期刊文献+
共找到6,133篇文章
< 1 2 250 >
每页显示 20 50 100
Micromechanical modeling of longitudinal tensile behavior and failure mechanism of unidirectional carbon fiber/aluminum composites involving fiber strength dispersion
1
作者 Qipeng LIU Wengang JIANG +3 位作者 Yuehua GAO Zhenjun WANG Shanshan SHI Zhi SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期312-327,共16页
This paper examines the longitudinal tensile behavior and failure mechanism of a new unidirectional carbon fiber reinforced aluminum composite through experiments and simulations.A Weibull distribution model was estab... This paper examines the longitudinal tensile behavior and failure mechanism of a new unidirectional carbon fiber reinforced aluminum composite through experiments and simulations.A Weibull distribution model was established to describe the fiber strength dispersion based on single-fiber tensile tests for carbon fibers extracted from the composite.The constitutive models for the matrix and interface were established based on the uniaxial tensile and single-fiber push-out tests,respectively.Then,a 3D micromechanical numerical model,innovatively considering the fiber strength dispersion by use of the weakest link and Weibull distribution theories,was estab-lished to simulate the progressive failure behavior of the composite under longitudinal tension.Due to the dispersion of fiber strength,the weakest link of the fiber first fractures,and stress concentra-tion occurs in the surrounding fibers,interfaces,and matrix.The maximum stress concentration fac-tor for neighboring fibers varies nonlinearly with the distance from the fractured fiber.Both isolated and clustered fractured fibers are present during the progressive failure process of the composite.The expansion of fractured fiber clusters intensifies stress concentration and material degradation which in turn enlarges the fractured fiber clusters,and their mutual action leads to the final collapse of the composite. 展开更多
关键词 fiber reinforced metals Finite element method 3D micromechanical model fiber strength dispersion Longitudinal tension Progressive failure
原文传递
Nitrogen Concentration in Subtending Cotton Leaves in Relation to Fiber Strength in Different Fruiting Branches 被引量:2
2
作者 ZHAO Wen-qing LI Jian +3 位作者 GAO Xiang-bin WANG You-hua MENG Ya-li ZHOU Zhi-guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第10期1757-1770,共14页
Nitrogen(N) fertilizer experiments were conducted to investigate the optimal subtending leaf N concentration for fiber strength,and its relationship with activities of key enzymes(sucrose synthase and β-1,3-glucan... Nitrogen(N) fertilizer experiments were conducted to investigate the optimal subtending leaf N concentration for fiber strength,and its relationship with activities of key enzymes(sucrose synthase and β-1,3-glucanase) and contents of key constituents(sucrose and β-1,3-glucan) involved in fiber strength development in the lower,middle and upper fruiting branches of two cotton cultivars(Kemian 1 and NuCOTN 33B).For each sampling day,we simulated changes in fiber strength,activity of sucrose synthase and β-1,3-glucanase and levels of sucrose and β-1,3-glucan in response to leaf N concentration using quadratic eqs.;the optimal subtending leaf N concentrations were deduced from the eqs.For the same fruiting branch,changes in the optimal leaf N concentration based on fiber development(DPA) could be simulated by power functions.From these functions,the average optimal subtending leaf N concentrations during fiber development for the cultivar,Kemian 1,were 2.84% in the lower fruiting branches,3.15% in the middle fruiting branches and 3.04% in the upper fruiting branches.For the cultivar,NuCOTN 33B,the optimum concentrations were 3.04,3.28 and 3.18% in the lower,middle and upper fruiting branches,respectively.This quantification may be used as a monitoring index for evaluating fiber strength and its related key enzymes and constituents during fiber formation at the lower,middle and upper fruiting branches. 展开更多
关键词 cotton nitrogen subtending leaf nitrogen concentration fiber strength key enzymes and constituents
在线阅读 下载PDF
Stability and transferability assessment of the cotton fiber strength QTL qFS-c7-1 on chromosome A07
3
作者 David D.Fang Linghe Zeng +4 位作者 Gregory N.Thyssen Christopher D.Delhom Efrem Bechere Don C.Jones Ping Li 《The Crop Journal》 SCIE CSCD 2021年第2期380-386,共7页
