The Remote Radio Head (RRH) over Fiber system is a new distributed network coverage mode.It processes the baseband parts concentratively by separating the baseband and Radio Frequency (RF).It moves the RF modules usin...The Remote Radio Head (RRH) over Fiber system is a new distributed network coverage mode.It processes the baseband parts concentratively by separating the baseband and Radio Frequency (RF).It moves the RF modules using fibers from the Base Stations (BSs) to the remote RF units.These RF modules are placed on the stations to be covered.This solution saves many equipment rooms required by conventional solutions.Meanwhile,it supports RRH over a large number of fibers through high-capacity macro BSs to realize the conversion between capacity and coverage.In addition,the RRH system also supports the coverage in other situations,such as high-speed railways and ultra-long distance.It is one of the most widely used technologies in the 3G network.展开更多
During the automated placement process of dry fibers,the positioning and fixation of dry fiber gauze belts are achieved by spraying setting agents.The amount of the setting agent is difficult to control when it is spr...During the automated placement process of dry fibers,the positioning and fixation of dry fiber gauze belts are achieved by spraying setting agents.The amount of the setting agent is difficult to control when it is sprayed manually.Furthermore,it can also affect the permeability of the preform,resin injection and the quality of the vacuum assisted resin infusion(VARI)molding,resulting in a decrease in the mechanical properties of composite materials.This study utilizes dry fiber automated placement equipment and an automated spraying system to manufacture preform structures,followed by VARI process to prepare composite samples with varying setting agent contents.Subsequently,mechanical characterization including interlaminar shear,bending and tensile testing is conducted to investigate the influence of setting agent content on both the manufacturing process and the mechanical properties of composite products.The results show that the interlaminar shear strength,bending strength and tensile strength of the sample gradually decrease with the increase of the content of the setting agent.The optimal setting agent content for automated laying of dry fiber is determined to be 4%-6%,balancing the preformed body’s layup quality and its impact on mechanical properties.Compared with agent-free samples,this range results in reductions of 3% in interlaminar shear strength,9% in bending strength,11% in bending modulus,and 13%-16% in tensile strength.展开更多
Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and i...Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and international researchers have made significant advances in the areas of theory and methods,technology and systems,and ground experiments and flight tests.These advances have led to the development of OFS technology from the laboratory research stage to the engineering application stage.However,a few problems encountered in practical applications limit the wider application and further development of this technology,and thus urgently require solutions.This paper reviews the history of research on the deformation monitoring of flight vehicles.It examines various aspects of OFS-based deformation monitoring including the main varieties of OFS technology,technical advantages and disadvantages,suitability in aerospace applications,deformation reconstruction algorithms,and typical applications.This paper points out the key unresolved problems and the main evolution paradigms of engineering applications.It further discusses future development directions from the perspectives of an evolution paradigm,standardization,new materials,intelligentization,and collaboration.展开更多
Rock bolts are one of the primary support systems utilized in underground excavations within the civil and mining engineering industries. Rock bolts support the weakened rock mass adjacent to the opening of an excavat...Rock bolts are one of the primary support systems utilized in underground excavations within the civil and mining engineering industries. Rock bolts support the weakened rock mass adjacent to the opening of an excavation by fastening to the more stable, undisturbed formations further from the excavation. The overall response of such a support element has been determined under varying loading conditions in the laboratory and in situ experiments in the past four decades; however, due to the limitations with conventional monitoring methods of capturing strain, there still exists a gap in knowledge associated with an understanding of the geomechanical responses of rock bolts at the microscale. In this paper, we try to address this current gap in scientific knowledge by utilizing a newly developed distributed optical strain sensing(DOS) technology that provides an exceptional spatial resolution of 0.65 mm to capture the strain along the rock bolt. This DOS technology utilizes Rayleigh optical frequency domain reflectometry(ROFDR) which provides unprecedented insight into various mechanisms associated with axially loaded rebar specimens of different embedment lengths, grouting materials, borehole annulus conditions, and borehole diameters. The embedment length of the specimens was found to be the factor that significantly affected the loading of the rebar. The critical embedment length for the fully grouted rock bolts(FGRBs) was systematically determined to be430 mm. The results herein highlight the effects of the variation of these individual parameters on the geomechanical responses FGRBs.展开更多
