Let RP(k) denote the k-dimensional real projective space. This article determines which cobordism classes are represented by the total space of a fibering with prescribed base space RP(3)× RP(1), RP(2) ...Let RP(k) denote the k-dimensional real projective space. This article determines which cobordism classes are represented by the total space of a fibering with prescribed base space RP(3)× RP(1), RP(2) × RP(1), RP(2)× RP(1)× RP(1) or RP(3)× RP(2).展开更多
Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit...Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
Long-period fiber gratings have the advantages of small size,corrosion resistance,anti-electro-magnetic interference,and high sensitivity,making them widely used in biomedicine,the power industry,and aerospace.This pa...Long-period fiber gratings have the advantages of small size,corrosion resistance,anti-electro-magnetic interference,and high sensitivity,making them widely used in biomedicine,the power industry,and aerospace.This paper develops a long-period fiber grating sensor based on periodic microchannels.First,a series of linear structures were etched in the cladding of a single-mode fiber by femtosecond laser microma-chining.Then,the laser-modified region was selectively eroded by selective chemical etching to obtain the periodic microchannel structure.Finally,the channels were filled with polydimethylsiloxane(PDMS)to im-prove the spectral quality.The experimental results show that the sensor has good sensitivity in the measure-ment of various parameters such as temperature,stress,refractive index(RI),and bending.It has a temperat-ure sensitivity of−55.19 pm/℃,a strain sensitivity of−3.19 pm/με,a maximum refractive index sensitivity of 540.28 nm/RIU,and a bending sensitivity of 2.65 dB/m^(-1).All of the measurement parameters show good lin-ear responses.The sensor has strong application prospects in the field of precision measurement and sensing.展开更多
This paper proposes a novel modified uni-traveling-carrier photodiode(MUTC-PD)featuring an electric field regulation layer:a p-type doped thin layer inserted behind the PD’s n-doped cliff layer.This electric field re...This paper proposes a novel modified uni-traveling-carrier photodiode(MUTC-PD)featuring an electric field regulation layer:a p-type doped thin layer inserted behind the PD’s n-doped cliff layer.This electric field regulation layer enhances the PD’s performance by not only reducing and smoothing the electric field intensity in the collector layer,allowing photo-generated electrons to transit at peak drift velocity,but also improving the electric field intensity in the depleted absorber layer and optimizing the photo-generated carriers’saturated transit performance.Additionally,the transport characteristics of the peak drift velocity of photogenerated electrons in the device’s collection layer can be used to optimize its parasitic characteristics.The electron’s peak drift velocity compensates for the lost transit time.Thus improving the 3 dB bandwidth of the PD’s photo response.Finally obtains a MUTC-PD with a 3 dB bandwidth of 68 GHz at a responsivity of 0.502 A/W,making it suitable for 100 Gbit/s optical receivers.展开更多
Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtain...Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtaining their"fingerprint information"remains a huge obstacle.Herein,we developed a tip-enhanced Raman scattering(TERS)technique to address this challenge.Adopting an optical fiber radial vector mode internally illuminates the plasmonic fiber tip to effectively suppress the background noise while generating a strong electric-field enhanced tip hotspot.Furthermore,the tip hotspot approaching the glucose molecules was manipulated via the shear-force feedback to provide more freedom for selecting substrates.Consequently,our TERS technique achieves the visualization of all Raman modes of glucose molecules within spectral window of 400-3200 cm^(-1),which is not achievable through the far-field/surface-enhanced Raman,or the existing TERS techniques.Our TERS technique offers a powerful tool for accurately identifying Raman scattering of molecules,paving the way for biomolecular analysis.展开更多
The fiber optic sensing technology provides data support in structural health monitoring of the macro facilities,including design,construction,and maintenance of bridges,tunnels,ports and other infrastructures.In this...The fiber optic sensing technology provides data support in structural health monitoring of the macro facilities,including design,construction,and maintenance of bridges,tunnels,ports and other infrastructures.In this paper,a distributed vibration sensing system is proved to be responsive to a single touch over a 1.8-m-long equivalent fiber segment,covering a vibration frequency from 5 Hz to 25 kHz.The sensing fiber was arranged as an S type layout on the bridge to recognize the standing state,windblown disturbance,and walking vibration.Moreover,the knocking and climbing events are recognized fiber laying spinning lines and hanging on the fences,respectively.The demonstration shows an accurate positioning and sensitive vibration monitoring applied on the automated three-dimensional(3D) printed bridge,which is applicable to all kinds of 3D printed facilities as intelligent sensory neuro-networks.展开更多
Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues a...Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues and the optical waveguide,the long-term neural regulation within soft tissue(such as brain and spinal cord)by implantable optical fibers is a large challenge.Herein,we designed a modulus selfadaptive hydrogel optical fiber(MSHOF)with tunable mechanical properties(Young’modulus was tunable in the range of 0.32-10.56MPa)and low light attenuation(0.12-0.21 dB/cm,472nm laser light),which adapts to light transmission under soft tissues.These advantages of MSHOF can ensure the effectiveness of optogenetic stimulation meanwhile safeguarding the safety of the brain/materials interaction interface.In addition,this work provides more design possibilities of MSHOF for photogenetic stimuli and has significant application prospects in photomedical therapy.展开更多
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o...Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.展开更多
Advancements in mode-division multiplexing(MDM)techniques,aimed at surpassing the Shannon limit and augmenting transmission capacity,have garnered significant attention in optical fiber communica-tion,propelling the d...Advancements in mode-division multiplexing(MDM)techniques,aimed at surpassing the Shannon limit and augmenting transmission capacity,have garnered significant attention in optical fiber communica-tion,propelling the demand for high-quality multiplexers and demultiplexers.However,the criteria for ideal-mode multiplexers/demultiplexers,such as performance,scalability,compatibility,and ultra-compactness,have only partially been achieved using conventional bulky devices(e.g.,waveguides,grat-ings,and free space optics)—an issue that will substantially restrict the application of MDM techniques.Here,we present a neuro-meta-router(NMR)optimized through deep learning that achieves spatial multi-mode division and supports multi-channel communication,potentially offering scalability,com-patibility,and ultra-compactness.An MDM communication system based on an NMR is theoretically designed and experimentally demonstrated to enable simultaneous and independent multi-dataset transmission,showcasing a capacity of up to 100 gigabits per second(Gbps)and a symbol error rate down to the order of 104,all achieved without any compensation technologies or correlation devices.Our work presents a paradigm that merges metasurfaces,fiber communications,and deep learning,with potential applications in intelligent metasurface-aided optical interconnection,as well as all-optical pat-tern recognition and classification.展开更多
The skeleton is innervated by different types of nerves and receives signaling from the nervous system to maintain homeostasis and facilitate regeneration or repair.Although the role of peripheral nerves and signals i...The skeleton is innervated by different types of nerves and receives signaling from the nervous system to maintain homeostasis and facilitate regeneration or repair.Although the role of peripheral nerves and signals in regulating bone homeostasis has been extensively investigated,the intimate relationship between the central nervous system and bone remains less understood,yet it has emerged as a hot topic in the bone field.In this review,we discussed clinical observations and animal studies that elucidate the connection between the nervous system and bone metabolism,either intact or after injury.First,we explored mechanistic studies linking specific brain nuclei with bone homeostasis,including the ventromedial hypothalamus,arcuate nucleus,paraventricular hypothalamic nucleus,amygdala,and locus coeruleus.We then focused on the characteristics of bone innervation and nerve subtypes,such as sensory,sympathetic,and parasympathetic nerves.Moreover,we summarized the molecular features and regulatory functions of these nerves.Finally,we included available translational approaches that utilize nerve function to improve bone homeostasis and promote bone regeneration.Therefore,considering the nervous system within the context of neuromusculoskeletal interactions can deepen our understanding of skeletal homeostasis and repair process,ultimately benefiting future clinical translation.展开更多
The integration of surface filtration and catalytic decomposition functions in catalytic bags enables the synergistic removal of multiple pollutants(such as dust,nitrogen oxide,acid gases,and dioxins)in a single react...The integration of surface filtration and catalytic decomposition functions in catalytic bags enables the synergistic removal of multiple pollutants(such as dust,nitrogen oxide,acid gases,and dioxins)in a single reactor,thus effectively reducing the cost and operational difficulties associated with flue gas treatment.In this study,Mn-Ce-Sm-Sn(MCSS)catalysts were prepared and loaded onto hightemperature resistant polyimide(P84)filter through ultrasonic impregnation to create composite catalytic filter.The results demonstrate that the NO conversion rates of the composite catalytic filter consistently achieve above 95%within the temperature range of 160-260℃,with a chlorobenzene T_(90)value of 230℃.The ultrasonic impregnation method effectively loaded the catalyst onto the filter,ensuring high dispersion both on the surface and inside the filter.This increased exposure of catalyst active sites enhances the catalytic activity of the composite catalytic filter.Additionally,increasing the catalyst loading leads to a gradual decrease in permeability,an increase in pressure drops and the long residence time of the flue gas,thereby improving catalytic activity.Compared to ordinary impregnation methods,ultrasonic impregnation improves the bonding strength between the catalyst and filter,as well as the permeability of the composite catalytic filter under the same loading conditions.Overall,this study presents a novel approach to prepare composite catalytic filter for the simultaneous removal of NO and chlorobenzene at low temperatures.展开更多
Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship b...Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization,energy metabolism,and gut microbiota in growing pigs.Methods Thirty-six growing barrows(47.2±1.5 kg)were randomly allotted to 6 dietary treatments with 2 apparent viscosity levels and 3β-glucan-to-arabinoxylan ratios.In the experiment,nutrient utilization,energy metabolism,fecal microbial community,and production and absorption of short-chain fatty acid(SCFA)of pigs were investigated.In vitro digestion and fermentation models were used to compare the fermentation characteristics of feedstuffs and ileal digesta in the pig’s hindgut.Results The production dynamics of SCFA and dry matter corrected gas production of different feedstuffs during in vitro fermentation were different and closely related to the physical properties and chemical structure of the fiber.In animal experiments,increasing the dietary apparent viscosity and theβ-glucan-to-arabinoxylan ratios both increased the apparent ileal digestibility(AID),apparent total tract digestibility(ATTD),and hindgut digestibility of fiber components while decreasing the AID and ATTD of dry matter and organic matter(P<0.05).In addition,increasing dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased gas exchange,heat production,and protein oxidation,and decreased energy deposition(P<0.05).The dietary apparent viscosity andβ-glucanto-arabinoxylan ratios had linear interaction effects on the digestible energy,metabolizable energy,retained energy(RE),and net energy(NE)of the diets(P<0.05).At the same time,the increase of dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased SCFA production and absorption(P<0.05).Increasing the dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios increased the diversity and abundance of bacteria(P<0.05)and the relative abundance of beneficial bacteria.Furthermore,increasing the dietaryβ-glucan-to-arabinoxylan ratios led to a linear increase in SCFA production during the in vitro fermentation of ileal digesta(P<0.001).Finally,the prediction equations for RE and NE were established.Conclusion Dietary fiber physicochemical properties alter dietary fermentation patterns and regulate nutrient utilization,energy metabolism,and pig gut microbiota composition and metabolites.展开更多
In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to con...In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to concentrate free silver nanoparticles(AgNPs)within an optofluidic chip,significantly enhancing SERS performance.We investigated the optical field distribution characteristics within the tapered fiber using COMSOL simulation software and established a MATLAB simulation model to validate the single-beam optical trap's effectiveness in capturing AgNPs,demonstrating the theoretical feasibility of our approach.To verify the particle capture efficacy of the system,we experimentally controlled the optical trap's on-off state to manage the capture and release of particles precisely.The experimental results indicated that the Raman signal intensity in the capture state was significantly higher than in the non-capture state,confirming that the single-beam optical trap effectively enhances the SERS detection capability of the optofluidic detection system.Furthermore,we employed Raman mapping techniques to investigate the impact of the capture area on the SERS effect,revealing that the spectral intensity of molecular fingerprints in the laser-trapping region is significantly improved.We successfully detected the Raman spectrum of crystal violet at a concentration of 10^(−9)mol/L and pesticide thiram at a concentration of 10^(−5)mol/L,further demonstrating the ability of the single-beam optical trap in enhancing the molecular fingerprint spectrum identification capability of the SERS optofluidic chips.The optical trapping SERS optofluidic detection system developed in this study,as a key component of an integrated optoelectronic sensing system,holds the potential for integration with portable high-power lasers and high-performance Raman spectrometers.This integration is expected to advance highly integrated technologies and significantly enhance the overall performance and portability of optoelectronic sensing systems.展开更多
基金Project Supported by NSFC (10371029),HNSF (103144)and SRF for ROCS, SEM
文摘Let RP(k) denote the k-dimensional real projective space. This article determines which cobordism classes are represented by the total space of a fibering with prescribed base space RP(3)× RP(1), RP(2) × RP(1), RP(2)× RP(1)× RP(1) or RP(3)× RP(2).
