Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexib...Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed.展开更多
Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-in...Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers,providing innovative solutions for diabetes diagnosis and monitoring.This review comprehensively discusses the current developments in noninvasive wearable biosensors,emphasizing simultaneous detection of biochemical biomarkers(such as glucose,cortisol,lactate,branched-chain amino acids,and cytokines)and physiological signals(including heart rate,blood pressure,and sweat rate)for accurate,personalized diabetes management.We explore innovations in multimodal sensor design,materials science,biorecognition elements,and integration techniques,highlighting the importance of advanced data analytics,artificial intelligence-driven predictive algorithms,and closed-loop therapeutic systems.Additionally,the review addresses ongoing challenges in biomarker validation,sensor stability,user compliance,data privacy,and regulatory considerations.A holistic,multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management.展开更多
A fiber-optical intrusion alarm system based on quasi-distributed fiber Bragg grating (FBG) sensors is demonstrated in this paper. The algorithms of empirical mode decomposition (EMD) and wavelet packet characteri...A fiber-optical intrusion alarm system based on quasi-distributed fiber Bragg grating (FBG) sensors is demonstrated in this paper. The algorithms of empirical mode decomposition (EMD) and wavelet packet characteristic entropy are adopted to determine the intrusion location. The intrusion alarm software based on the Labview is developed, and it is also proved by the experiments. The results show that such a fiber-optical intrusion alarm system can offer the automatic intrusion alarm in real-time.展开更多
The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed...The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed optical fiber strain sensor system is set up using optical time domain reflect technique. The local strain sensors based on a novel microbend configuration are designed and applied to measure local strains along the optical fiber. As the result of the experimental research, the microbend sensors show high sensitivity, good linearity and repeatability in certain operation range.展开更多
A self referenced fiber optic refractive index sensor is developed to measure quantitative cure extent of epoxy. In case the sensor is applied to in situ cure monitoring of epoxy composites, each sensor embedded in...A self referenced fiber optic refractive index sensor is developed to measure quantitative cure extent of epoxy. In case the sensor is applied to in situ cure monitoring of epoxy composites, each sensor embedded in different location within the structure is self referenced and can be normalized to a common scale. Therefore, the real time comparative of each sensor’s output becomes possible and variations in the extent of cure at different locations can be monitored. The developed sensor was used to monitor the isothermal cure of an epoxy system. The output of the sensor was compared with the results of the differential scanning calorimetry (DSC). The self referencing function of the sensor is confirmed.展开更多
The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryo...The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryogenic field and magnetic field. The response to a temperature and strain change of coated-soft polymeric FBGs is tested by comparing with those of coated-metal FBGs. The results indicate that the coated-soft polymeric FBGs can freely detect temperature and thermal strain, their At variable magnetic field, the tested results indicate accuracy and repeatability are also discussed in detail. that the cross-coupling effects of FBGs with different matrixes are not negligible to measure electromagnetic strain during fast excitation. The present results are expected to be able to provide basis measurements on the strain of pulsed superconducting magnet/cable (cable- around-conduit conductors, cable-in-conduit conductors), independently or utilized together with other strain measurement methods.展开更多
To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-typ...To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-type structure and microsphere structure is proposed in this paper. The fiber sidepolishing technique converts the coaxial dual-waveguide fiber into a D-type one, and the evanescent wave in the ring core leaks, generating a D-type sensing region;the fiber optic fused ball push technology converts the coaxial dual waveguides into microspheres, and the stimulated cladding mode evanescent wave leaks, producing the microsphere sensing region. By injecting light into the coaxial dual-waveguide middle core alone, the sensor can realize single-stage sensing in the microsphere sensing area;it can also realize dual-channel sensing in the D-type sensing area and microsphere sensing area by injecting light into the ring core. The refractive index measurement ranges for the two channels are 1.333–1.365 and 1.375–1.405, respectively, with detection sensitivities of 981.56 nm/RIU and 4138 nm/RIU. The sensor combines wavelength division multiplexing and space division multiplexing technologies, presenting a novel research concept for multi-channel fiber SPR sensors.展开更多