With the continuous development of market economy, the construction of urban roads and bridges is also facing new development opportunities and new challenges. Steel fiber reinforced concrete technology plays a decisi...With the continuous development of market economy, the construction of urban roads and bridges is also facing new development opportunities and new challenges. Steel fiber reinforced concrete technology plays a decisive role in highway and bridge construction. Compared with conventional concrete, steel fiber concrete has a broad application prospect in urban road and bridge engineering. Conventional concrete will produce cracks, which will not only affect the overall quality of engineering construction, but also cause accidents. The research and application of steel fiber concrete technology is an important measure to ensure the quality of highway and bridge engineering. Highway bridge engineering is an important part of our country's highway transportation system, which has made outstanding contribution to improving our country's highway transportation efficiency. With the increase in the number of various types of vehicles, higher requirements are put forward for the carrying capacity and engineering quality of municipal highway bridges.展开更多
Extensive urban areas worldwide face significant landslide hazards, impacting inhabitants, buildings, and critical infrastructures alike. In the case of slow-moving deep-seated landslides involving huge areas and char...Extensive urban areas worldwide face significant landslide hazards, impacting inhabitants, buildings, and critical infrastructures alike. In the case of slow-moving deep-seated landslides involving huge areas and characterized by complex patterns, when the cost of repairing infrastructures, relocating communities, and restoring cultural sites might be such that it is unsustainable for the community, the exposed structures require significant effort for their surveillance and protection, which can be supported by the development of innovative monitoring systems. For this purpose, a smart extenso-inclinometer, realized by equipping a conventional inclinometer tube with distributed strain and temperature transducers based on optical fiber sensing technology, is presented. In situ monitoring of the active deep-seated San Nicola landslide in Centola (Campania, southern Italy) demonstrated its ability to capture the main features of movements and reconstruct a tridimensional evolution of the landslide pattern, even when the entity of both vertical and horizontal soil strain components is comparable. Although further tests are needed to definitively ascertain the extensometer function of the new device, by interpreting the strain profiles of the landslide body and identifying the achievement of predetermined thresholds, this system could provide a warning of the trigger of a landslide event. The use of the smart extenso-inclinometer within an early warning system for slow-moving landslides holds immense potential for reducing the impact of landslide events.展开更多
Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model test...Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model tests because of the impacts of limitedtest space, high centrifugal force, and presence of water, with the result that limited valid data is obtained. In this study, Fiber Bragg Grating(FBG) sensing technology is employed in the design and development of displacement gauge, an anchor force gauge and an anti-slide pile moment gauge for use on centrifugal model slopes with and without a retaining structure. The two model slopes were installed and monitored at a centrifugal acceleration of 100 g. The test results show that the sensors developed succeed in capturing the deformation and retaining structure mechanical response of the model slopes during and after rainfall. The deformation curvefor the slope without retaining structure shows a steepresponse that turns gradualfor the slope with retaining structure. Importantly, for the slope with the retaining structure, results suggest that more attention be paid to increase of anchor force and antislide pile moment during rainfall. This study verifies the effectiveness of FBG sensing technology in centrifuge research and presents a new and innovative method for slope model testing under rainfall conditions.展开更多
With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image buildi...With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image building could be obtained, based on the statistics theory and numerical analysis of the combination of concrete internal defects extension and evolution regularity of microscopic structure. The expermental results show that the defect rate has changed at different temperatures and can determine the concrete degradation threshold temperatures. Also, data analysis can help to establish the evolution equation between the defect rate and the effect of temperature damage, and identify that the addition of polypropylene fibers in the high strength concrete at high temperature can improve cracking resistance.展开更多