基金supported by the National Natural Science Foundation of China,No.82202718the Natural Science Foundation of Beijing,No.L212050the China Postdoctoral Science Foundation,Nos.2019M664007,2021T140793(all to ZL)。
文摘Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
文摘Long-period fiber gratings have the advantages of small size,corrosion resistance,anti-electro-magnetic interference,and high sensitivity,making them widely used in biomedicine,the power industry,and aerospace.This paper develops a long-period fiber grating sensor based on periodic microchannels.First,a series of linear structures were etched in the cladding of a single-mode fiber by femtosecond laser microma-chining.Then,the laser-modified region was selectively eroded by selective chemical etching to obtain the periodic microchannel structure.Finally,the channels were filled with polydimethylsiloxane(PDMS)to im-prove the spectral quality.The experimental results show that the sensor has good sensitivity in the measure-ment of various parameters such as temperature,stress,refractive index(RI),and bending.It has a temperat-ure sensitivity of−55.19 pm/℃,a strain sensitivity of−3.19 pm/με,a maximum refractive index sensitivity of 540.28 nm/RIU,and a bending sensitivity of 2.65 dB/m^(-1).All of the measurement parameters show good lin-ear responses.The sensor has strong application prospects in the field of precision measurement and sensing.
文摘This paper proposes a novel modified uni-traveling-carrier photodiode(MUTC-PD)featuring an electric field regulation layer:a p-type doped thin layer inserted behind the PD’s n-doped cliff layer.This electric field regulation layer enhances the PD’s performance by not only reducing and smoothing the electric field intensity in the collector layer,allowing photo-generated electrons to transit at peak drift velocity,but also improving the electric field intensity in the depleted absorber layer and optimizing the photo-generated carriers’saturated transit performance.Additionally,the transport characteristics of the peak drift velocity of photogenerated electrons in the device’s collection layer can be used to optimize its parasitic characteristics.The electron’s peak drift velocity compensates for the lost transit time.Thus improving the 3 dB bandwidth of the PD’s photo response.Finally obtains a MUTC-PD with a 3 dB bandwidth of 68 GHz at a responsivity of 0.502 A/W,making it suitable for 100 Gbit/s optical receivers.
基金supported by National Natural Science Foundation of China(12374358,91950207)Guangdong Basic and Applied Basic Research Foundation(2024A1515010420).
文摘Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtaining their"fingerprint information"remains a huge obstacle.Herein,we developed a tip-enhanced Raman scattering(TERS)technique to address this challenge.Adopting an optical fiber radial vector mode internally illuminates the plasmonic fiber tip to effectively suppress the background noise while generating a strong electric-field enhanced tip hotspot.Furthermore,the tip hotspot approaching the glucose molecules was manipulated via the shear-force feedback to provide more freedom for selecting substrates.Consequently,our TERS technique achieves the visualization of all Raman modes of glucose molecules within spectral window of 400-3200 cm^(-1),which is not achievable through the far-field/surface-enhanced Raman,or the existing TERS techniques.Our TERS technique offers a powerful tool for accurately identifying Raman scattering of molecules,paving the way for biomolecular analysis.
基金supported by the National Natural Science Foundation of China (No.6210031560)the Natural Science Foundation of Hebei Province (No.A2020202013)the Natural Science Foundation of Tianjin City (No.21JCQNJC00780)。
文摘The fiber optic sensing technology provides data support in structural health monitoring of the macro facilities,including design,construction,and maintenance of bridges,tunnels,ports and other infrastructures.In this paper,a distributed vibration sensing system is proved to be responsive to a single touch over a 1.8-m-long equivalent fiber segment,covering a vibration frequency from 5 Hz to 25 kHz.The sensing fiber was arranged as an S type layout on the bridge to recognize the standing state,windblown disturbance,and walking vibration.Moreover,the knocking and climbing events are recognized fiber laying spinning lines and hanging on the fences,respectively.The demonstration shows an accurate positioning and sensitive vibration monitoring applied on the automated three-dimensional(3D) printed bridge,which is applicable to all kinds of 3D printed facilities as intelligent sensory neuro-networks.
基金supported by the National Key Research and Development Program of China(Nos.2021YFA1201302 and 2021YFA1201300)the National Natural Science Foundation of China(Nos.52303033,52173029)+1 种基金Shanghai Sailing Program(No.23YF1400400)the Natural Science Foundation of Shanghai(No.21ZR1400500).