Previously we identified a major cotton fiber strength QTL(qFS-c7-1)on chromosome A07 using a multiparent advanced generation intercross(MAGIC)population.To assess the stability and transferability of this QTL and its... Previously we identified a major cotton fiber strength QTL(qFS-c7-1)on chromosome A07 using a multiparent advanced generation intercross(MAGIC)population.To assess the stability and transferability of this QTL and its utility in cotton breeding,we made ten new populations.These populations were developed from crosses between MAGIC recombinant inbred lines,or between cotton cultivars that are different from the MAGIC parents.A total of 2801 F_(2) plants were grown and their fiber quality traits were measured.We also selected a subset of F_(3) seeds from two populations,and grew F_(3) progeny plots to further evaluate the stability of this QTL.Our results showed that the peak of qFS-c7-1 is at 70–72 Mb region.This QTL had a major effect on fiber strength explaining 21.9%phenotypic variance.Its effect on other fiber quality attributes such as micronaire,short fiber content,length and uniformity varied between populations,and no effect on fiber elongation was observed.The QTL effects were stable in the populations analyzed,and in different generations of the same population.The SSR and SNP markers near and within the QTL peak reported herein will assist selecting superior fiber quality traits in breeding,with a recommendation that the parental cotton lines should be analyzed using the seven DNA markers within the QTL peak before fully implementing marker assisted selection in a cotton breeding program. 展开更多
关键词 Cotton fiber quality fiber strength MAGIC population qFS-c7-1
在线阅读 下载PDF
Rapid Identification of a Candidate Gene Related to Fiber Strength Using a Superior Chromosome Segment Substitution Line from Gossypium hirsutum × Gossypium barbadense via Bulked Segregant RNA-Sequencing
4
作者 Qi Zhang Pengtao Li +9 位作者 Aiying Liu Shaoqi Li Quanwei Lu Qun Ge Junwen Li Wankui Gong Xiaoying Deng Haihong Shang Yuzhen Shi Youlu Yuan 《Phyton-International Journal of Experimental Botany》 SCIE 2021年第3期837-858,共22页
Cotton is the most widely cultivated commercial crop producing natural fiber around the world.As a critical trait for fiber quality,fiber strength principally determined during the secondary wall thickening period.Bas... Cotton is the most widely cultivated commercial crop producing natural fiber around the world.As a critical trait for fiber quality,fiber strength principally determined during the secondary wall thickening period.Based on the developed BC5F3:5 CSSLs(chromosome segment substitution lines)from Gossypium hirsutum CCRI36×G.barbadense Hai 1,the superior MBI9915 was chosen to construct the secondary segregated population BC7F2 with its recurrent parent CCRI36,which was subsequently subjected to Bulk segregant RNA-sequencing(BSR-seq)for rapid identification of candidate genes related to fiber strength.A total of 4 fiber-transcriptome libraries were separately constructed and sequenced,including two parents(CCRI36 and MBI9915)and two extreme pools at 20 DPA(days post anathesis).Through multiple comparisons,536 DEGs(differentially expressed genes)were overlapped at 20 DPA.Allelic-polymorphism comparison in mRNA sequences revealed 831 highly probable SNPs between two extreme pools related to fiber strength.Linkage analysis was performed between two extreme pools with SNP-index method.Eighteen correlated regions with 1981 annotation genes were obtained between two pools at 20 DPA,of which 12 common DEGs were similarly identified both between two parents and two pools.One gene(Gh_A07G0837)in the candidate region related to fiber strength was differentially expressed in both parents and extreme pools and involved in fiber strength development through reactive oxygen species(ROS)activity.Co-expression analysis of Gh_A07G0837 showed that Gh_A07G0837 may cooperate with other genes to regulate fiber strength.The reliability of BSR-seq results was validated by the quantitative real-time PCR(qRT-PCR)experiments on 5 common DGEs 20 DPA.Co-expressed analysis results indicated that there were some genes expressed especially low in MBI9915,resulting in good fiber strength.Focusing on bulked segregant analysis on the extreme pools derived from superior CSSL population,this study indicates that BSR-seq can be efficiently applied on rapid identification of candidate genes related to fiber strength,which make contributions to our understanding of fiber quality formation in cotton. 展开更多
