Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study pr...Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.展开更多
Static ice pressure affects safe operation of hydraulic structures. However, current detection methods are hindered by the following limitations: poor real-time performance and errors owing to the partial pressure of...Static ice pressure affects safe operation of hydraulic structures. However, current detection methods are hindered by the following limitations: poor real-time performance and errors owing to the partial pressure of the surrounding wall on traditional electrical resistance strain bellow pressure sensors. We developed a fiber optic sensor with a special pressure bellow to monitor the static ice pressure on hydraulic structures and used the sensor to measure static pressure in laboratory ice growth and melting tests from -30℃ to 5℃. The sensor resolution is 0.02 kPa and its sensitivity is 2.74 × 10-4/kPa. The experiments suggest that the static ice pressure peaks twice during ice growth and melting. The first peak appears when the ice temperature drops to -15℃ owing to the liquid water to solid ice transition. The second peak appears at 0℃ owing to the thermal expansion of the ice during ice melting. The novel fiber optic sensor exhibits stable performance, high resolution, and high sensitivity and it can be used to monitor the static ice pressure during ice growth and melting.展开更多
The plasma resonance fiber optic sensor has a research values in theory and is widely used in engineering because of its simple structure and high sensitivity. It is a simple and sensitive method to measure the refrac...The plasma resonance fiber optic sensor has a research values in theory and is widely used in engineering because of its simple structure and high sensitivity. It is a simple and sensitive method to measure the refractive index with optical fiber plasma wave. We make use of this characteristic to manufacture the plasma resonance fiber optic sensor which can detect the cure of epoxy compo site. We study the method of testing the solutions which have different refractive index with plasma resonance fiber optic sensor. A fiber optic sensing probe which has reliable performance and convenient operation for detecting the refractive index has been designed. The system for detecting the solution refractive index is developed and used to measure the refractive index of epoxy during the different phases in the cure process. Result shows that this system is credible and stable, the parameters tested are in accord with the facts.展开更多
A novel fiber optic sensor based on optical composite oxygen-sensitive film was developed for determination of 2,4-dichlorophenol(DCP).The optical composite oxygen-sensitive film consists of tris(2,2’-bipyridyl)dichl...A novel fiber optic sensor based on optical composite oxygen-sensitive film was developed for determination of 2,4-dichlorophenol(DCP).The optical composite oxygen-sensitive film consists of tris(2,2’-bipyridyl)dichloro ruthenium(II)hexahydrate(Ru(bpy)3Cl2)as the fluorescence indicator and iron(III)tetrasulfophthalocyanine(Fe(III)PcTs)as bionic enzyme.A lock-in amplifier was used for detecting the lifetime of the composite oxygen-sensitive film by measuring the phase delay of the sensor head.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions(i e,pH 6.0,25℃,Fe(III)PcTs concentration of 5.0×10^-5 mol/L),the linear detection range,detection limit and response time of the fiber optic sensor are 3.0×10^-7-9.0×10^-5 mol/L,4.8×10^-8 mol/L(S/N=3),and 220 s,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing DCP concentration in practical water samples.展开更多
A new fi ber optic sensor based on the oxidation of 2,4-dichlorophenol(DCP) catalyzed by iron(II) phthalocyanine(Fe(II)Pc) was developed for the determination of DCP. The optical oxygen sensing fi lm containin...A new fi ber optic sensor based on the oxidation of 2,4-dichlorophenol(DCP) catalyzed by iron(II) phthalocyanine(Fe(II)Pc) was developed for the determination of DCP. The optical oxygen sensing fi lm containing fl uorescence indicator Ru(bpy)3Cl2 was used to detect the consumption of oxygen in solution. Moreover, a lock-in amplifier was used to determine the lifetime of the sensor head by detecting its phase delay change. The results reveal that the sensor has a linear detection range of 1.0×10^-6- 9.0×10^-5 mol/L and a response time of 5 min. The sensor also has high selectivity, good repeatability and stability. It can be used effectively to determine DCP concentration in real samples.展开更多
A lossy mode resonance(LMR)-supported fiber optic sensor in which a uniform fiber core is placed among two identical tapered regions, is investigated numerically. Indium tin oxide(ITO)and aluminum-doped zinc oxide(AZO...A lossy mode resonance(LMR)-supported fiber optic sensor in which a uniform fiber core is placed among two identical tapered regions, is investigated numerically. Indium tin oxide(ITO)and aluminum-doped zinc oxide(AZO) are considered as LMR active materials used to excite several lossy modes and gold and silver are used as surface plasmon resonance(SPR) active materials. In this probe design, a central uniform core coated with ITO/AZO is the active sensing region, whereas tapered regions are meant for bringing the incident angle close to the critical angle. The sensitivity of the present fiber optic bio-sensor is evaluated for first two LMRs utilizing both ITO and AZO separately, along with its variation with the taper ratio(TR). For ITO, the maximum sensitivity values are observed to be 18.425 