications. TiMMCs manufactured by the consolidation of matrix-coated fibre (MCF) method offer optimum properties because of the resulting uniform fibre distribution, minimum fibre damage and fibre volume fraction control. In this paper, the consolidation of Ti-6Al-4V matrix-coated SiC fibres during vacuum hot pressing has been investigated. Experiments were carried out on multi-ply MCFs under vacuum hot pressing (VHP). In contrast to most of existing studies, the fibre, arrangement has been carefully controlled either in square or hexagonal arrays throughout the consolidated sample. This has enabled the dynamic consolidation behaviour of MCFs to be demonstrated by eliminating the fibre re-arrangement during the VHP process. The microstructural evolution of the matrix coating was reported and the deformation mechanisms involved were discussed.展开更多
To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based ...To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based on variational modal decomposition(VMD),fuzzy entropy(FE)and fuzzy clustering(FC).Firstly,based on the OTDR curve data collected in the field,VMD is used to extract the different modal components(IMF)of the original signal and calculate the fuzzy entropy(FE)values of different components to characterize the subtle differences between them.The fuzzy entropy of each curve is used as the feature vector,which in turn constructs the communication optical fibre feature vector matrix,and the fuzzy clustering algorithm is used to achieve fault diagnosis of faulty optical fibre.The VMD-FE combination can extract subtle differences in features,and the fuzzy clustering algorithm does not require sample training.The experimental results show that the model in this paper has high accuracy and is relevant to the maintenance of communication optical fibre when compared with existing feature extraction models and traditional machine learning models.展开更多
The disposal of discarded E-cigarette butts(E-CBs) presents significant environmental challenges due to their detrimental impacts on ecosystems. To find an environmentally sustainable method for managing this waste, t...The disposal of discarded E-cigarette butts(E-CBs) presents significant environmental challenges due to their detrimental impacts on ecosystems. To find an environmentally sustainable method for managing this waste, the potential for recycling E-CBs in asphalt pavements was investigated in this study. By focusing on the two primary components of E-CBs, namely cellulose fibre and polylactic acid(PLA), this research introduced a novel approach for recycling E-CBs in stone mastic asphalt(SMA) as a fibre additive in engineered pellet form. The prepared fibre pellets were directly added to aggregates to produce the SMA mixture. The resulting mixtures underwent a comprehensive evaluation through a series of standardized laboratory tests, including assessments of volumetric properties, indirect tensile strength(ITS), stiffness modulus, moisture susceptibility, and rutting resistance. The results were compared with SMA mixtures containing conventional cellulose fibres. Additionally, to examine the potential influence of PLA, a third mixture was prepared, incorporating both cellulose fibre and PLA. The findings indicate that the SMA using pelletized fibre can satisfy the technical specifications regarding the tests performed in this study, showing higher ITS and rutting resistance compared to the reference mixture. Moreover, the incorporation of PLA plastic reduced air void content and improved tensile strength, stiffness, and rutting resistance. This study highlights the potential for recycling E-CBs in asphalt mixtures, offering technical support for further development of sustainable recycling methods for this waste.展开更多
Annulus fibrosus (AF) tissue engineering has recently received increasing attention as a treatment for intervertebral disc 0VD) degeneration; however, such engineering remains challenging because of the remarkable ...Annulus fibrosus (AF) tissue engineering has recently received increasing attention as a treatment for intervertebral disc 0VD) degeneration; however, such engineering remains challenging because of the remarkable complexity of AF tissue. In order to engineer a functional AF replacement, the fabrication of cell-scaffold constructs that mimic the cellular, biochemical and structural features of native AF tissue is critical. In this study, we fabricated aligned fibroua polyurethane scaffolds using an electrospinning technique and used them for culturing AF-derived-stem/progenitor cells (AFSCs). Random fibrous scaffolds, also prepared via electrospinningy were used as a control. We compared the morphology, proliferation, gene expression and matrix production of AFSCs on aligned scaffolds and random scaffolds. There was no apparent difference in the attachment or proliferation of cells cultured on aligned scaffolds and random scaffolds. However, compared to cells on random scaffolds, the AFSCs on aligned scaffolds were more elongated and better aligned, and they exhibited higher gene expression and matrix production of coUagen-I and aggrecan. The gene expression and protein production of coUagen-II did not appear to differ between the two groups. Together, these findings indicate that aligned fibrous scaffolds may provide a favourable microenvironment for the differentiation of AFSCs into cells similar to outer AF cells, which predominantly produce collagen-I matrix.展开更多
Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacit...Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacity improvement. This study unveils the possibility of using PP micro-fibres to improve the impact behaviour of fibre-reinforced ultra-high-performance concrete(FRUHPC) columns. Results show that the addition of fibres significantly improves the impact behaviour of FRUHPC columns by shifting the failure mechanism from brittle shear to favourable flexural failure. The addition of steel or PP fibres affected the impact responses differently. Steel fibres considerably increased the peak impact force(up to 18%) while PP micro-fibres slightly increased the peak(3%-4%). FRUHPC significantly reduced the maximum midheight displacement by up to 30%(under 20°impact) and substantially improved the displacement recovery by up to 100%(under 20° impact). FRUHPC with steel fibres significantly improved the energy absorption while those with PP micro-fibres reduced the energy absorption, which is different from the effect of PP-macro fibre reported in the literature. The optimal fibre content for micro-PP fibres is 1% due to its minimal fibre usage and low peak and residual displacement. This study highlights the potential of FRUHPC as a promising material for impact-resistant structures by creating a more favourable flexural failure mechanism, enhancing ductility and toughness under impact loading, and advancing the understanding of the role of fibres in structural performance.展开更多
Coir fibre has generated much interest as an eco-friendly,sustainable fibre with low density.This review findings show that coir fibres are abundant,with an average global annual production of 1019.7×103 tonnes,w...Coir fibre has generated much interest as an eco-friendly,sustainable fibre with low density.This review findings show that coir fibres are abundant,with an average global annual production of 1019.7×103 tonnes,with about 63%of this volume produced from India.Extraction of coir has been carried out through water retting.However,the retting period has been limited to 4–10 months.The lignin content of coir is more than 60%higher than that of other natural fibres;hence,coir could double as a source of lignin for other applications.The diameter of coir fibres varies from 0.006 mm(Vietnam)to 0.577 mm(Thailand),and their tensile strength ranges from 68.4 MPa(Tanzania)to 343 MPa(Vietnam).Coir fibres from Vietnam and India exhibit the highest elongation at break(63.8%)and the highest Young’s modulus(6 GPa),respectively.More than 50%of the researchers within the scope of the reviewed studies employed the hand layup(HLU)manufacturing method with an epoxy resin matrix.Fibre volume fractions used range between 10%–65%.An outstanding tensile strength of 62.92 MPa at 49%fibre volume fraction was recorded for coir composites where the fibres were unidirectionally oriented and stacked in three layers,manufactured using epoxy resin and the HLU technique.Only a few works have been done using Vacuum-assisted resin transfer moulding(VARTM).The curing of composites was mostly carried out at an unspecified temperature and duration.A defined fibre volume fraction with a defined mixing and mixing time of the matrix is imperative.The degree of uniform dispersity of the fibres in the matrix is lacking.The creep behaviour of coir composites,coating and wider treatment parameters need to be explored for advanced applications.Recent findings on the applications of coir composites are equally highlighted.展开更多
文摘The systemic effects of gastrointestinal(GI)microbiota in health and during chronic diseases is increasingly recognised.Dietary strategies to modulate the GI microbiota during chronic diseases have demonstrated promise.While changes in dietary intake can rapidly change the GI microbiota,the impact of dietary changes during acute critical illness on the microbiota remain uncertain.Dietary fibre is metabolised by carbohydrate-active enzymes and,in health,can alter GI microbiota.The aim of this scoping review was to describe the effects of dietary fibre supplementation in health and disease states,specifically during critical illness.Randomised controlled trials and prospective cohort studies that include adults(>18 years age)and reported changes to GI microbiota as one of the study outcomes using non-culture methods,were identified.Studies show dietary fibres have an impact on faecal microbiota in health and disease.The fibre,inulin,has a marked and specific effect on increasing the abundance of faecal Bifidobacteria.Short chain fatty acids produced by Bifidobacteria have been shown to be beneficial in other patient populations.Very few trials have evaluated the effect of dietary fibre on the GI microbiota during critical illness.More research is necessary to establish optimal fibre type,doses,duration of intervention in critical illness.