Filtration of aerosol particles using non-woven fibrous media is a common practice for air cleaning. It has found wide applications in industries and our daily lives. This paper overviews some of these applications an...Filtration of aerosol particles using non-woven fibrous media is a common practice for air cleaning. It has found wide applications in industries and our daily lives. This paper overviews some of these applications and provides an industrial perspective. It starts from discussing aerosol filtration theory, followed by a brief review on the advancement of filtration media. After that, filtration applications in respiratory protection, dust collection, and engine in-take air cleaning are elaborated. These are the areas that the author sees as the typical needed ones in China's fast pace economical development endeavor, where air filtration enables the protection of human health, environment and equipment for sustainability.展开更多
A theory of composite material patch winding is proposed to determine the winding trajectory with a meshed data model. Two different conditions are considered in this study. One is Bridge condition on the concave surf...A theory of composite material patch winding is proposed to determine the winding trajectory with a meshed data model. Two different conditions are considered in this study. One is Bridge condition on the concave surface and the other is Slip line condition in the process of patch winding. This paper presents the judgment principles and corresponding solutions by applying differential geometry theory and space geometry theory. To verify the feasibility of the patch winding method, the winding control code is programmed. Furthermore, the winding experiments on an airplane inlet and a vane are performed. From the experiments, it shows that the patch winding theory has the advantages of flexibility, easy design and application.展开更多
Oil particle removal,different from the removal of general salt particular matter,has an unusual filtration process in which oil particles will be captured by forming a continuous film on the surface of the filter.The...Oil particle removal,different from the removal of general salt particular matter,has an unusual filtration process in which oil particles will be captured by forming a continuous film on the surface of the filter.Therefore,it is important to investigate the effect of surface property of the filter on the oil particle dynamic filtration process.In this study,three fibrous mats with different surface energies were fabricated from polyacrylonitrile(PAN),polyacrylonitrile/cellulose acetate(PAN/CA),and polyacrylonitrile/polyvinylidene fluoride(PAN/PVDF)solutions by needleless electrospinning.PAN/PVDF fibrous mat presented the lowest surface energy(19.99 mJ/m2),followed by PAN/CA fibrous mat(29.49 mJ/m2)and PAN fibrous mat(40.91 mJ/m2).As the oil particle filtration went on,the PAN/PVDF fibrous mat presented both the fastest filtration efficiency decline(4.72%in 10 min)and the fastest filtration resistance increase(543.41 Pa in 10 min).展开更多
A series of laboratory pull-out tests was conducted to study the effects of temperature on the performance and behaviours of fully grouted rock bolt specimens cured within a specific temperature range,as well as for d...A series of laboratory pull-out tests was conducted to study the effects of temperature on the performance and behaviours of fully grouted rock bolt specimens cured within a specific temperature range,as well as for different durations.Each specimen consisted of a 20M rebar bolt at 1300 mm embedment length grouted inside a Schedule 80 steel pipe using Portland cement grout at a 0.4 water-to-cement ratio.Two temperatures(20℃and 45℃)were explored to investigate the effects of geothermally active temperature conditions on fully grouted rock bolts.Distributed fiber optic sensors were employed to provide continuous strain profiles along the entire embedment length to observe micro-mechanisms and monitor internal specimen temperature change during testing.The specimens cured at 45℃generally resulted in higher grout UCS(in certain cases 25%e50%higher)compared to those at 20℃;the ultimate capacity was not significantly impacted as the specimens'embedment length allowed full development of the rock bolt's capacity.The resulting strain profile trends showed generally higher strains experienced by the shorter(i.e.3-d)curing duration specimens under both curing temperatures compared to long-term curing.The 45℃specimens generally experienced lower strains and faster strain profile attenuation compared to specimens cured at 20℃.Understanding these effects and further analysis of FGRB specimen behaviours over time provide insights for mobilized and critical embedment lengths,capacity development,and support system stabilization.This paper highlights the results of this study and aims to bridge selected gaps in existing literature with a view to aid practitioners.展开更多