The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being ...The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects.展开更多
Complex surface shape measurement has been a focus topic in the CAD/CAM field. A popular method for measuring dimensional information is using a 3D coordinate measuring machine (CMM)with a touch trigger probe. The mea...Complex surface shape measurement has been a focus topic in the CAD/CAM field. A popular method for measuring dimensional information is using a 3D coordinate measuring machine (CMM)with a touch trigger probe. The measurement set up with CMM, however, is a time consuming task and the accuracy of the measurement deteriorates as the speed of measurement increase. Non-contact measurement is favored since high speed measurement can be achieved and problems with vibration and friction can be eliminated. Although much research has been conducted in non-contact measurement using image capturing and processing schemes, accuracy is poor and measurement is limited. Some optical technologies developed provide a good accuracy but the dynamic range and versatility is very limited. A novel fiber-optic sensor used for the inspection of complex internal contours is presented in this paper, which is able to measure a surface shape in a non-contact manner with high accuracy and high speed, and is compact and flexible to be incorporated into a CMM. Modulation functions for tilted surface shape measurement, based on the Gaussian distribution of the emitting beam from single-mode fiber (SMF), were derived for specular reflection. The feasibility of the proposed measurement principle was verified by simulations.展开更多
A fast and facile method of fabricating fiber-optic localized surface plasmon resonance sensors baseff on spherical gold nanoparticles was introduced in this study. The gold nanoparticles with an average diameter of 5...A fast and facile method of fabricating fiber-optic localized surface plasmon resonance sensors baseff on spherical gold nanoparticles was introduced in this study. The gold nanoparticles with an average diameter of 55 nm were synthesized via the Turkevich method and were then immobilized onto the surface of an uncladded sensor probe using a polydopamine layer. To obtain a sensor probe with high sensitivity to changes in the refractive index, a set of key optimization parameters, including the sensing length, coating time of the potydopamine layer, and coating time of the gold nanoparticles, were investigated. The sensitivity of the optimized sensor probe was 522.80 nm per refractive index unit, and the probe showed distinctive wavelength shifts when the refractive index was changed from 1.328 6 to 1.398 7. When stored in deionized water at 4 ℃, the sensor probe proved to be stable over a period of two weeks. The sensor also exhibited advantages, such as low cost, fast fabrication, and simple optical setup, which indicated its potential application in remote sensing and real-time detection.展开更多
The principle and performance of a fiber-optic Faraday-effect magnetic-field sensor based on an yttrium iron garnet (YIG) and two flux concentrations are described. A single polarization-maintaining optical fiber link...The principle and performance of a fiber-optic Faraday-effect magnetic-field sensor based on an yttrium iron garnet (YIG) and two flux concentrations are described. A single polarization-maintaining optical fiber links the sensor head to the source and detection system, in which the technique of phase shift cancellation is used to cancel the phase shift that accumulatein the optical fiber. Flux concentrators were exploited to enhance the YIG crystal magneto-optic sensitivity .The sensor system exhibited a noise-equivalent field of 8 pT/√Hz and a 3 dB bandwidth of ~10 MHz.展开更多
In this study, we fabricated a sapphire based fiber-optic radiation sensor. To evaluate the fiber- optic radiation sensor, we measured the spectrum and intensity of the luminescence generated from the fiber-optic radi...In this study, we fabricated a sapphire based fiber-optic radiation sensor. To evaluate the fiber- optic radiation sensor, we measured the spectrum and intensity of the luminescence generated from the fiber-optic radiation sensor according to the thickness of the PMMA block by irradiation of gamma rays emitted from a Co-60 source. And the result was compared with the value calculated from the formula of Lambert-Beer.展开更多