基金funding support from JSPS KAKENHI(Grant Nos.21H01593 and 21K18794)through Tetsuya KogureThis work was also partially supported by the Sasakawa Scientific Research Grant(2023e2026)from the Japan Science Society(JSS)through Ashis Acharya.
文摘Real-time assessment of slope reinforcements to diagnose their state in all stages of service life is imperative for prompt evaluation of slope stability and establishing an efficient early warning(EW)system.Many point-based monitoring instruments have been used in the last few decades.However,these sensors suffer from a particular risk of detection failures and practical limitations.Fibre-optic sensing(FOS)technologies have been developed,tested,and validated across various geoengineering applications,including slope monitoring,as they offer exceptional advantages,such as high data-carrying capacity,precise mapping of physical parameters,durability,and immunity to electromagnetic interference.The deformation of rock/soil causes the deformation and fracture of reinforcement materials,which are subsequently transferred to the encapsulated fibre-optic(FO)sensors,providing valuable information on reinforcements'safety state and performance for early failure detection.This paper is devoted to critically analysing the application of cutting-edge FOS technologies for slope reinforcement monitoring.Firstly,a concise overview of the fundamental principles underlying discrete and distributed FOS methods is provided.The key considerations for selecting FO cables and the appropriate packaging techniques necessary to withstand the challenges posed by complex geological environments are also summarised.We delve into the details of three distinct cable installation techniques within slope reinforcement components:surface bonding,slot embedment,and clamping.The recent advancements in FOS methods for monitoring slope reinforcements such as rock bolts,soil nails,anti-slide piles,geosynthetics,and retaining walls are extensively reviewed.The paper addresses this novel sensing technique's challenges and comprehensively explores its prospects.This review is anticipated to be a valuable resource for geoengineers and researchers involved in slope monitoring through FOS technology,offering insightful perspectives and guidance.
基金funded by Project Better Plastics—Plastics in a Circular Economy—PPS4(Circularity by Alternative Feedstocks)Grant agreement ID:POCI-01-0247-FEDER-046091RR was funded by FCT through the PhD grant with reference UI/BD/154446/2022.
文摘The growing environmental awareness,the search for alternatives to fossil resources,and the goal of achieving a circular economy have all contributed to the increasing valorization of biowaste to produce bio-based polymers and other high-value products.Among the various biowaste materials,lignin has gained significant attention due to its high aromatic carbon content,low cost,and abundance.Lignin is predominantly sourced as a byproduct from the paper industry,available in large quantities from hardwood and softwood,with variations in chemical structure and susceptibility to hydrolysis.This study focuses on softwood lignin obtained through the LignoForce^(TM) technology,comparing the thermal and chemical characteristics,and stability,of a recently produced batch with that of a batch that has been stored for four years.Additionally,the development of lignin-based thermoplastic polymer mixtures using Polyethylene Terephthalate Glycol(PET-G)and a blend of Polycarbonate and Acrylonitrile-Butadiene-Styrene(PC/ABS)with high lignin content(50–60 wt%)is explored,as well as the production of filaments for carbon fiber production.For this purpose,following melt mixing,the lignin-based mixtures were spun into filaments,which were subsequently subjected to thermal stabilization in an oxidative atmosphere.The lignin phase was well distributed in the PET-Gmatrix and the twomaterials presented a good interface,which further improved after thermal treatment under an oxidative atmosphere.After thermal treatment an increase in tensile modulus,tensile strength,and elongation at break of approximately 160%,200%,and 100%,respectively,was observed,confirming the good interface established,and consistent with structural changes such as cross-linking.Conversely,the PC/ABS blend did not form a good interface with the lignin domains after melt mixing.Although the interactions improved after thermal treatment,the tensile strength and elongation at break decreased by approximately 30%,while themodulus increased by approximately 20%.Overall,the good processability of the lignin/polymer mixtures into filaments,and their physical,chemical,and mechanical characterization before and after thermal oxidation are good indicators of the potential as precursors for carbon fiber production.
基金funded under the Collaborative Research Initiative Grant Scheme(C-RIGS),grant number C-RIGS24-016-0022 from IIUM.