A method of fabricating selenium(Se) microwire is demonstrated.A multimaterial fiber with amorphous selenium(a-Se) core and multicomponent phosphate glass cladding is drawn by using a conventional optical fiber dr...A method of fabricating selenium(Se) microwire is demonstrated.A multimaterial fiber with amorphous selenium(a-Se) core and multicomponent phosphate glass cladding is drawn by using a conventional optical fiber drawing technique.Then the a-Se core of the fiber is crystallized by a post thermal process at 150 ℃.After the multicomponent phosphate glass cladding is stripped from the multimaterial fiber by marinating the fiber in HF acid solution,a crystalline selenium(c-Se)microwire with high uniformity and smooth surface is obtained.Based on microstructure measurements,the c-Se microwire is identified to consist of most hexagonal state particles and very few trigonal state whiskers.The good photoconduction property of c-Se microwire with high quality and longer continuous length makes it possible to apply to functional devices and arrays.展开更多
With the increasing demand for batteries,the real-time in situ monitoring of the physical/chemical state within the“black box”is critical to improving battery performance.Consequently,the development of a cost-effec...With the increasing demand for batteries,the real-time in situ monitoring of the physical/chemical state within the“black box”is critical to improving battery performance.Consequently,the development of a cost-effective and in situ battery monitoring system that does not interfere with the normal operation of the battery is imminent.Traditional monitoring techniques are constrained by size,reliability,and scalability.Optical fiber sensors offer a distinctive advantage in enabling highly sensitive,multiparameter in situ measurements in the harsh electrochemical environment of batteries.By decoding these characteristic parameters,it helps to establish the evolution mechanism of the battery’s safety state.Additionally,the integration of advanced lab-on-fiber technology with battery monitoring systems has attracted considerable attention.This review summarizes the recent advances in optical fiber sensing technology in the fields of battery temperature and mechanical stress/strain and provides an outlook on the future challenges and development of smart batteries.展开更多
The emission wavelength of a laser is physically predetermined by the gain medium used. Consequently, arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optic...The emission wavelength of a laser is physically predetermined by the gain medium used. Consequently, arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optical parametric generation, requiring complex optical setups and spectrally sliced supercontinuum, taking advantage of a simpler fiber technology: a fixed-wavelength pump laser pulse is converted into a spectrally very broadband output, from which the required resulting wavelength is then optically filtered. Unfortunately, this process is associated with an inherently poor noise figure, which often precludes many realistic applications of such supercontinuum sources. Here, we show that by adding only one passive optical element—a tapered photonic crystal fiber—to a fixed-wavelength femtosecond laser, one can in a very simple manner resonantly convert the laser emission wavelength into an ultra-wide and continuous range of desired wavelengths, with very low inherent noise, and without mechanical realignment of the laser. This is achieved by exploiting the double interplay of nonlinearity and chirp in the laser source and chirp and phase matching in the tapered fiber. As a first demonstration of this simple and inexpensive technology, we present a femtosecond fiber laser continuously tunable across the entire red–green–blue spectral range.展开更多
A WDM compatible Edge-to-Edge Self-Routed optical packet switched network that simplifies the optical processing is proposed. The system employs all-optical packet label generation and recognition using coded superstr...A WDM compatible Edge-to-Edge Self-Routed optical packet switched network that simplifies the optical processing is proposed. The system employs all-optical packet label generation and recognition using coded superstructured Fiber Bragg gratings.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.60877052
文摘The Remote Radio Head (RRH) over Fiber system is a new distributed network coverage mode.It processes the baseband parts concentratively by separating the baseband and Radio Frequency (RF).It moves the RF modules using fibers from the Base Stations (BSs) to the remote RF units.These RF modules are placed on the stations to be covered.This solution saves many equipment rooms required by conventional solutions.Meanwhile,it supports RRH over a large number of fibers through high-capacity macro BSs to realize the conversion between capacity and coverage.In addition,the RRH system also supports the coverage in other situations,such as high-speed railways and ultra-long distance.It is one of the most widely used technologies in the 3G network.