An optical fiber dual Fabry-Perot interferometric carbon monoxide gas sensor based on PANI/Co3 O4/GO(PCG)sensing membrane coated on the end face of the optical fiber is proposed and fabricated.One end face of photonic...An optical fiber dual Fabry-Perot interferometric carbon monoxide gas sensor based on PANI/Co3 O4/GO(PCG)sensing membrane coated on the end face of the optical fiber is proposed and fabricated.One end face of photonic crystal fiber(PCF)without cut-off wavelength is fused with a single-mode fiber(SMF),and the other end face of the PCF is coated with PCG sensing membrane.The collapsed layer formed during the air hole fusion of PCF is used as the first reflector,the interface between PCF and sensing membrane is used as the second reflector,and the interface between the sensing membrane and the air is used as the third reflector,thus the dual Fabry-Pe rot structure sensor is formed.The results show that the sensor has excellent sensitivity and selectivity to carbon monoxide.With the increasing concentration of carbon monoxide gas in the range of 0-60 ppm,the intensity of interference spectrum decreases.The sensitivity of the sensor is 0.3473 dB m/ppm,and its linearity is good.The response time and recovery time are 68 s and 106 s,respectively.The sensor has the advantages of the compact size,low cost,high sensitivity,strong selectivity and simple structure.It is suitable for the sensing detection of low concentration carbon monoxide gas.展开更多
Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart...Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart monitoring terminal,cloud storage/computing technology,and artificial intelligence,smart gas sensors represent the future of gassensing due to their merits of real-time multifunctional monitoring,earlywarning function,and intelligent and automated feature.Various electronicand optoelectronic gas sensors have been developed for high-performancesmart gas analysis.With the development of smart terminals and the maturityof integrated technology,flexible and wearable gas sensors play an increasingrole in gas analysis.This review highlights recent advances of smart gassensors in diverse applications.The structural components and fundamentalprinciples of electronic and optoelectronic gas sensors are described,andflexible and wearable gas sensor devices are highlighted.Moreover,sensorarray with artificial intelligence algorithms and smart gas sensors in“Internet of Things”paradigm are introduced.Finally,the challengesand perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living.展开更多
A compact and high-resolution fiber-optic refractive index(RI)sensor based on a microwave photonic filter(MPF)is proposed and experimentally validated.The sensing head utilizes a cascaded in-line interferometer fabric...A compact and high-resolution fiber-optic refractive index(RI)sensor based on a microwave photonic filter(MPF)is proposed and experimentally validated.The sensing head utilizes a cascaded in-line interferometer fabricated by an input single-mode fiber(SMF)tapered fusion with no-core fiber-thin-core fiber(TCF)-SMF.The surrounding RI(SRI)can be demodulated by tracing the passband’s central frequency of the MPF,which is constructed by the cascaded in-line interferometer,electro-optic modulator,and a section of dispersion compensation fiber.The sensitivity of the sensor is tailorable through the use of different lengths of TCF.Experimental results reveal that with a 30 mm length of TCF,the sensor achieves a maximum theoretical sensitivity and resolution of-1.403 GHz∕refractive index unit eRIUT and 1.425×10^(-7) RIU,respectively,which is at least 6.3 times higher than what has been reported previously.Furthermore,the sensor exhibits temperature-insensitive characteristics within the range of 25℃-75℃,with a temperatureinduced frequency change of only±1.5 MHz.This value is significantly lower than the frequency change induced by changes in the SRI.The proposed MPF-based cascaded in-line interferometer RI sensor possesses benefits such as easy manufacture,low cost,high resolution,and temperature insensitivity.展开更多
A kind of fluorescence optic-fiber thermometer is devised based on the ruby and absorbing glass sample. The optic- fiber temperature measurement probe based on ruby is developed. This system is particularly adaptable ...A kind of fluorescence optic-fiber thermometer is devised based on the ruby and absorbing glass sample. The optic- fiber temperature measurement probe based on ruby is developed. This system is particularly adaptable to the temperature measurement in the range of 0℃ to 130℃. A considerably improved performance is seen in this new device. The drive current to the LED can be easily kept within the required defined bounds through the control circuitry.展开更多
With the rapid development of the Internet of Things(IoT)technology,fiber-optic sensors,as a kind of high-precision and high-sensitivity measurement tool,are increasingly widely used in the field of IoT.This paper out...With the rapid development of the Internet of Things(IoT)technology,fiber-optic sensors,as a kind of high-precision and high-sensitivity measurement tool,are increasingly widely used in the field of IoT.This paper outlines the advantages of fiber-optic sensors over traditional sensors,such as high precision,strong resistance to electromagnetic interference,and long transmission distance.On this basis,the paper discusses the application scenarios of fiber-optic sensors in the Internet of Things,including environmental monitoring,intelligent industry,medical and health care,intelligent transportation,and other fields.It is hoped that this study can provide theoretical support and practical guidance for the further development of fiber-optic sensors in the field of the Internet of Things,as well as promote the innovation and application of IoT.展开更多