μm RIU^(-1)(refractive index unit)and 0.825 μm RIU^(-1), corresponding to the first and second LMRs, respectively, at a TR of 1.6 and for AZO, equivalent values are 0.79 μm RIU^(-1) and 0.35 μm RIU^(-1), respectively, at a TR of2.0. The results illustrate that the first LMR is more sensitive than the second LMR and the ITOcoated probe possesses greater sensitivity than the AZO-coated probe for both LMRs. Similarly,for the fiber optic SPR sensor, the maximum value of sensitivity is 5.6425 μm RIU^(-1), in the case of gold and 5.0615 μm RIU^(-1) in the case of silver, at a TR of 1.6. Hence, the result shows that the sensor with the present fiber optic probe design has around a 3-fold enhancement in sensitivity compared with conventional SPR sensors. This study will have applications in many sensing schemes where the requirement of large sensitivity is vital.展开更多
A novel fiber optic sensor based on hydrogel-immobilized enzyme complex was developed for the simultaneous measurement of dual-parameter,the leap from a single parameter detecting fiber optic sensor to a fiber optic s...A novel fiber optic sensor based on hydrogel-immobilized enzyme complex was developed for the simultaneous measurement of dual-parameter,the leap from a single parameter detecting fiber optic sensor to a fiber optic sensor that can continuously detect two kinds of parameters was achieved.By controlling the temperature from high to low,the function of fiber sulfide sensor and fiber DCP sensor can be realized,so as to realize the continuous detection of dual-parameter.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions,the response curves,linear detection ranges,detection limits and response times of the dual-parameter sensor for testing sulfide and DCP were obtained,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing sulfide and DCP concentration of practical water samples.展开更多
Different from the traditional contact surface topography measurement,reflective intensity-modulated fiber optic sensor(RIM-FOS)has the unique advantages of non-contact nondestructive detection.This paper briefly intr...Different from the traditional contact surface topography measurement,reflective intensity-modulated fiber optic sensor(RIM-FOS)has the unique advantages of non-contact nondestructive detection.This paper briefly introduces the principle and performance of RIM-FOS for surface topography measurement and compares with several other methods of topography measurement.Based on the review of its development process,this paper summarizes and analyses the hot issues of RIM-FOS in the surface topography measurement,then predicts the future trend for a guidance of the further study.展开更多
A twisted fiber optic sensor based on intensity modulation is described. The principle and structure of the sensor and the choice of steel strand modules are introduced. The sensor is used to determine the tensile str...A twisted fiber optic sensor based on intensity modulation is described. The principle and structure of the sensor and the choice of steel strand modules are introduced. The sensor is used to determine the tensile strain and distribution. The experimental results show that the change of the transferring light power has an approximate linear relation with the outer force. The intelligent steel strands with this kind of sensor will have a good application in monitoring the concrete crack and deformation distribution in huge structures such as dams and bridges.展开更多
Refractometric fiber optic sensors have a number of applications in industry due to advantages like remote sensing ability, compact size, easy to fit, etc. A refractometric sensor contains a pair of parallel fibers an...Refractometric fiber optic sensors have a number of applications in industry due to advantages like remote sensing ability, compact size, easy to fit, etc. A refractometric sensor contains a pair of parallel fibers and a gap between the sensor probe and reflector, wherein the liquid whose refractive index is to be measured is filled. This paper describes the importance of mathematical modeling of this sensor. Ray tracing approach is used to model the sensor mathematically. This mathematical model is generalized for any scenario which is useful to avoid tedious trial and error techniques to design the sensor prototype. Mathematical modelling is a useful tool to optimize the gap distance for a detection of refractive index of liquid. The model is developed and analyzed rigorously considering adulteration of diesel by kerosene where refractive index varies from 1.44 to 1.46. Simulation experiments are carried out to optimize the gap distance which is found to be 6.8 mm using both models. Experiments are carried out where sensor probe is fabricated and results are analyzed. It is observed that for suggested gap distance sensor output varies almost linear over the entire range.展开更多
A fiber optic 2-cholrophenol(2-CP) sensor was developed based on the fluorescence quenching of molecular oxygen on the oxygen-sensitive membrane and O2 consumption during catalytic oxidation reaction of 2-CP. The 2-...A fiber optic 2-cholrophenol(2-CP) sensor was developed based on the fluorescence quenching of molecular oxygen on the oxygen-sensitive membrane and O2 consumption during catalytic oxidation reaction of 2-CP. The 2-CP concentration can be determined by utilizing a lock-in amplifier to measure the change in the fluorescence lifetime of an oxygen-sensitive membrane, in which the tris(2,2′-bipyridyl) ruthenium(II) chloride complexes(Ru(II)(byp)3Cl2) were immobilized in cellulose acetate(CA) via simple hybridized approach. The experimental results show the good linear relationship between the phase delay of sensitive membrane and 2-CP concentration in its detection range of 1×10-7 to 1×10-5 mol/L and 1×10-5 to 1×10-4 mol/L. The detection limit of the sensor is 7×10-8 mol/L(S/N=3) and the response time is 5 min. Our experimental measurements confirmed good response characteristics of the as-prepared fiber optic 2-CP sensor, as well as its capability to detect the 2-CP concentration in practical water samples.展开更多