关键词 Cotton fiber strength CSSLs BSR-seq gene clone co-expressed analysis
在线阅读 下载PDF
Genetic improvement of fiber quality in tetraploid cotton:an overview of major QTLs and genes involved in and edited for the quality of cotton fibers 被引量:1
5
作者 BAGHYALAKSHMI Kari PRIYANKA Rajendran Ariyapalayam +2 位作者 SARATHAPRIYA Govindaraj RAMCHANDER Selvaraj PRAKASH Arkalgud Hiriyannaiah 《Journal of Cotton Research》 CAS 2024年第4期399-410,共12页
Cotton,an important industrial crop cultivated in more than 70 countries,plays a major role in the livelihood of millions of farmers and industrialists.Cotton is mainly grown for its fiber,an economic component that c... Cotton,an important industrial crop cultivated in more than 70 countries,plays a major role in the livelihood of millions of farmers and industrialists.Cotton is mainly grown for its fiber,an economic component that can be differentiated from its epidermal cells in the outer integument of a developing seed.Fiber length,fiber strength,and fiber fineness are three main attributes that contribute to the quality of cotton fibers.Recent advancements in genomics have identified key genes,which are the most important factors that govern these three traits,can be introduced into cultivars of interest via gene editing,marker-assisted selection,and transgenics,thus the narrow genetic background of cotton can be addressed and its fiber quality traits can be enhanced.Over the past two decades,quantitative trait loci(QTLs)have been mapped for different fiber traits,approximately 1850 QTLs have been mapped for fiber length,fiber strength,and fineness among which a few genes have been edited for quality improvement in cotton.In this background,the current review covers the development and the factors that influence these traits,along with the reported genes,QTLs,and the edited genomes for trait improvement. 展开更多
关键词 COTTON fiber length fiber strength MICRONAIRE Quantitative trait locus Genome editing
在线阅读 下载PDF
Response of the enzymes to nitrogen applications in cotton fiber (Gossypium hirsutum L.) and their relationships with fiber strength 被引量:3
6
作者 WANG YouHua1, FENG Ying1, XU NaiYin1,2, CHEN BingLin1, MA RongHui1 & ZHOU ZhiGuo1 1 Key Laboratory of Crop Growth Regulation of the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China 2 Institute of Industrial Crops, Jiangsu Academy of Agricultural Science, Nanjing 210014, China 《Science China(Life Sciences)》 SCIE CAS 2009年第11期1065-1072,共8页
To investigate the response of key enzymes to nitrogen (N) rates in cotton fiber and its relationship with fiber strength, experiments were conducted in 2005 and 2006 with cotton cultivars in Nanjing. Three N rates 0,... To investigate the response of key enzymes to nitrogen (N) rates in cotton fiber and its relationship with fiber strength, experiments were conducted in 2005 and 2006 with cotton cultivars in Nanjing. Three N rates 0, 240 and 480 kgN/hm2, signifying optimum and excessive nitrogen application levels were applied.The activities and the gene expressions of the key enzymes were affected by N, and the characteristics of cellulose accumulation and fiber strength changed as the N rate varied. Beta-1,3-glucanase activity in cotton fiber declined from 9 DPA till boll opening, and the beta-1, 3-glucanase coding gene expression also followed a unimodal curve in 12—24 DPA. In 240 kgN/hm2 condition, the characteristics of enzyme activity and gene expression manner for sucrose synthase and beta-1,3-glucanase in developing cotton fiber were more favorable for forming a longer and more steady cellulose accumulation process, and for high strength fiber development. 展开更多
关键词 cotton (Gossypium hirsutum L.) nitrogen fiber development ENZYME activity gene expression fiber strength
原文传递
Effects of Environment on Strengths of UHMWPE and Aramid Fiber 被引量:1
7
作者 曹涛 李显波 《科技视界》 2013年第31期198-199,219,共3页
This paper is devoted on influences of acid-base,high and low temperature on strength of UHMWPE and aramid fiber, characterized by fracture strength, SEM's effects on fiber strength and surface morphology. It turn... This paper is devoted on influences of acid-base,high and low temperature on strength of UHMWPE and aramid fiber, characterized by fracture strength, SEM's effects on fiber strength and surface morphology. It turns out to be that UHMWPE fiber has a superior acid-base, low temperature and light aging resistance property,with strength keeping above 90% in acid-base environment. Comparing with UHMWPE fiber, aramid fiber does well in mechanical properties, temperature resistant performances and alkali resistances at room temperature, with strength losing less than 10% in alkaline environment. 展开更多