文摘This review provides a comprehensive overview of natural rubber(NR)composites,focusing on their properties,compounding aspects,and renewable practices involving natural fibre reinforcement.The properties of NR are influenced by the compounding process,which incorporates ingredients such as elastomers,vulcanizing agents,accelerators,activators,and fillers like carbon black and silica.While effective in enhancing properties,these fillers lack biodegradability,prompting the exploration of sustainable alternatives.The potential of natural fibres as renewable reinforcements in NR composites is thoroughly covered in this review,highlighting both their advan-tages,such as improved sustainability,and the challenges they present,such as compatibility with the rubber matrix.Surface treatment methods,including alkali and silane treatments,are also discussed as solutions to improve fibre-matrix adhesion and mitigate these challenges.Additionally,the review highlights the potential of oil palm empty fruit bunch(EFB)fibres as a natural fibre reinforcement.The abundance of EFB fibres and their alignment with sustainable practices make them promising substitutes for conventional fillers,contributing to valuable knowledge and supporting the broader move towards renewable reinforcement to improve sustain-ability without compromising the key properties of rubber composites.
文摘Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with sustainable development goals(SDGs).Due to their renewable resources and biodegradability,natural fiberreinforced composites have been investigated as a sustainable alternative to synthetic materials to reduce the usage of hazardous waste and environmental pollution.Among the natural fibre,jute fibre obtained from a bast plant has an increasing trend in the application,especially as a reinforcement material.Numerous research works have been performed on jute fibre with regard to reinforced thermoset and thermoplastic composites.Nevertheless,current demands on sustainable materials have required new developments in thermoplastic composites.In this paper,the author reviews jute plants as reinforcement materials for thermoplastic matrix polymers.This review provides an overview of the sustainability of jute plants as reinforcement material for thermoplastic matrix polymers.The overview on jute based thermoplastic composites focused on the thermal behavior and mechanical properties.Apart from physical,chemical,and mechanical properties,the study also covers the current and perspectives for future research challenges faced by the researchers on jute fibre reinforced thermoplastic composites.
基金financially supported by grants from Royan In-stitute(grant No.400000200)Bahar Tashkhis Teb Co.(BTT,9703,9809,and 9903)。
文摘Background: Despite considerable advancements in identifying factors contributing to the development of hepatocellular carcinoma(HCC), the pathogenesis of HCC remains unclear. In many cases, HCC is a consequence of prolonged liver fibrosis, resulting in the formation of an intricate premalignant microenvironment. The accumulation of extracellular matrix(ECM) is a hallmark of premalignant microenvironment. Given the critical role of different matrix components in regulating cell phenotype and function, this study aimed to elucidate the interplay between the fibrotic matrix and malignant features in HCC. Methods: Liver tissues from both control(normal) and carbon tetrachloride(CCl_(4))-induced fibrotic rats were decellularized using sodium dodecyl sulfate(SDS) and Triton X-100. The resulting hydrogel from decellularized ECM was processed into micro-particles via the water-in-oil emulsion method. Microparticles were subsequently incorporated into three-dimensional liver biomimetic micro-tissues(MTs) comprising Huh-7 cells, human umbilical vein endothelial cells(HUVECs), and LX-2 cells. The MTs were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium(MTS) assay at day 11, immunofluorescence staining, immunoblotting, and spheroid migration assay at day 14 after co-culture. Results: Fibrotic matrix from CCl4-treated rat livers significantly enhanced the growth rate of the MTs and their expression of CCND1 as compared to the normal one. Fibrotic matrix, also induced the expression of epithelial-to-mesenchymal transition(EMT)-associated genes such as TWIST1, ACTA2, MMP9, CDH2, and VIMENTIN in the MTs as compared to the normal matrix. Conversely, the expression of CDH1 and hepatic maturation genes HNF4A, ALB, CYP3A4 was decreased in the MTs when the fibrotic matrix was used. Furthermore, the fibrotic matrix increased the migration of the MTs and their secretion of alpha-fetoprotein. Conclusions: Our findings suggest a regulatory role for the fibrotic matrix in promoting cancerous phenotype, which could potentially accelerate the progression of malignancy in the liver.