The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these chal...The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these challenges,this work develops an artificial intelligenceassisted,wireless,flexible,and wearable mechanoluminescent strain sensor system(AIFWMLS)by integration of deep learning neural network-based color data processing system(CDPS)with a sandwich-structured flexible mechanoluminescent sensor(SFLC)film.The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication.The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature,which significantly improves the accuracy of the predicted strain.A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition.Moreover,the versatile SFLC film can also serve as a encryption device.The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the“color to strain value”bottleneck that hinders the practical application of flexible colorimetric strain sensors,which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets.展开更多
Fiber-optic DNA biosensors are a kind of ana-lytic setups, which convert the Waston-Crick base pairs matching duplex or Hoogsteen’s tri-plex (T/A-T, C/G-C) formation into a readable analytical signals when functional...Fiber-optic DNA biosensors are a kind of ana-lytic setups, which convert the Waston-Crick base pairs matching duplex or Hoogsteen’s tri-plex (T/A-T, C/G-C) formation into a readable analytical signals when functionalized single- strands DNA (ssDNA) or double-strands DNA (dsDNA) of interest are immobilized on the sur-face of fiber-optic hybrids with target DNA or interacts with ligands. This review will provide the information about the fiber-optic DNA bio-sensors classified into two categories depend-ing on the end fiber and side fiber with or with-out the labels—label-free fiber-optic DNA bio-sensors and labeled fiber-optic DNA biosensor in recent years. Both are dissertated, and em-phasis is on the label-free fiber-optic DNA bio-sensors. Fiber-optic DNA biosensors had got great progresses because fiber-optic has more advantages over the other transducers and are easily processed by nanotechnology. So fiber- optic DNA biosensors have increasingly at-tracted more attention to research and develop the new fiber-optic DNA biosensors that inte-grated with the “nano-bio-info” technology for in vivo test, single molecular detection and on-line medical diagnosis. Finally, future pros-pects to the fiber-optic DNA biosensors are predicted.展开更多
Multimodal sensor fusion can make full use of the advantages of various sensors,make up for the shortcomings of a single sensor,achieve information verification or information security through information redundancy,a...Multimodal sensor fusion can make full use of the advantages of various sensors,make up for the shortcomings of a single sensor,achieve information verification or information security through information redundancy,and improve the reliability and safety of the system.Artificial intelligence(AI),referring to the simulation of human intelligence in machines that are programmed to think and learn like humans,represents a pivotal frontier in modern scientific research.With the continuous development and promotion of AI technology in Sensor 4.0 age,multimodal sensor fusion is becoming more and more intelligent and automated,and is expected to go further in the future.With this context,this review article takes a comprehensive look at the recent progress on AI-enhanced multimodal sensors and their integrated devices and systems.Based on the concept and principle of sensor technologies and AI algorithms,the theoretical underpinnings,technological breakthroughs,and pragmatic applications of AI-enhanced multimodal sensors in various fields such as robotics,healthcare,and environmental monitoring are highlighted.Through a comparative study of the dual/tri-modal sensors with and without using AI technologies(especially machine learning and deep learning),AI-enhanced multimodal sensors highlight the potential of AI to improve sensor performance,data processing,and decision-making capabilities.Furthermore,the review analyzes the challenges and opportunities afforded by AI-enhanced multimodal sensors,and offers a prospective outlook on the forthcoming advancements.展开更多
基金supported by the National Key Research and Development Program of China(2023YFB3809800)the National Natural Science Foundation of China(52172249,52525601)+2 种基金the Chinese Academy of Sciences Talents Program(E2290701)the Jiangsu Province Talents Program(JSSCRC2023545)the Special Fund Project of Carbon Peaking Carbon Neutrality Science and Technology Innovation of Jiangsu Province(BE2022011).