关键词 服装设计 纺织服装 纺织纤维材料 集合体产品
在线阅读 下载PDF
Strength and Wear Behavior of Mg Alloy AE42 Reinforced with Carbon Short Fibers 被引量:4
8
作者 Sabbah Ataya Naser A.Alsaleh Mohamed M.El-Sayed Seleman 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第1期31-40,共10页
In addition to the advantage of the lightweight of magnesium alloys, magnesium composites have moderate strength and elastic modulus. The proposed application of magnesium composites as diesel truck pistons makes it n... In addition to the advantage of the lightweight of magnesium alloys, magnesium composites have moderate strength and elastic modulus. The proposed application of magnesium composites as diesel truck pistons makes it necessary to assess their wear performance. Little research data have been discussed on wear behavior of Mg alloy AE42 matrix and its composites. Thus, this paper reports wear behavior of magnesium alloy AE42(Mg–Al–Mn—RE; rare earth) and its composite AE42-C, which contains 23 vol% of randomly oriented carbon short fibers. Materials characterization, including density measurements, hardness testing, microstructures investigation, and compression testing at temperatures of 25, 150,and 300 °C, were conducted. Wear tests were performed under various loads and sliding distances. Wear mechanisms were also proposed based on the examination of worn surfaces using optical microscopy and scanning electron microscopy equipped with EDX(energy-dispersive X-ray spectrometry) analysis system. The hardness of AE42-23 vol% C composite is twice the hardness of the Mg matrix alloy AE42. Significant improvements to yield stress and compressive strength at temperatures of 25, 150, and 300 °C of the composite versus the AE42 alloy are achieved. Wear resistance of the composite is improved considerably versus that of the Mg alloy AE42 at the various sliding distances. Smearing of graphite on the worn surface produces a lubricating film that delays change from mild to severe wear of the composite, especially at high loads. EDX analysis of the worn surface shows oxidation of the matrix alloy at higher wear loads, and this mechanism decreases in the presence of carbon fibers under the same loads. Abrasive wear, oxidation, and plastic deformation are the dominant wear mechanisms for the alloy matrix AE42, whereas mainly abrasive wear is the wear mechanism of AE42-23 vol% C composite under the proposed testing conditions. 展开更多
关键词 Magnesium composites CARBON short fibers COMPRESSIVE strength WEAR resistance WEAR mechanisms
原文传递
Effect of Polypropylene Fibers on the Long-term Tensile Strength of Concrete 被引量:4
9
作者 姚武 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第1期52-55,共4页
The influence of low volume fraction of polypropylene(PP) fibers on the tensile properties of normal and high strength concretes was studied. The experimental results indicate that the addition of PP fibers in concr... The influence of low volume fraction of polypropylene(PP) fibers on the tensile properties of normal and high strength concretes was studied. The experimental results indicate that the addition of PP fibers in concrete leads to a reduction in tensile strength during the age of 28 d. Whereas, after 28 days, there is a notable effect in tensile strength due to PP fibers restraining the formation and growth of microcracks in concrete, which improves the continuity and integrality of concrete structure, Thus, a low volume fraction of PP fibers is beneficial to enhancing the long-term tensile strength of concrete materials and improving the durability of concrete structures. 展开更多
关键词 polypropylene fiber CONCRETE tensile strength MICROCRACK
在线阅读 下载PDF
Mining cotton fiber strength candidate genes based on transcriptome mapping 被引量:1
10
作者 LIU HengWei WANG XingFen +3 位作者 PAN YuXin SHI RuiFeng ZHANG GuiYin MA ZhiYing 《Chinese Science Bulletin》 SCIE EI CAS 2009年第24期4651-4657,共7页