With the aid of the latest fiber optic sensing technology parameters in the cure process of ther- mosetting resin-matrix composite, such as temperature, viscosity,void and residual stress, can be monitored entirely an...With the aid of the latest fiber optic sensing technology parameters in the cure process of ther- mosetting resin-matrix composite, such as temperature, viscosity,void and residual stress, can be monitored entirely and efficiently.In this paper, experiment results of viscosity measurement in composite cure process in autoclave using fiber optic sensors are presented. Based on the sensed information, a computer program is utilized to control the cure process. With this technology, the cure process becomes more apparent and controllable, which will greatly improve the cured products and reduce the cost.展开更多
Fiber optic sensor has been widely used as a structural health monitoring device by either embedding into or surface bonding onto the structures. The strain of optic fiber induced by the host material is strongly depe...Fiber optic sensor has been widely used as a structural health monitoring device by either embedding into or surface bonding onto the structures. The strain of optic fiber induced by the host material is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the length of bonding. The strains between the fiber optics and host structure are not exact the same. The existence of the protective coating and adhesive layer would affect the strain measured by the surface bonding optic sensor. The analytical expression of the strain in the optic fiber induced by the host material was presented. The results were validated by the finite element method. The theoretical predictions reveal that the strain in the optical fiber is lower than the strain of host material. Parametric study shows that a long bonding length and high modulus of protective coating would increase the percentage of strain transferring into the optical fiber. Experiments were conducted by using Mach-Zehnder interferometer to measure the strain of the surface bonding optic fiber induced by the host structure. Good agreements were observed in comparison with the experimental results and theoretical predictions.展开更多
Salinity is an important property of industrial and natural waters. It is defined as the measure of the mass of dissolved salts in a given mass of solution. High salinity has an impact on people and industries reliant...Salinity is an important property of industrial and natural waters. It is defined as the measure of the mass of dissolved salts in a given mass of solution. High salinity has an impact on people and industries reliant on water. High levels of salt can reduce crop yields, limit the choice of crops that can be grown and, at higher concentrations over long periods, can kill trees and make the land unsuitable for agricultural purposes. Salinity increases the “hardness” of water, which can mean more soap and detergents have to be used or water softeners installed and maintained. This can also cause scaling in pipes and heaters. The experimental determination of the salt content by drying and weighing presents some difficulties due to the loss of some components. The only reliable way to determine the true or absolute salinity of natural water is to make a complete chemical analysis. However, the method is time consuming and cannot yield the precision necessity for accurate work. Thus to determine salinity, one normally used method involves the measurement of a physical property such as conductivity, density or refractive index. The paper reports the refractometric fiber optic sensor for detection of salinity of water. The mathematical model is developed for detection of the refractive index of liquid and simulated in MATLAB. The fiber optic sensor probe is developed to measure the refractive index of the solution containing different amount of salt dissolved in water i.e. different molar concentrations. Experiments are carried out using the developed probe for these solutions. Experimental results are showing good agreement with the simulated results.展开更多
The hydrogen evolution reaction(HER)in electrochemical water splitting is crucial for green hydrogen production,yet its efficiency is limited by bubble dynamics at the electrode surface.Accumulated bubbles can block a...The hydrogen evolution reaction(HER)in electrochemical water splitting is crucial for green hydrogen production,yet its efficiency is limited by bubble dynamics at the electrode surface.Accumulated bubbles can block active sites,hinder mass transport,and increase local resistance,causing energy loss.Thus,precise bubble monitoring is crucial for understanding performance limitations and optimizing catalyst design.Conventional bubble monitoring techniques,such as optical microscopy,high-speed imaging,and electrochemical impedance,are constrained by real-time accuracy,complex post-processing,or signal interference at high current densities.Here,we present an in situ fiber optic sensing system that enables precise,real-time monitoring of bubble dynamics during HER.Unlike traditional methods,this system leverages the sensitivity and real-time capability of fiber optic sensors to quantify key parameters,such as growth rate,detachment rate,intake/output ratio,and detaching size.Its reliability and adaptability were validated using two different Pt/C-loaded carbon paper catalysts with distinct catalytic properties.Notably,the system also achieves a bubble detection limit of 79μm,which meets the spatial resolution requirements for monitoring bubble dynamics relevant to electrocatalytic activity in HER.This sensing platform establishes a practical framework for connecting interfacial gas evolution to electrochemical performance,offering valuable insight for optimizing HER efficiency through catalyst design.展开更多