文摘Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed.
文摘Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers,providing innovative solutions for diabetes diagnosis and monitoring.This review comprehensively discusses the current developments in noninvasive wearable biosensors,emphasizing simultaneous detection of biochemical biomarkers(such as glucose,cortisol,lactate,branched-chain amino acids,and cytokines)and physiological signals(including heart rate,blood pressure,and sweat rate)for accurate,personalized diabetes management.We explore innovations in multimodal sensor design,materials science,biorecognition elements,and integration techniques,highlighting the importance of advanced data analytics,artificial intelligence-driven predictive algorithms,and closed-loop therapeutic systems.Additionally,the review addresses ongoing challenges in biomarker validation,sensor stability,user compliance,data privacy,and regulatory considerations.A holistic,multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management.
基金supported by the National Natural Science Foundation of China under Grant No. 60537040.
文摘A fiber-optical intrusion alarm system based on quasi-distributed fiber Bragg grating (FBG) sensors is demonstrated in this paper. The algorithms of empirical mode decomposition (EMD) and wavelet packet characteristic entropy are adopted to determine the intrusion location. The intrusion alarm software based on the Labview is developed, and it is also proved by the experiments. The results show that such a fiber-optical intrusion alarm system can offer the automatic intrusion alarm in real-time.
文摘The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed optical fiber strain sensor system is set up using optical time domain reflect technique. The local strain sensors based on a novel microbend configuration are designed and applied to measure local strains along the optical fiber. As the result of the experimental research, the microbend sensors show high sensitivity, good linearity and repeatability in certain operation range.
文摘A self referenced fiber optic refractive index sensor is developed to measure quantitative cure extent of epoxy. In case the sensor is applied to in situ cure monitoring of epoxy composites, each sensor embedded in different location within the structure is self referenced and can be normalized to a common scale. Therefore, the real time comparative of each sensor’s output becomes possible and variations in the extent of cure at different locations can be monitored. The developed sensor was used to monitor the isothermal cure of an epoxy system. The output of the sensor was compared with the results of the differential scanning calorimetry (DSC). The self referencing function of the sensor is confirmed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11302225,11121202 and 11327802the National Key Project of Magneto-Constrained Fusion Energy Development Program under Grant No 2013GB110002the Postdoctoral Science Foundation of China under Grant No 2014M560820
文摘The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryogenic field and magnetic field. The response to a temperature and strain change of coated-soft polymeric FBGs is tested by comparing with those of coated-metal FBGs. The results indicate that the coated-soft polymeric FBGs can freely detect temperature and thermal strain, their At variable magnetic field, the tested results indicate accuracy and repeatability are also discussed in detail. that the cross-coupling effects of FBGs with different matrixes are not negligible to measure electromagnetic strain during fast excitation. The present results are expected to be able to provide basis measurements on the strain of pulsed superconducting magnet/cable (cable- around-conduit conductors, cable-in-conduit conductors), independently or utilized together with other strain measurement methods.
基金supported by the National Natural Science Foundation of China (Grant No. 61705025)the Natural Science Foundation of Chongqing (Grant Nos. cstc2019jcyjmsxm X043 and cstc2018jcyj AX0817)+2 种基金the Fund from the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality (Grant Nos. KJQN201801217, KJQN202001214, KJQN201901226, and KJ1710247)the Fund from Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area (Grant Nos. ZD2020A0103 and ZD2020A0102)the Fundamental Research Funds for Chongqing Three Gorges University of China (Grant No. 19ZDPY08)。
文摘To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-type structure and microsphere structure is proposed in this paper. The fiber sidepolishing technique converts the coaxial dual-waveguide fiber into a D-type one, and the evanescent wave in the ring core leaks, generating a D-type sensing region;the fiber optic fused ball push technology converts the coaxial dual waveguides into microspheres, and the stimulated cladding mode evanescent wave leaks, producing the microsphere sensing region. By injecting light into the coaxial dual-waveguide middle core alone, the sensor can realize single-stage sensing in the microsphere sensing area;it can also realize dual-channel sensing in the D-type sensing area and microsphere sensing area by injecting light into the ring core. The refractive index measurement ranges for the two channels are 1.333–1.365 and 1.375–1.405, respectively, with detection sensitivities of 981.56 nm/RIU and 4138 nm/RIU. The sensor combines wavelength division multiplexing and space division multiplexing technologies, presenting a novel research concept for multi-channel fiber SPR sensors.