基金supported by the National Nature Science Foundation of China(No.52175440)the Aeronautics Science Foundation of China(No.2023Z049076001)+3 种基金the Science and Technology Innovation Fund of Shanghai Aerospace(No.SAST2022-058)the Open Fund of State Key Laboratory of Mechanical Transmissions(No.SKLMT-MSKFKT-202202)the Key R&D Program of Zhejiang Province(No.2023C01058)the Experimental Technique Project of Zhejiang University(No.SYBJS202302),China.
文摘A novel steel–carbon fibre/polyetheretherketone(CF/PEEK)hybrid shaft is proposed,considering the thermal stability,negative coefficient of thermal expansion in fibre orientation,and high stiffness of CF/PEEK,which is expected to suppress the thermal deformation of shafts.A laser-assisted in-situ consolidation(LAC)process,together with its equipment,was developed to manufacture the hybrid shaft.Firstly,the optimal process parameters,including the laser-heated temperature and placement speed,were investigated.A maximum short-beam shear strength of 80.7 MPa was achieved when the laser-heated temperature was 500°C and the placement speed was 100 mm/s.In addition,the failure modes and the effect of environmental temperature on the CF/PEEK samples were analyzed.Both interlayer cracks and inelastic deformation failure modes were observed.The formation and propagation of cracks were further investigated through digital image correlation(DIC).Furthermore,internal defects of the CF/PEEK sample were detected using X-ray tomography scans,and a minimum porosity of 0.23%was achieved with the optimal process parameters.Finally,two steel–CF/PEEK hybrid shafts,with different fibre orientations,were manufactured based on the optimal process parameters.The surface temperature distributions and thermal deformations were investigated using a self-established deformation/temperature measurement platform.The hybrid shaft showed an 85.7%reduction in radial displacement with hoop fibre orientation and an 11.5%reduction in axial displacement with cross fibre orientation compared with the steel shaft.The results indicate that the proposed method has great potential to improve the thermal stability of hybrid shafts and the accuracy of machine tools.
基金supported by the National Natural Science Foundation of China grant(81974150).
文摘Abnormal accumulation of collagen fibrils is a hallmark feature of oral submucous fibrosis(OSF).However,the precise characteristics and underlying mechanisms remain unclear,impeding the advancement of potential therapeutic approaches.Here,we observed that collagen Ⅰ,the main component of the extracellular matrix,first accumulated in the lamina propria and subsequently in the submucosa of OSF specimens as the disease progressed.Using RNA-seq and Immunofluorescence in OSF specimens,we screened the cartilage oligomeric matrix protein(COMP)responsible for the abnormal collagen accumulation.Genetic COMP deficiency reduced arecoline-stimulated collagen I deposition significantly in vivo.In comparison,both COMP and collagen Ⅰ were upregulated under arecoline stimulation in wild-type mice.Human oral buccal mucosal fibroblasts(hBMFs)also exhibited increased secretion of COMP and collagen I after stimulation in vitro.COMP knockdown in hBMFs downregulates arecoline-stimulated collagen Ⅰ secretion.We further demonstrated that hBMFs present heterogeneous responses to arecoline stimulation,of which COMP-positive fibroblasts secrete more collagen Ⅰ.Since COMP is a molecular bridge with Fibril-associated collagens with Interrupted Triple helices(FACIT)in the collagen network,we further screened and identified collagen XIV,a FACIT member,co-localizing with both COMP and collagen Ⅰ.Collagen XIV expression increased under arecoline stimulation in wild-type mice,whereas it was hardly expressed in the Comp^(-/-) mice,even with under stimulation.In summary,we found that COMP may mediates abnormal collagen Ⅰ deposition by functions with collagen XIV during the progression of OSF,suggesting its potential to be targeted in treating OSF.
基金Project (10972190) supported by the National Natural Science Foundation of China Projects (09A089, 08C207) supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject (2010FJ3132) supported by the Planned Science and Technology Project of Hunan Province,China
文摘BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy composites were investigated by scanning electron microscopy (SEM) and analytical transmission electron microscopy (TEM). It was found that the complicated chemical reactions and diffusion processes happened in the interface area between BN-layer and Ni25.8A19.6Ta8.3 during the hot pressing at 1 200-1 400 ℃. A continuous AlN-layer was formed at the interface due to the reaction between NiAl and BN. At the same time, Cr diffused extensively into the BN-layer and reacted with boron to form Cr boride precipitates (CrsB3). In addition, a few particles of Ta-rich phase were also precipitated in NiAl matrix near the interface.