文摘Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues and the optical waveguide,the long-term neural regulation within soft tissue(such as brain and spinal cord)by implantable optical fibers is a large challenge.Herein,we designed a modulus selfadaptive hydrogel optical fiber(MSHOF)with tunable mechanical properties(Young’modulus was tunable in the range of 0.32-10.56MPa)and low light attenuation(0.12-0.21 dB/cm,472nm laser light),which adapts to light transmission under soft tissues.These advantages of MSHOF can ensure the effectiveness of optogenetic stimulation meanwhile safeguarding the safety of the brain/materials interaction interface.In addition,this work provides more design possibilities of MSHOF for photogenetic stimuli and has significant application prospects in photomedical therapy.
基金supports for this research were provided by the National Natural Science Foundation of China(No.12272301,12002278,U1906233)the Guangdong Basic and Applied Basic Research Foundation,China(Nos.2023A1515011970,2024A1515010256)+1 种基金the Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents,China(2021RD16)the Key R&D Project of CSCEC,China(No.CSCEC-2020-Z-4).
文摘Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.
基金supported by the National Key Research and Development Program of China(2023YFB2804704)the National Natural Science Foundation of China(12174292,12374278,and 62105250).
文摘Advancements in mode-division multiplexing(MDM)techniques,aimed at surpassing the Shannon limit and augmenting transmission capacity,have garnered significant attention in optical fiber communica-tion,propelling the demand for high-quality multiplexers and demultiplexers.However,the criteria for ideal-mode multiplexers/demultiplexers,such as performance,scalability,compatibility,and ultra-compactness,have only partially been achieved using conventional bulky devices(e.g.,waveguides,grat-ings,and free space optics)—an issue that will substantially restrict the application of MDM techniques.Here,we present a neuro-meta-router(NMR)optimized through deep learning that achieves spatial multi-mode division and supports multi-channel communication,potentially offering scalability,com-patibility,and ultra-compactness.An MDM communication system based on an NMR is theoretically designed and experimentally demonstrated to enable simultaneous and independent multi-dataset transmission,showcasing a capacity of up to 100 gigabits per second(Gbps)and a symbol error rate down to the order of 104,all achieved without any compensation technologies or correlation devices.Our work presents a paradigm that merges metasurfaces,fiber communications,and deep learning,with potential applications in intelligent metasurface-aided optical interconnection,as well as all-optical pat-tern recognition and classification.
基金supported by the Health&Medical Research Fund(18190481)the General Research Fund(14120520).
文摘The skeleton is innervated by different types of nerves and receives signaling from the nervous system to maintain homeostasis and facilitate regeneration or repair.Although the role of peripheral nerves and signals in regulating bone homeostasis has been extensively investigated,the intimate relationship between the central nervous system and bone remains less understood,yet it has emerged as a hot topic in the bone field.In this review,we discussed clinical observations and animal studies that elucidate the connection between the nervous system and bone metabolism,either intact or after injury.First,we explored mechanistic studies linking specific brain nuclei with bone homeostasis,including the ventromedial hypothalamus,arcuate nucleus,paraventricular hypothalamic nucleus,amygdala,and locus coeruleus.We then focused on the characteristics of bone innervation and nerve subtypes,such as sensory,sympathetic,and parasympathetic nerves.Moreover,we summarized the molecular features and regulatory functions of these nerves.Finally,we included available translational approaches that utilize nerve function to improve bone homeostasis and promote bone regeneration.Therefore,considering the nervous system within the context of neuromusculoskeletal interactions can deepen our understanding of skeletal homeostasis and repair process,ultimately benefiting future clinical translation.
基金Project supported by the National Key Research and Development Program of China(2021YFB3500600,2021YFB3500605)Natural Science Foundation of Jiangsu Province(BK20220365)+5 种基金Key R&D Program of Jiangsu Province(BE2022142)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB610002)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_1419)Science and Technology Plan of Yangzhou(YZ2022030,YZ2023020)the State Key Laboratory of Clean and Efficient Coal-fired Power Generation and Pollution Control(D2022FK098)。
文摘The integration of surface filtration and catalytic decomposition functions in catalytic bags enables the synergistic removal of multiple pollutants(such as dust,nitrogen oxide,acid gases,and dioxins)in a single reactor,thus effectively reducing the cost and operational difficulties associated with flue gas treatment.In this study,Mn-Ce-Sm-Sn(MCSS)catalysts were prepared and loaded onto hightemperature resistant polyimide(P84)filter through ultrasonic impregnation to create composite catalytic filter.The results demonstrate that the NO conversion rates of the composite catalytic filter consistently achieve above 95%within the temperature range of 160-260℃,with a chlorobenzene T_(90)value of 230℃.The ultrasonic impregnation method effectively loaded the catalyst onto the filter,ensuring high dispersion both on the surface and inside the filter.This increased exposure of catalyst active sites enhances the catalytic activity of the composite catalytic filter.Additionally,increasing the catalyst loading leads to a gradual decrease in permeability,an increase in pressure drops and the long residence time of the flue gas,thereby improving catalytic activity.Compared to ordinary impregnation methods,ultrasonic impregnation improves the bonding strength between the catalyst and filter,as well as the permeability of the composite catalytic filter under the same loading conditions.Overall,this study presents a novel approach to prepare composite catalytic filter for the simultaneous removal of NO and chlorobenzene at low temperatures.