基金supported by Jiangsu Provincial Key Research and Development Program(No.BE2023014-4).
文摘During the automated placement process of dry fibers,the positioning and fixation of dry fiber gauze belts are achieved by spraying setting agents.The amount of the setting agent is difficult to control when it is sprayed manually.Furthermore,it can also affect the permeability of the preform,resin injection and the quality of the vacuum assisted resin infusion(VARI)molding,resulting in a decrease in the mechanical properties of composite materials.This study utilizes dry fiber automated placement equipment and an automated spraying system to manufacture preform structures,followed by VARI process to prepare composite samples with varying setting agent contents.Subsequently,mechanical characterization including interlaminar shear,bending and tensile testing is conducted to investigate the influence of setting agent content on both the manufacturing process and the mechanical properties of composite products.The results show that the interlaminar shear strength,bending strength and tensile strength of the sample gradually decrease with the increase of the content of the setting agent.The optimal setting agent content for automated laying of dry fiber is determined to be 4%-6%,balancing the preformed body’s layup quality and its impact on mechanical properties.Compared with agent-free samples,this range results in reductions of 3% in interlaminar shear strength,9% in bending strength,11% in bending modulus,and 13%-16% in tensile strength.
基金funded by the National Natural Science Foundation of China(51705024,51535002,51675053,61903041,61903042,and 61903041)the National Key Research and Development Program of China(2016YFF0101801)+4 种基金the National Hightech Research and Development Program of China(2015AA042308)the Innovative Equipment Pre-Research Key Fund Project(6140414030101)the Manned Space Pre-Research Project(20184112043)the Beijing Municipal Natural Science Foundation(F7202017 and 4204101)the Beijing Nova Program of Science and Technology(Z191100001119052)。
文摘Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and international researchers have made significant advances in the areas of theory and methods,technology and systems,and ground experiments and flight tests.These advances have led to the development of OFS technology from the laboratory research stage to the engineering application stage.However,a few problems encountered in practical applications limit the wider application and further development of this technology,and thus urgently require solutions.This paper reviews the history of research on the deformation monitoring of flight vehicles.It examines various aspects of OFS-based deformation monitoring including the main varieties of OFS technology,technical advantages and disadvantages,suitability in aerospace applications,deformation reconstruction algorithms,and typical applications.This paper points out the key unresolved problems and the main evolution paradigms of engineering applications.It further discusses future development directions from the perspectives of an evolution paradigm,standardization,new materials,intelligentization,and collaboration.
基金Natural Sciences and Engineering Council of Canada(NSERC)the Canadian Department of National Defense+2 种基金MITACSYield Point Inc.the Royal Military College(RMC) Green Team
文摘Rock bolts are one of the primary support systems utilized in underground excavations within the civil and mining engineering industries. Rock bolts support the weakened rock mass adjacent to the opening of an excavation by fastening to the more stable, undisturbed formations further from the excavation. The overall response of such a support element has been determined under varying loading conditions in the laboratory and in situ experiments in the past four decades; however, due to the limitations with conventional monitoring methods of capturing strain, there still exists a gap in knowledge associated with an understanding of the geomechanical responses of rock bolts at the microscale. In this paper, we try to address this current gap in scientific knowledge by utilizing a newly developed distributed optical strain sensing(DOS) technology that provides an exceptional spatial resolution of 0.65 mm to capture the strain along the rock bolt. This DOS technology utilizes Rayleigh optical frequency domain reflectometry(ROFDR) which provides unprecedented insight into various mechanisms associated with axially loaded rebar specimens of different embedment lengths, grouting materials, borehole annulus conditions, and borehole diameters. The embedment length of the specimens was found to be the factor that significantly affected the loading of the rebar. The critical embedment length for the fully grouted rock bolts(FGRBs) was systematically determined to be430 mm. The results herein highlight the effects of the variation of these individual parameters on the geomechanical responses FGRBs.