Cotton fiber strength is mainly determined during the secondary cell wall (SCW) thickening stage. In 24―25 days post anthesis (DPA) of SCW thickening stage, cDNA-amplified fragment length polymorphism (AFLP) was carr... Cotton fiber strength is mainly determined during the secondary cell wall (SCW) thickening stage. In 24―25 days post anthesis (DPA) of SCW thickening stage, cDNA-amplified fragment length polymorphism (AFLP) was carried out to construct fiber transcriptome groups. Based on these groups, cotton fiber strength candidate genes were detected by composite interval mapping (CIM) through quantitative trait locus (QTL) scanning. The mapping population was the interspecific backcross BC1 of Gossypium hirsutum × G. barbadense. One hundred and fifteen BC1 plants were used for group construction with 102 qualified absence/presence polymorphic transcript-derived fragments (TDFs) from G. barbadense, and 78 TDFs were assigned into eight transcriptome groups that gave a total length of 462.63 centimorgans (cM). Two significant QTLs, FS1 and FS2, were detected and explained 16.08% and 15.87% of fiber strength variance, respectively. Of the six TDFs co-segregating with FS1 and FS2, except one encoding an unknown protein, five targeted putative phosphatidylinositol kinase, trehalose-6 phosphate synthase, MADS transcription factor, cellulose synthase-like protein and phenylalanine ammonia lyase, respectively. These functional genes were involved in plant cell wall morphogenesis or cellulose synthesis metabolism processes, and were considered as the candidate genes controlling cotton fiber strength. 展开更多
关键词 纤维比强度 基因转录 扩增片段长度多态性 棉花 映射 候选人 数量性状位点 复合区间作图法
在线阅读 下载PDF
Evaluation of statistical strength of bamboo fiber and mechanical properties of fiber reinforced green composites 被引量:4
11
作者 曹勇 吴义强 《Journal of Central South University》 SCIE EI CAS 2008年第S1期564-567,共4页
Green composites made from bamboo fibers and biodegradable resins were fabricated with press molding.On the basis of the Weibull distribution and the weakest-link theory,the statistical strength and distribution of ba... Green composites made from bamboo fibers and biodegradable resins were fabricated with press molding.On the basis of the Weibull distribution and the weakest-link theory,the statistical strength and distribution of bamboo fiber were analyzed,and the tensile strength of green composites was also investigated.The result confirms that the tensile statistical strength of fiber fits well with two-parameter Weibull distribution.In addition,the tensile strength of bamboo fiber reinforced composites is about 330 MPa with the fiber volume fraction of 70%.This value is close to or higher than that of other natural fiber reinforced green composites. 展开更多
关键词 BAMBOO fiber Weibull distribution TENSILE strength green composite
在线阅读 下载PDF
Charactersitics of Stress-strain Curve of High Strength Steel Fiber Reinforced Concrete under Uniaxial Tension 被引量:2
12
作者 杨萌 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第3期132-137,共6页
A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinfo... A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinforced concrete (SFRC) under uniaxial tension were studied experimentally. When the matrix strength and the fiber content increase, the tensile stress and tensile strain vary differently according to the fiber type. The mechanisms of reinforcing effect for different types of fiber were analyzed and the stress-strain curves of the specimens were plotted. Some experimental factors for stress or strain of SFRC were given. A tensile toughness modulus Re0.5 was introduced to evaluate the toughness characters of SFRC under uniaxial tension. Moreover, the formula of the tensile stress-strain curve of SFRC was regressed. The theoretical curve and the experimental ones fit well, which can be used for references in construction. 展开更多
关键词 steel fiber reinforced concrete high strength uniaxial tension soften characteristics stress-strain curve
在线阅读 下载PDF
An Application of the Modified Shear Lag Model to Study the Influence of Thermal Residual Stresses on the Stiffness and Yield Strength of Short Fiber Reinforced Metal Matrix Composites 被引量:1
13
作者 Zhonghao JIANG and Jianshe LIAN(Dept. of Materials Science and Engineering, Jilin University of Technology, Changchun 130025, China)Shangli DONG and Dezhuang YANG(School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第3期213-221,共9页
The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and ... The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions 展开更多