基金supported by the National Key Research and Development Program(No.2021YFD1300201)Jilin Provincial Department of Science and Technology Innovation Platform and Talent Special Project(No.20230508090RC).
文摘Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization,energy metabolism,and gut microbiota in growing pigs.Methods Thirty-six growing barrows(47.2±1.5 kg)were randomly allotted to 6 dietary treatments with 2 apparent viscosity levels and 3β-glucan-to-arabinoxylan ratios.In the experiment,nutrient utilization,energy metabolism,fecal microbial community,and production and absorption of short-chain fatty acid(SCFA)of pigs were investigated.In vitro digestion and fermentation models were used to compare the fermentation characteristics of feedstuffs and ileal digesta in the pig’s hindgut.Results The production dynamics of SCFA and dry matter corrected gas production of different feedstuffs during in vitro fermentation were different and closely related to the physical properties and chemical structure of the fiber.In animal experiments,increasing the dietary apparent viscosity and theβ-glucan-to-arabinoxylan ratios both increased the apparent ileal digestibility(AID),apparent total tract digestibility(ATTD),and hindgut digestibility of fiber components while decreasing the AID and ATTD of dry matter and organic matter(P<0.05).In addition,increasing dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased gas exchange,heat production,and protein oxidation,and decreased energy deposition(P<0.05).The dietary apparent viscosity andβ-glucanto-arabinoxylan ratios had linear interaction effects on the digestible energy,metabolizable energy,retained energy(RE),and net energy(NE)of the diets(P<0.05).At the same time,the increase of dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased SCFA production and absorption(P<0.05).Increasing the dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios increased the diversity and abundance of bacteria(P<0.05)and the relative abundance of beneficial bacteria.Furthermore,increasing the dietaryβ-glucan-to-arabinoxylan ratios led to a linear increase in SCFA production during the in vitro fermentation of ileal digesta(P<0.001).Finally,the prediction equations for RE and NE were established.Conclusion Dietary fiber physicochemical properties alter dietary fermentation patterns and regulate nutrient utilization,energy metabolism,and pig gut microbiota composition and metabolites.
基金financial supports from National Natural Science Foundation of China(62175023).
文摘In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to concentrate free silver nanoparticles(AgNPs)within an optofluidic chip,significantly enhancing SERS performance.We investigated the optical field distribution characteristics within the tapered fiber using COMSOL simulation software and established a MATLAB simulation model to validate the single-beam optical trap's effectiveness in capturing AgNPs,demonstrating the theoretical feasibility of our approach.To verify the particle capture efficacy of the system,we experimentally controlled the optical trap's on-off state to manage the capture and release of particles precisely.The experimental results indicated that the Raman signal intensity in the capture state was significantly higher than in the non-capture state,confirming that the single-beam optical trap effectively enhances the SERS detection capability of the optofluidic detection system.Furthermore,we employed Raman mapping techniques to investigate the impact of the capture area on the SERS effect,revealing that the spectral intensity of molecular fingerprints in the laser-trapping region is significantly improved.We successfully detected the Raman spectrum of crystal violet at a concentration of 10^(−9)mol/L and pesticide thiram at a concentration of 10^(−5)mol/L,further demonstrating the ability of the single-beam optical trap in enhancing the molecular fingerprint spectrum identification capability of the SERS optofluidic chips.The optical trapping SERS optofluidic detection system developed in this study,as a key component of an integrated optoelectronic sensing system,holds the potential for integration with portable high-power lasers and high-performance Raman spectrometers.This integration is expected to advance highly integrated technologies and significantly enhance the overall performance and portability of optoelectronic sensing systems.