基金the National Key R&D Program of China(2022YFA1203304)the Natural Science Foundation of Jiangsu Province(BK20220288)+1 种基金Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(Start-up grant E1552102)the China Postdoctoral Science Foundation(No.2023M732553).
文摘The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a generalized channel structures strategy with optimized in situ polymerization technology in their recent study.The resultant FLBs can be woven into different-sized powering textiles,providing a high energy density output of 128 Wh kg^(-1) and simultaneously demonstrating good durability even under harsh conditions.Such a promising strategy expands the horizon in developing FLB with particular polymer gel electrolytes,and significantly ever-deepening understanding of the scaled wearable energy textile system toward a sustainable future.
文摘Titanium metal matrix composites (TiMMCs) reinforced by continuous silicon carbide fibres are being developed for aerospace applications. TiMMCs manufactured by the consolidation of matrix-coated fibre (MCF) method offer optimum properties because of the resulting uniform fibre distribution, minimum fibre damage and fibre volume fraction control. In this paper, the consolidation of Ti-6Al-4V matrix-coated SiC fibres during vacuum hot pressing has been investigated. Experiments were carried out on multi-ply MCFs under vacuum hot pressing (VHP). In contrast to most of existing studies, the fibre, arrangement has been carefully controlled either in square or hexagonal arrays throughout the consolidated sample. This has enabled the dynamic consolidation behaviour of MCFs to be demonstrated by eliminating the fibre re-arrangement during the VHP process. The microstructural evolution of the matrix coating was reported and the deformation mechanisms involved were discussed.
基金This paper is supported by State Grid Gansu Electric Power Company Science and Technology Project(20220515003).
文摘To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based on variational modal decomposition(VMD),fuzzy entropy(FE)and fuzzy clustering(FC).Firstly,based on the OTDR curve data collected in the field,VMD is used to extract the different modal components(IMF)of the original signal and calculate the fuzzy entropy(FE)values of different components to characterize the subtle differences between them.The fuzzy entropy of each curve is used as the feature vector,which in turn constructs the communication optical fibre feature vector matrix,and the fuzzy clustering algorithm is used to achieve fault diagnosis of faulty optical fibre.The VMD-FE combination can extract subtle differences in features,and the fuzzy clustering algorithm does not require sample training.The experimental results show that the model in this paper has high accuracy and is relevant to the maintenance of communication optical fibre when compared with existing feature extraction models and traditional machine learning models.
基金the funding support from China Scholarship Council under the grant CSC No. 202106150028。
文摘The disposal of discarded E-cigarette butts(E-CBs) presents significant environmental challenges due to their detrimental impacts on ecosystems. To find an environmentally sustainable method for managing this waste, the potential for recycling E-CBs in asphalt pavements was investigated in this study. By focusing on the two primary components of E-CBs, namely cellulose fibre and polylactic acid(PLA), this research introduced a novel approach for recycling E-CBs in stone mastic asphalt(SMA) as a fibre additive in engineered pellet form. The prepared fibre pellets were directly added to aggregates to produce the SMA mixture. The resulting mixtures underwent a comprehensive evaluation through a series of standardized laboratory tests, including assessments of volumetric properties, indirect tensile strength(ITS), stiffness modulus, moisture susceptibility, and rutting resistance. The results were compared with SMA mixtures containing conventional cellulose fibres. Additionally, to examine the potential influence of PLA, a third mixture was prepared, incorporating both cellulose fibre and PLA. The findings indicate that the SMA using pelletized fibre can satisfy the technical specifications regarding the tests performed in this study, showing higher ITS and rutting resistance compared to the reference mixture. Moreover, the incorporation of PLA plastic reduced air void content and improved tensile strength, stiffness, and rutting resistance. This study highlights the potential for recycling E-CBs in asphalt mixtures, offering technical support for further development of sustainable recycling methods for this waste.