文摘The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects.
文摘Complex surface shape measurement has been a focus topic in the CAD/CAM field. A popular method for measuring dimensional information is using a 3D coordinate measuring machine (CMM)with a touch trigger probe. The measurement set up with CMM, however, is a time consuming task and the accuracy of the measurement deteriorates as the speed of measurement increase. Non-contact measurement is favored since high speed measurement can be achieved and problems with vibration and friction can be eliminated. Although much research has been conducted in non-contact measurement using image capturing and processing schemes, accuracy is poor and measurement is limited. Some optical technologies developed provide a good accuracy but the dynamic range and versatility is very limited. A novel fiber-optic sensor used for the inspection of complex internal contours is presented in this paper, which is able to measure a surface shape in a non-contact manner with high accuracy and high speed, and is compact and flexible to be incorporated into a CMM. Modulation functions for tilted surface shape measurement, based on the Gaussian distribution of the emitting beam from single-mode fiber (SMF), were derived for specular reflection. The feasibility of the proposed measurement principle was verified by simulations.
基金Supported by the Ministry of Science and Technology of China(No.2012YQ090194)the National Natural Science Foundation of China(No.51473115)
文摘A fast and facile method of fabricating fiber-optic localized surface plasmon resonance sensors baseff on spherical gold nanoparticles was introduced in this study. The gold nanoparticles with an average diameter of 55 nm were synthesized via the Turkevich method and were then immobilized onto the surface of an uncladded sensor probe using a polydopamine layer. To obtain a sensor probe with high sensitivity to changes in the refractive index, a set of key optimization parameters, including the sensing length, coating time of the potydopamine layer, and coating time of the gold nanoparticles, were investigated. The sensitivity of the optimized sensor probe was 522.80 nm per refractive index unit, and the probe showed distinctive wavelength shifts when the refractive index was changed from 1.328 6 to 1.398 7. When stored in deionized water at 4 ℃, the sensor probe proved to be stable over a period of two weeks. The sensor also exhibited advantages, such as low cost, fast fabrication, and simple optical setup, which indicated its potential application in remote sensing and real-time detection.
文摘The principle and performance of a fiber-optic Faraday-effect magnetic-field sensor based on an yttrium iron garnet (YIG) and two flux concentrations are described. A single polarization-maintaining optical fiber links the sensor head to the source and detection system, in which the technique of phase shift cancellation is used to cancel the phase shift that accumulatein the optical fiber. Flux concentrators were exploited to enhance the YIG crystal magneto-optic sensitivity .The sensor system exhibited a noise-equivalent field of 8 pT/√Hz and a 3 dB bandwidth of ~10 MHz.
文摘In this study, we fabricated a sapphire based fiber-optic radiation sensor. To evaluate the fiber- optic radiation sensor, we measured the spectrum and intensity of the luminescence generated from the fiber-optic radiation sensor according to the thickness of the PMMA block by irradiation of gamma rays emitted from a Co-60 source. And the result was compared with the value calculated from the formula of Lambert-Beer.