文摘With the continuous development of market economy, the construction of urban roads and bridges is also facing new development opportunities and new challenges. Steel fiber reinforced concrete technology plays a decisive role in highway and bridge construction. Compared with conventional concrete, steel fiber concrete has a broad application prospect in urban road and bridge engineering. Conventional concrete will produce cracks, which will not only affect the overall quality of engineering construction, but also cause accidents. The research and application of steel fiber concrete technology is an important measure to ensure the quality of highway and bridge engineering. Highway bridge engineering is an important part of our country's highway transportation system, which has made outstanding contribution to improving our country's highway transportation efficiency. With the increase in the number of various types of vehicles, higher requirements are put forward for the carrying capacity and engineering quality of municipal highway bridges.
基金supported by Universita della Campania“L.Vanvitelli”,Program VALERE“VAnviteLli pEr la RicErca”(Grant No.516/2018)Italian Ministry of Economic Development#NOACRONYM Project,PoC MISE 2021.
文摘Extensive urban areas worldwide face significant landslide hazards, impacting inhabitants, buildings, and critical infrastructures alike. In the case of slow-moving deep-seated landslides involving huge areas and characterized by complex patterns, when the cost of repairing infrastructures, relocating communities, and restoring cultural sites might be such that it is unsustainable for the community, the exposed structures require significant effort for their surveillance and protection, which can be supported by the development of innovative monitoring systems. For this purpose, a smart extenso-inclinometer, realized by equipping a conventional inclinometer tube with distributed strain and temperature transducers based on optical fiber sensing technology, is presented. In situ monitoring of the active deep-seated San Nicola landslide in Centola (Campania, southern Italy) demonstrated its ability to capture the main features of movements and reconstruct a tridimensional evolution of the landslide pattern, even when the entity of both vertical and horizontal soil strain components is comparable. Although further tests are needed to definitively ascertain the extensometer function of the new device, by interpreting the strain profiles of the landslide body and identifying the achievement of predetermined thresholds, this system could provide a warning of the trigger of a landslide event. The use of the smart extenso-inclinometer within an early warning system for slow-moving landslides holds immense potential for reducing the impact of landslide events.
基金supported by the National Natural Science Foundation of China (Grant Nos.41502299,41372306)Research Planning of Sichuan Education Department, China (Grant No.16ZB0105)State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2016Z007)
文摘Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model tests because of the impacts of limitedtest space, high centrifugal force, and presence of water, with the result that limited valid data is obtained. In this study, Fiber Bragg Grating(FBG) sensing technology is employed in the design and development of displacement gauge, an anchor force gauge and an anti-slide pile moment gauge for use on centrifugal model slopes with and without a retaining structure. The two model slopes were installed and monitored at a centrifugal acceleration of 100 g. The test results show that the sensors developed succeed in capturing the deformation and retaining structure mechanical response of the model slopes during and after rainfall. The deformation curvefor the slope without retaining structure shows a steepresponse that turns gradualfor the slope with retaining structure. Importantly, for the slope with the retaining structure, results suggest that more attention be paid to increase of anchor force and antislide pile moment during rainfall. This study verifies the effectiveness of FBG sensing technology in centrifuge research and presents a new and innovative method for slope model testing under rainfall conditions.
基金Funded by the National Natural Science Foundation of China(No.51278325)the Shanxi Province Natural Science Foundation(No.2011011024-2)
文摘With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image building could be obtained, based on the statistics theory and numerical analysis of the combination of concrete internal defects extension and evolution regularity of microscopic structure. The expermental results show that the defect rate has changed at different temperatures and can determine the concrete degradation threshold temperatures. Also, data analysis can help to establish the evolution equation between the defect rate and the effect of temperature damage, and identify that the addition of polypropylene fibers in the high strength concrete at high temperature can improve cracking resistance.