关键词 ab Figure An Application of the Modified Shear Lag Model to Study the Influence of Thermal Residual Stresses on the Stiffness and Yield strength of Short fiber Reinforced Metal Matrix Composites
在线阅读 下载PDF
THE FLEXURAL STRENGTH AND REINFORCING MECHANISM OF THE TOP-AND-BOTTOM-LAYERED STEEL FIBER CONCRETE
14
作者 周明凯 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2000年第2期21-27,34,共8页
The mix proportions and strength ofplain concrete, top-and-hottoim layered steel fiber concrete and common steel fiber concrete are camparatively researched in this article. The influence of the quantity and plac... The mix proportions and strength ofplain concrete, top-and-hottoim layered steel fiber concrete and common steel fiber concrete are camparatively researched in this article. The influence of the quantity and place of steel fiber layer on the concrete's strength is systematically researched and the simulated analysis is made by computer. 展开更多
关键词 steel fiber flerural strength con crete
在线阅读 下载PDF
Effect of Steel Fiber on Concrete’s Compressive Strength 被引量:1
15
作者 Mohammed Saed Yusuf Abdirisak Bashir Isak +4 位作者 Guled Ali Mohamud Abdullahi Hashi Warsame Yahye Ibrahim Osman Abdullahi Husein Ibrahim Liban Abdi Aziz Elmi 《Open Journal of Civil Engineering》 CAS 2023年第1期192-197,共6页
The general goal of this research is to investigate whether steel fiber has a significant “positive” or “negative” influence on concrete compressive strength, as well as the optimal steel fiber ratio that delivers... The general goal of this research is to investigate whether steel fiber has a significant “positive” or “negative” influence on concrete compressive strength, as well as the optimal steel fiber ratio that delivers best result. Manually, cement, fine aggregates, coarse aggregates, steel fibers, and water were mixed together properly. A slump test was carried on the mixed concrete. After determining the workability, the mixed concrete was poured into cubes dimension 150 mm × 150 mm × 150 mm and left for 24 hours. After 24 hours, the samples were removed from the mold and placed in a water tank to cure for 7 to 28 days. The cube was tested for compressive and flexural strength in a universal testing machine after the samples had cured for the required 7 - 28 days. This study focuses on how to obtain high strength concrete using with steel fiber in the Conventional mix ratio to enhance concrete strength. Concrete reinforcement using steel fibers alters the characteristics of the concrete, allowing it to withstand fracture and hence improve its mechanical qualities. This study reports on an experimental study that reveals the effect of steel fiber on concrete compressive strength and the optimal steel fiber ratio that produces the best results. Steel fiber reinforcing improved the compressive strength of concrete. The average compressive strength of normal M25 concrete with 0% steel fibers and curing ages of 7 and 28 days was determined to be 22.97 N/mm<sup>2</sup> and 25.78 N/mm<sup>2</sup>, respectively. The steel fibers are then added in various concentrations, such as 1%, 2%, and 3%, with aspect ratios of 70. The compressive strength of concrete with 1%, 2%, and 3% steel fiber with an aspect ratio of 70 was examined at 7 days and found to be 23.96, 24.80, and 26.14 N/mm<sup>2</sup> correspondingly. 展开更多
关键词 Steel fiber Reinforced Concrete fiber Reinforcement Compression strength of Concrete Improvement Compression strength
在线阅读 下载PDF
Structural Behavior of Continuous Prestressed Steel Fiber Reinforced High Strength Concrete Beam 被引量:2
16
作者 刘海波 向天宇 赵人达 《Journal of Southwest Jiaotong University(English Edition)》 2008年第1期37-45,共9页
The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestre... The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design. 展开更多
关键词 High strength concrete Steel fiber reinforced concrete Prestressed concrete Continuous beam
在线阅读 下载PDF
Statistical Analysis of the Tensile Strength of Treated Oil Palm Fiber by Utilisation of Weibull Distribution Model
17
作者 Chin Voon Sia Yoshikazu Nakai +1 位作者 Daiki Shiozawa Hiroto Ohtani 《Open Journal of Composite Materials》 2014年第1期72-77,共6页