基金supported by the National Natural Science Foundation of China(No.51574054)the University Innovation Team Building Program of Chongqing(No.CXTDX201601030)+2 种基金Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJZD-M201901102)Chongqing Science and Technology Bureau(Nos.cstc2017shmsA20017,cstc2018jcyjAX0294,CSTCCXLJRC 201905)the Innovation Leader Project of Chongqing Science and Technology Bureau(No.CSTCCXLJRC201905)。
文摘An optical fiber dual Fabry-Perot interferometric carbon monoxide gas sensor based on PANI/Co3 O4/GO(PCG)sensing membrane coated on the end face of the optical fiber is proposed and fabricated.One end face of photonic crystal fiber(PCF)without cut-off wavelength is fused with a single-mode fiber(SMF),and the other end face of the PCF is coated with PCG sensing membrane.The collapsed layer formed during the air hole fusion of PCF is used as the first reflector,the interface between PCF and sensing membrane is used as the second reflector,and the interface between the sensing membrane and the air is used as the third reflector,thus the dual Fabry-Pe rot structure sensor is formed.The results show that the sensor has excellent sensitivity and selectivity to carbon monoxide.With the increasing concentration of carbon monoxide gas in the range of 0-60 ppm,the intensity of interference spectrum decreases.The sensitivity of the sensor is 0.3473 dB m/ppm,and its linearity is good.The response time and recovery time are 68 s and 106 s,respectively.The sensor has the advantages of the compact size,low cost,high sensitivity,strong selectivity and simple structure.It is suitable for the sensing detection of low concentration carbon monoxide gas.
基金supported by the National Natural Science Foundation of China(No.22376159)the Fundamental Research Funds for the Central Universities.
文摘Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart monitoring terminal,cloud storage/computing technology,and artificial intelligence,smart gas sensors represent the future of gassensing due to their merits of real-time multifunctional monitoring,earlywarning function,and intelligent and automated feature.Various electronicand optoelectronic gas sensors have been developed for high-performancesmart gas analysis.With the development of smart terminals and the maturityof integrated technology,flexible and wearable gas sensors play an increasingrole in gas analysis.This review highlights recent advances of smart gassensors in diverse applications.The structural components and fundamentalprinciples of electronic and optoelectronic gas sensors are described,andflexible and wearable gas sensor devices are highlighted.Moreover,sensorarray with artificial intelligence algorithms and smart gas sensors in“Internet of Things”paradigm are introduced.Finally,the challengesand perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living.
基金supported by the National Natural Science Foundation of China(Grant No.61975167).
文摘A compact and high-resolution fiber-optic refractive index(RI)sensor based on a microwave photonic filter(MPF)is proposed and experimentally validated.The sensing head utilizes a cascaded in-line interferometer fabricated by an input single-mode fiber(SMF)tapered fusion with no-core fiber-thin-core fiber(TCF)-SMF.The surrounding RI(SRI)can be demodulated by tracing the passband’s central frequency of the MPF,which is constructed by the cascaded in-line interferometer,electro-optic modulator,and a section of dispersion compensation fiber.The sensitivity of the sensor is tailorable through the use of different lengths of TCF.Experimental results reveal that with a 30 mm length of TCF,the sensor achieves a maximum theoretical sensitivity and resolution of-1.403 GHz∕refractive index unit eRIUT and 1.425×10^(-7) RIU,respectively,which is at least 6.3 times higher than what has been reported previously.Furthermore,the sensor exhibits temperature-insensitive characteristics within the range of 25℃-75℃,with a temperatureinduced frequency change of only±1.5 MHz.This value is significantly lower than the frequency change induced by changes in the SRI.The proposed MPF-based cascaded in-line interferometer RI sensor possesses benefits such as easy manufacture,low cost,high resolution,and temperature insensitivity.
基金National Natural Science Foundation of China(60272027) Science Technique Project of Hebei Depart ment ofEducation(2005359)
文摘A kind of fluorescence optic-fiber thermometer is devised based on the ruby and absorbing glass sample. The optic- fiber temperature measurement probe based on ruby is developed. This system is particularly adaptable to the temperature measurement in the range of 0℃ to 130℃. A considerably improved performance is seen in this new device. The drive current to the LED can be easily kept within the required defined bounds through the control circuitry.
文摘With the rapid development of the Internet of Things(IoT)technology,fiber-optic sensors,as a kind of high-precision and high-sensitivity measurement tool,are increasingly widely used in the field of IoT.This paper outlines the advantages of fiber-optic sensors over traditional sensors,such as high precision,strong resistance to electromagnetic interference,and long transmission distance.On this basis,the paper discusses the application scenarios of fiber-optic sensors in the Internet of Things,including environmental monitoring,intelligent industry,medical and health care,intelligent transportation,and other fields.It is hoped that this study can provide theoretical support and practical guidance for the further development of fiber-optic sensors in the field of the Internet of Things,as well as promote the innovation and application of IoT.