We proposed a fiber optic high temperature sensor based on the Mach-Zehnder interference(MZI)structure,which is composed of two lengths of multi-mode fibers(MMFs),a length of few-mode fiber(FMF)and two sections of sin...We proposed a fiber optic high temperature sensor based on the Mach-Zehnder interference(MZI)structure,which is composed of two lengths of multi-mode fibers(MMFs),a length of few-mode fiber(FMF)and two sections of single-mode fibers(SMFs).Firstly,the two sections of MMFs were spliced with two sections of SMFs.Then,the MMFs were fused to two ends of FMF to form a symmetrically structured fiber-optic MZI structure.In this structure,the MMF served as the optical mode field coupling element,and the cladding and core of the FMF are the interference arm and the reference arm of the MZI structure,respectively.We investigated the sensor's response characteristics of the temperature and strain.The experimental results indicate that the sensor is sensitive to temperature variation,and the temperature response sensitivity is up to 61.4 pm/℃ in the range of 40-250℃,while the sensor has weak strain sensitivity,its strain sensitivity is only-0.72 pm/μe in the strain range of 0-1400μe.Moreover,the sensor has good stability and repeatability.In brief,the proposed fiber optic high temperature sensor has good properties,such as high sensitivity,compact structure,good stability and repeatability,which can be used for monitoring the temperature of submerged oil electric pump units under oil wells.展开更多
Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality c...Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%.展开更多
Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quan...Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures.展开更多
A temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering(FSBS)in highly nonlinear fiber(HNLF)with high sensitivity and high accuracy is proposed and demonstrated in thi...A temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering(FSBS)in highly nonlinear fiber(HNLF)with high sensitivity and high accuracy is proposed and demonstrated in this paper.High-order acoustic modes(HOAMs)are used to achieve individual or simultaneous measurement of the two parameters.Transverse acoustic waves(TAWs)involved in the FSBS process can efficiently sense the mechanical or environmental changes outside the fiber cladding,which will be reflected in a linear shift of the acoustic resonance frequency.By analyzing the frequencies of specific scattering peaks,the temperature and acoustic impedance outside the fiber cladding can be obtained simultaneously.The highest measured temperature and acoustic impedance sensitivities are 184.93 k Hz/℃and444.56 k Hz/MRayl,and the measurement accuracies are 0.09℃and 0.009 MRayl,respectively,which are both at desirable levels.We believe this work can provide potential application solutions for sensing fields involving temperature or acoustic impedance measurements.展开更多
The rapid expansion of urban development has led to the extensive construction of civil infrastructures.However,these urban development zones frequently face potential geohazards,primarily due to the lack of detailed ...The rapid expansion of urban development has led to the extensive construction of civil infrastructures.However,these urban development zones frequently face potential geohazards,primarily due to the lack of detailed site investigations and long-term monitoring of subsurface geological conditions.Understanding the temporal and spatial distributions of underground multi-field information is vital for successful engineering construction and effective utilization of urban underground space.In this study,a fiber optic nerve system(FONS)was utilized in the Tianfu New Area,Sichuan Province,China,to obtain comprehensive subsurface multi-physical information,including geological deformation,temperature,and surface hydrological data.The FONS incorporates three advanced fiber optic sensing techniques,i.e.fiber Bragg grating(FBG),Brillouin optical time domain reflectometry(BOTDR),and Raman optical time domain reflectometry(ROTDR).Fully-and quasi-distributed strain/temperature sensing cables have been installed in nine monitoring boreholes,covering various geological features such as plains,terraces,and areas within active fault zones.The field monitoring results confirm the feasibility of employing FONS for geological investigations within urban development zones,offering a valuable reference for future applications of this cost-effective technology in geohazard mitigation.展开更多
基金funding support from Rijkswaterstaat,the Netherlands,and European Union’s Horizon 2020 Research and Innovation Programme(Project SAFE-10-T under Grant No.723254)China Scholarship Council,and National Natural Science Foundation of China(Grant No.42225702).