基金supported by the National Natural Science Foundation of China (81171479, 51303120, 81471790)the China Postdoctoral Science Foundation (2012M521121)+2 种基金the Natural Science Foundation of Jiangsu Province (BK20130335)the Jiangsu Provincial Special Program of Medical Science (BL2012004)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Annulus fibrosus (AF) tissue engineering has recently received increasing attention as a treatment for intervertebral disc 0VD) degeneration; however, such engineering remains challenging because of the remarkable complexity of AF tissue. In order to engineer a functional AF replacement, the fabrication of cell-scaffold constructs that mimic the cellular, biochemical and structural features of native AF tissue is critical. In this study, we fabricated aligned fibroua polyurethane scaffolds using an electrospinning technique and used them for culturing AF-derived-stem/progenitor cells (AFSCs). Random fibrous scaffolds, also prepared via electrospinningy were used as a control. We compared the morphology, proliferation, gene expression and matrix production of AFSCs on aligned scaffolds and random scaffolds. There was no apparent difference in the attachment or proliferation of cells cultured on aligned scaffolds and random scaffolds. However, compared to cells on random scaffolds, the AFSCs on aligned scaffolds were more elongated and better aligned, and they exhibited higher gene expression and matrix production of coUagen-I and aggrecan. The gene expression and protein production of coUagen-II did not appear to differ between the two groups. Together, these findings indicate that aligned fibrous scaffolds may provide a favourable microenvironment for the differentiation of AFSCs into cells similar to outer AF cells, which predominantly produce collagen-I matrix.
基金the financial support from Australian Research Council(ARC)(Grant No.DP220100307).
文摘Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacity improvement. This study unveils the possibility of using PP micro-fibres to improve the impact behaviour of fibre-reinforced ultra-high-performance concrete(FRUHPC) columns. Results show that the addition of fibres significantly improves the impact behaviour of FRUHPC columns by shifting the failure mechanism from brittle shear to favourable flexural failure. The addition of steel or PP fibres affected the impact responses differently. Steel fibres considerably increased the peak impact force(up to 18%) while PP micro-fibres slightly increased the peak(3%-4%). FRUHPC significantly reduced the maximum midheight displacement by up to 30%(under 20°impact) and substantially improved the displacement recovery by up to 100%(under 20° impact). FRUHPC with steel fibres significantly improved the energy absorption while those with PP micro-fibres reduced the energy absorption, which is different from the effect of PP-macro fibre reported in the literature. The optimal fibre content for micro-PP fibres is 1% due to its minimal fibre usage and low peak and residual displacement. This study highlights the potential of FRUHPC as a promising material for impact-resistant structures by creating a more favourable flexural failure mechanism, enhancing ductility and toughness under impact loading, and advancing the understanding of the role of fibres in structural performance.
文摘Coir fibre has generated much interest as an eco-friendly,sustainable fibre with low density.This review findings show that coir fibres are abundant,with an average global annual production of 1019.7×103 tonnes,with about 63%of this volume produced from India.Extraction of coir has been carried out through water retting.However,the retting period has been limited to 4–10 months.The lignin content of coir is more than 60%higher than that of other natural fibres;hence,coir could double as a source of lignin for other applications.The diameter of coir fibres varies from 0.006 mm(Vietnam)to 0.577 mm(Thailand),and their tensile strength ranges from 68.4 MPa(Tanzania)to 343 MPa(Vietnam).Coir fibres from Vietnam and India exhibit the highest elongation at break(63.8%)and the highest Young’s modulus(6 GPa),respectively.More than 50%of the researchers within the scope of the reviewed studies employed the hand layup(HLU)manufacturing method with an epoxy resin matrix.Fibre volume fractions used range between 10%–65%.An outstanding tensile strength of 62.92 MPa at 49%fibre volume fraction was recorded for coir composites where the fibres were unidirectionally oriented and stacked in three layers,manufactured using epoxy resin and the HLU technique.Only a few works have been done using Vacuum-assisted resin transfer moulding(VARTM).The curing of composites was mostly carried out at an unspecified temperature and duration.A defined fibre volume fraction with a defined mixing and mixing time of the matrix is imperative.The degree of uniform dispersity of the fibres in the matrix is lacking.The creep behaviour of coir composites,coating and wider treatment parameters need to be explored for advanced applications.Recent findings on the applications of coir composites are equally highlighted.