文摘Filtration of aerosol particles using non-woven fibrous media is a common practice for air cleaning. It has found wide applications in industries and our daily lives. This paper overviews some of these applications and provides an industrial perspective. It starts from discussing aerosol filtration theory, followed by a brief review on the advancement of filtration media. After that, filtration applications in respiratory protection, dust collection, and engine in-take air cleaning are elaborated. These are the areas that the author sees as the typical needed ones in China's fast pace economical development endeavor, where air filtration enables the protection of human health, environment and equipment for sustainability.
基金Foundation item: Aeronautical Science Foundation of China (50175020)
文摘A theory of composite material patch winding is proposed to determine the winding trajectory with a meshed data model. Two different conditions are considered in this study. One is Bridge condition on the concave surface and the other is Slip line condition in the process of patch winding. This paper presents the judgment principles and corresponding solutions by applying differential geometry theory and space geometry theory. To verify the feasibility of the patch winding method, the winding control code is programmed. Furthermore, the winding experiments on an airplane inlet and a vane are performed. From the experiments, it shows that the patch winding theory has the advantages of flexibility, easy design and application.
基金National Natural Science Foundation of China(No.51373033)Yangtze River Scholars(Young Scholars)Program,China(No.51773037)。
文摘Oil particle removal,different from the removal of general salt particular matter,has an unusual filtration process in which oil particles will be captured by forming a continuous film on the surface of the filter.Therefore,it is important to investigate the effect of surface property of the filter on the oil particle dynamic filtration process.In this study,three fibrous mats with different surface energies were fabricated from polyacrylonitrile(PAN),polyacrylonitrile/cellulose acetate(PAN/CA),and polyacrylonitrile/polyvinylidene fluoride(PAN/PVDF)solutions by needleless electrospinning.PAN/PVDF fibrous mat presented the lowest surface energy(19.99 mJ/m2),followed by PAN/CA fibrous mat(29.49 mJ/m2)and PAN fibrous mat(40.91 mJ/m2).As the oil particle filtration went on,the PAN/PVDF fibrous mat presented both the fastest filtration efficiency decline(4.72%in 10 min)and the fastest filtration resistance increase(543.41 Pa in 10 min).
基金funded by the Canadian Department of National Defence(DND),the RMC Green Team Military GeoWorks Lab,and the National Sciences and Engineering Research Council(NSERC)of Canada.
文摘A series of laboratory pull-out tests was conducted to study the effects of temperature on the performance and behaviours of fully grouted rock bolt specimens cured within a specific temperature range,as well as for different durations.Each specimen consisted of a 20M rebar bolt at 1300 mm embedment length grouted inside a Schedule 80 steel pipe using Portland cement grout at a 0.4 water-to-cement ratio.Two temperatures(20℃and 45℃)were explored to investigate the effects of geothermally active temperature conditions on fully grouted rock bolts.Distributed fiber optic sensors were employed to provide continuous strain profiles along the entire embedment length to observe micro-mechanisms and monitor internal specimen temperature change during testing.The specimens cured at 45℃generally resulted in higher grout UCS(in certain cases 25%e50%higher)compared to those at 20℃;the ultimate capacity was not significantly impacted as the specimens'embedment length allowed full development of the rock bolt's capacity.The resulting strain profile trends showed generally higher strains experienced by the shorter(i.e.3-d)curing duration specimens under both curing temperatures compared to long-term curing.The 45℃specimens generally experienced lower strains and faster strain profile attenuation compared to specimens cured at 20℃.Understanding these effects and further analysis of FGRB specimen behaviours over time provide insights for mobilized and critical embedment lengths,capacity development,and support system stabilization.This paper highlights the results of this study and aims to bridge selected gaps in existing literature with a view to aid practitioners.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scientists,China(Grant No.61325024)the High-Level Personnel Special Support Program of Guangdong Province,China(Grant No.2014TX01C087)+3 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.2015ZP019)the National High Technology and Development Program of China(Grant Nos.2013AA031502 and 2014AA041902)the National Natural Science Foundation of China(Grant Nos.51472088,61535014,and 51302086)the Fund of Guangdong Provincial Cooperation of Producing,Studying and Researching,China(Grant No.2012B091100140)