基金funded by the National Natural Science Foundation of China(52475580)the Special Foundation of the Taishan Scholar Project(tsqn202211077,tsqn202311077)+3 种基金Shandong Provincial Excellent Overseas Young Scholar Foundation(2023HWYQ-069)the Shandong Provincial Natural Science Foundation(ZR2023ME118,ZR2023QF080)the Natural Science Foundation of Qingdao City(23-2-1-219-zyyd-jch,23-2-1-111-zyyd-jch)the Fundamental Research Funds for the Central Universities(23CX06032A).
文摘The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these challenges,this work develops an artificial intelligenceassisted,wireless,flexible,and wearable mechanoluminescent strain sensor system(AIFWMLS)by integration of deep learning neural network-based color data processing system(CDPS)with a sandwich-structured flexible mechanoluminescent sensor(SFLC)film.The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication.The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature,which significantly improves the accuracy of the predicted strain.A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition.Moreover,the versatile SFLC film can also serve as a encryption device.The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the“color to strain value”bottleneck that hinders the practical application of flexible colorimetric strain sensors,which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets.
文摘Fiber-optic DNA biosensors are a kind of ana-lytic setups, which convert the Waston-Crick base pairs matching duplex or Hoogsteen’s tri-plex (T/A-T, C/G-C) formation into a readable analytical signals when functionalized single- strands DNA (ssDNA) or double-strands DNA (dsDNA) of interest are immobilized on the sur-face of fiber-optic hybrids with target DNA or interacts with ligands. This review will provide the information about the fiber-optic DNA bio-sensors classified into two categories depend-ing on the end fiber and side fiber with or with-out the labels—label-free fiber-optic DNA bio-sensors and labeled fiber-optic DNA biosensor in recent years. Both are dissertated, and em-phasis is on the label-free fiber-optic DNA bio-sensors. Fiber-optic DNA biosensors had got great progresses because fiber-optic has more advantages over the other transducers and are easily processed by nanotechnology. So fiber- optic DNA biosensors have increasingly at-tracted more attention to research and develop the new fiber-optic DNA biosensors that inte-grated with the “nano-bio-info” technology for in vivo test, single molecular detection and on-line medical diagnosis. Finally, future pros-pects to the fiber-optic DNA biosensors are predicted.
基金supported by the National Natural Science Foundation of China(No.62404111)Natural Science Foundation of Jiangsu Province(No.BK20240635)+2 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.24KJB510025)Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(No.NY223157 and NY223156)Opening Project of Advanced Inte-grated Circuit Package and Testing Research Center of Jiangsu Province(No.NTIKFJJ202303).
文摘Multimodal sensor fusion can make full use of the advantages of various sensors,make up for the shortcomings of a single sensor,achieve information verification or information security through information redundancy,and improve the reliability and safety of the system.Artificial intelligence(AI),referring to the simulation of human intelligence in machines that are programmed to think and learn like humans,represents a pivotal frontier in modern scientific research.With the continuous development and promotion of AI technology in Sensor 4.0 age,multimodal sensor fusion is becoming more and more intelligent and automated,and is expected to go further in the future.With this context,this review article takes a comprehensive look at the recent progress on AI-enhanced multimodal sensors and their integrated devices and systems.Based on the concept and principle of sensor technologies and AI algorithms,the theoretical underpinnings,technological breakthroughs,and pragmatic applications of AI-enhanced multimodal sensors in various fields such as robotics,healthcare,and environmental monitoring are highlighted.Through a comparative study of the dual/tri-modal sensors with and without using AI technologies(especially machine learning and deep learning),AI-enhanced multimodal sensors highlight the potential of AI to improve sensor performance,data processing,and decision-making capabilities.Furthermore,the review analyzes the challenges and opportunities afforded by AI-enhanced multimodal sensors,and offers a prospective outlook on the forthcoming advancements.