文摘Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.
基金supported by the National Natural Science Foundation of China(No.51279122)the Graduate Innovation Foundation of Taiyuan University of Technology(No.2013A019)
文摘Static ice pressure affects safe operation of hydraulic structures. However, current detection methods are hindered by the following limitations: poor real-time performance and errors owing to the partial pressure of the surrounding wall on traditional electrical resistance strain bellow pressure sensors. We developed a fiber optic sensor with a special pressure bellow to monitor the static ice pressure on hydraulic structures and used the sensor to measure static pressure in laboratory ice growth and melting tests from -30℃ to 5℃. The sensor resolution is 0.02 kPa and its sensitivity is 2.74 × 10-4/kPa. The experiments suggest that the static ice pressure peaks twice during ice growth and melting. The first peak appears when the ice temperature drops to -15℃ owing to the liquid water to solid ice transition. The second peak appears at 0℃ owing to the thermal expansion of the ice during ice melting. The novel fiber optic sensor exhibits stable performance, high resolution, and high sensitivity and it can be used to monitor the static ice pressure during ice growth and melting.
文摘The plasma resonance fiber optic sensor has a research values in theory and is widely used in engineering because of its simple structure and high sensitivity. It is a simple and sensitive method to measure the refractive index with optical fiber plasma wave. We make use of this characteristic to manufacture the plasma resonance fiber optic sensor which can detect the cure of epoxy compo site. We study the method of testing the solutions which have different refractive index with plasma resonance fiber optic sensor. A fiber optic sensing probe which has reliable performance and convenient operation for detecting the refractive index has been designed. The system for detecting the solution refractive index is developed and used to measure the refractive index of epoxy during the different phases in the cure process. Result shows that this system is credible and stable, the parameters tested are in accord with the facts.
基金Funded by the National Natural Science Foundation of China(No.61205062)the Scientific Research Foundation for Doctor of University(No.2019Y02)。
文摘A novel fiber optic sensor based on optical composite oxygen-sensitive film was developed for determination of 2,4-dichlorophenol(DCP).The optical composite oxygen-sensitive film consists of tris(2,2’-bipyridyl)dichloro ruthenium(II)hexahydrate(Ru(bpy)3Cl2)as the fluorescence indicator and iron(III)tetrasulfophthalocyanine(Fe(III)PcTs)as bionic enzyme.A lock-in amplifier was used for detecting the lifetime of the composite oxygen-sensitive film by measuring the phase delay of the sensor head.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions(i e,pH 6.0,25℃,Fe(III)PcTs concentration of 5.0×10^-5 mol/L),the linear detection range,detection limit and response time of the fiber optic sensor are 3.0×10^-7-9.0×10^-5 mol/L,4.8×10^-8 mol/L(S/N=3),and 220 s,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing DCP concentration in practical water samples.
基金Funded by the National Natural Science Foundation of China(Nos.61377092 and 51303115)
文摘A new fi ber optic sensor based on the oxidation of 2,4-dichlorophenol(DCP) catalyzed by iron(II) phthalocyanine(Fe(II)Pc) was developed for the determination of DCP. The optical oxygen sensing fi lm containing fl uorescence indicator Ru(bpy)3Cl2 was used to detect the consumption of oxygen in solution. Moreover, a lock-in amplifier was used to determine the lifetime of the sensor head by detecting its phase delay change. The results reveal that the sensor has a linear detection range of 1.0×10^-6- 9.0×10^-5 mol/L and a response time of 5 min. The sensor also has high selectivity, good repeatability and stability. It can be used effectively to determine DCP concentration in real samples.