Oil palm fiber (OPF) extracted from empty fruit bunches is proven as a good raw material for bio-composites. The statistical variability in single fiber strength was observed due to the randomly distributed flaws alon... Oil palm fiber (OPF) extracted from empty fruit bunches is proven as a good raw material for bio-composites. The statistical variability in single fiber strength was observed due to the randomly distributed flaws along the fiber. In this study, the effect of gauge length on tensile strength of OPFs has been investigated. The Weibull/ weakest link distribution model was applied to analyse the statistical strength of OPFs. The modified Weibull distribution can predict the gauge length effect more accurately than the conventional Weibull distribution. In addition, the failure strength of the OPF was less sensitive to gauge length compared to coir fiber even though the OPF has a similarity in structures to coir fiber. 展开更多
关键词 fibers strength Mechanical Testing Surface Treatment GAUGE LENGTH Weibull DISTRIBUTION
暂未订购
Interfacial Shear Strength Measurements of SiC Fiber-Reinforced Titanium Composites
18
作者 Yanhua LI Nanlin SHI +1 位作者 Dezhi ZHANG Rui YANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第5期657-660,共4页
A continuous loading push-out test technique was used to measure the interfacial shear strength of SiC fiber reinforced Ti matrix composites. The interfacial shear strength of samples as-fabricated and after heat expo... A continuous loading push-out test technique was used to measure the interfacial shear strength of SiC fiber reinforced Ti matrix composites. The interfacial shear strength of samples as-fabricated and after heat exposed at 700 and 800℃ for 50 h was successfully determined. It has been found that the interfacial shear strength of the specimen exposed at 700℃ was higher than that of as-prepared and exposed samples at 800℃. The shear strength of the as-prepared samples was about 112.45 MPa, and increased to about 153.77 MPa after heat-treating at 700℃ for 50 h, but decreased to 133.11 MPa after treating at 800℃ for 50 h. Scanning electron microscope (SEM) was used to investigate the interfacial morphology of the samples. The brittle phase was the main products of interface for samples exposed at 800℃, and the interface was easily peeled off. 展开更多
关键词 Push-out test SiCf/Ti composites Powder coated fiber Interracial shear strength
在线阅读 下载PDF
Developing Suitable Proportions for the Production of Pineapple Leaf Fibers Reinforced Normal Strength Concrete
19
作者 Kayibanda Patrick Richard Ocharo Onchiri Geoffrey N. Mang’uriu 《Open Journal of Civil Engineering》 2019年第3期185-194,共10页
The present work tried to develop suitable proportions for the production of Pineapple Leaf Fibers (PALF) reinforced Normal Strength Concrete (NSC), an experimental analysis with a mix ratio of 1:1.84:3.27 for cement:... The present work tried to develop suitable proportions for the production of Pineapple Leaf Fibers (PALF) reinforced Normal Strength Concrete (NSC), an experimental analysis with a mix ratio of 1:1.84:3.27 for cement: fine aggregates: coarse aggregates with constant water to cement ratio of 0.54. The total volume per mixing batch was calculated of 9 cubes + 9 cylinders + 3 beams in order to know the number of materials to be used in casting per batch, and the PALF percentage was taken based on cement weight whereby it starts from the lowest to the maximum as follow 0%, 0.2%, 0.4%, 0.6%, 0.8%, and 1%. The tests that were done on fresh concrete were compacting factors and workability using the slump test which was carried out on each fresh mix of concrete. The results showed that PALF can be used to improve the Tensile and Flexural properties of Normal Strength Concrete. 展开更多
关键词 PINEAPPLE LEAF fibers Tensile strength COMPRESSIVE strength FLEXURAL strength and Water Absorption
暂未订购
Properties of High Strength Steel Fiber Reinforced Concrete under Compression
20
作者 钱春香 IndubhushanPatnaikuni 《Journal of Southeast University(English Edition)》 EI CAS 1996年第2期130-136,共7页
This paper mainly discusses the properties of high strength steel fiber reinforced concrete under compression. Steel fibers with volume content of 1% do not display significant effect on the strain at peak stress and... This paper mainly discusses the properties of high strength steel fiber reinforced concrete under compression. Steel fibers with volume content of 1% do not display significant effect on the strain at peak stress and the area of the ascending portion of 展开更多
关键词 STEEL fiber REINFORCED CONCRETE high strength stress strain PROPERTIES
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部