文摘A method of fabricating selenium(Se) microwire is demonstrated.A multimaterial fiber with amorphous selenium(a-Se) core and multicomponent phosphate glass cladding is drawn by using a conventional optical fiber drawing technique.Then the a-Se core of the fiber is crystallized by a post thermal process at 150 ℃.After the multicomponent phosphate glass cladding is stripped from the multimaterial fiber by marinating the fiber in HF acid solution,a crystalline selenium(c-Se)microwire with high uniformity and smooth surface is obtained.Based on microstructure measurements,the c-Se microwire is identified to consist of most hexagonal state particles and very few trigonal state whiskers.The good photoconduction property of c-Se microwire with high quality and longer continuous length makes it possible to apply to functional devices and arrays.
基金support by the National Key Research and Development Program(2023YFB2503700)the Tsinghua University-China Petrochemical Corporation Joint Institute for Green Chemical Engineering(224247)+1 种基金the Beijing Municipal Science&Technology Commission(Z2311-00006123003)the National Science Foundation of China(22071133).
文摘With the increasing demand for batteries,the real-time in situ monitoring of the physical/chemical state within the“black box”is critical to improving battery performance.Consequently,the development of a cost-effective and in situ battery monitoring system that does not interfere with the normal operation of the battery is imminent.Traditional monitoring techniques are constrained by size,reliability,and scalability.Optical fiber sensors offer a distinctive advantage in enabling highly sensitive,multiparameter in situ measurements in the harsh electrochemical environment of batteries.By decoding these characteristic parameters,it helps to establish the evolution mechanism of the battery’s safety state.Additionally,the integration of advanced lab-on-fiber technology with battery monitoring systems has attracted considerable attention.This review summarizes the recent advances in optical fiber sensing technology in the fields of battery temperature and mechanical stress/strain and provides an outlook on the future challenges and development of smart batteries.
基金Teknologi og Produktion,Det Frie Forskningsrad(FTP,DFF)(ALFIE)Research Executive Agency(REA)(EU Career Integration Grant 334324LIGHTER)+2 种基金H2020 European Research Council(ERC)(ERC-617521 NLL)National Cancer Institute(NCI)(1 R01 CA166309)Max-Planck-Gesellschaft(MPG)
文摘The emission wavelength of a laser is physically predetermined by the gain medium used. Consequently, arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optical parametric generation, requiring complex optical setups and spectrally sliced supercontinuum, taking advantage of a simpler fiber technology: a fixed-wavelength pump laser pulse is converted into a spectrally very broadband output, from which the required resulting wavelength is then optically filtered. Unfortunately, this process is associated with an inherently poor noise figure, which often precludes many realistic applications of such supercontinuum sources. Here, we show that by adding only one passive optical element—a tapered photonic crystal fiber—to a fixed-wavelength femtosecond laser, one can in a very simple manner resonantly convert the laser emission wavelength into an ultra-wide and continuous range of desired wavelengths, with very low inherent noise, and without mechanical realignment of the laser. This is achieved by exploiting the double interplay of nonlinearity and chirp in the laser source and chirp and phase matching in the tapered fiber. As a first demonstration of this simple and inexpensive technology, we present a femtosecond fiber laser continuously tunable across the entire red–green–blue spectral range.
文摘A WDM compatible Edge-to-Edge Self-Routed optical packet switched network that simplifies the optical processing is proposed. The system employs all-optical packet label generation and recognition using coded superstructured Fiber Bragg gratings.