基金the Department of Science and Technology (DST),INDIA for providing the INSPIRE fellowship (Registration No.-IF170543)。
文摘A lossy mode resonance(LMR)-supported fiber optic sensor in which a uniform fiber core is placed among two identical tapered regions, is investigated numerically. Indium tin oxide(ITO)and aluminum-doped zinc oxide(AZO) are considered as LMR active materials used to excite several lossy modes and gold and silver are used as surface plasmon resonance(SPR) active materials. In this probe design, a central uniform core coated with ITO/AZO is the active sensing region, whereas tapered regions are meant for bringing the incident angle close to the critical angle. The sensitivity of the present fiber optic bio-sensor is evaluated for first two LMRs utilizing both ITO and AZO separately, along with its variation with the taper ratio(TR). For ITO, the maximum sensitivity values are observed to be 18.425 μm RIU^(-1)(refractive index unit)and 0.825 μm RIU^(-1), corresponding to the first and second LMRs, respectively, at a TR of 1.6 and for AZO, equivalent values are 0.79 μm RIU^(-1) and 0.35 μm RIU^(-1), respectively, at a TR of2.0. The results illustrate that the first LMR is more sensitive than the second LMR and the ITOcoated probe possesses greater sensitivity than the AZO-coated probe for both LMRs. Similarly,for the fiber optic SPR sensor, the maximum value of sensitivity is 5.6425 μm RIU^(-1), in the case of gold and 5.0615 μm RIU^(-1) in the case of silver, at a TR of 1.6. Hence, the result shows that the sensor with the present fiber optic probe design has around a 3-fold enhancement in sensitivity compared with conventional SPR sensors. This study will have applications in many sensing schemes where the requirement of large sensitivity is vital.
基金Funded by the Natural Science Foundation of Hubei Province(No.2022CFB861)the Wenhua College Research and Innovation Team(No.2022T01)。
文摘A novel fiber optic sensor based on hydrogel-immobilized enzyme complex was developed for the simultaneous measurement of dual-parameter,the leap from a single parameter detecting fiber optic sensor to a fiber optic sensor that can continuously detect two kinds of parameters was achieved.By controlling the temperature from high to low,the function of fiber sulfide sensor and fiber DCP sensor can be realized,so as to realize the continuous detection of dual-parameter.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions,the response curves,linear detection ranges,detection limits and response times of the dual-parameter sensor for testing sulfide and DCP were obtained,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing sulfide and DCP concentration of practical water samples.
基金Youth Science and Technology Research Foundation of Shanxi Province(No.2015021104)Programs for Science and Technology Development of Shanxi Province(No.201703D121028-2)
文摘Different from the traditional contact surface topography measurement,reflective intensity-modulated fiber optic sensor(RIM-FOS)has the unique advantages of non-contact nondestructive detection.This paper briefly introduces the principle and performance of RIM-FOS for surface topography measurement and compares with several other methods of topography measurement.Based on the review of its development process,this paper summarizes and analyses the hot issues of RIM-FOS in the surface topography measurement,then predicts the future trend for a guidance of the further study.
文摘A twisted fiber optic sensor based on intensity modulation is described. The principle and structure of the sensor and the choice of steel strand modules are introduced. The sensor is used to determine the tensile strain and distribution. The experimental results show that the change of the transferring light power has an approximate linear relation with the outer force. The intelligent steel strands with this kind of sensor will have a good application in monitoring the concrete crack and deformation distribution in huge structures such as dams and bridges.
文摘Refractometric fiber optic sensors have a number of applications in industry due to advantages like remote sensing ability, compact size, easy to fit, etc. A refractometric sensor contains a pair of parallel fibers and a gap between the sensor probe and reflector, wherein the liquid whose refractive index is to be measured is filled. This paper describes the importance of mathematical modeling of this sensor. Ray tracing approach is used to model the sensor mathematically. This mathematical model is generalized for any scenario which is useful to avoid tedious trial and error techniques to design the sensor prototype. Mathematical modelling is a useful tool to optimize the gap distance for a detection of refractive index of liquid. The model is developed and analyzed rigorously considering adulteration of diesel by kerosene where refractive index varies from 1.44 to 1.46. Simulation experiments are carried out to optimize the gap distance which is found to be 6.8 mm using both models. Experiments are carried out where sensor probe is fabricated and results are analyzed. It is observed that for suggested gap distance sensor output varies almost linear over the entire range.
基金Funded by the National Natural Science Foundation of China(No.61377092)
文摘A fiber optic 2-cholrophenol(2-CP) sensor was developed based on the fluorescence quenching of molecular oxygen on the oxygen-sensitive membrane and O2 consumption during catalytic oxidation reaction of 2-CP. The 2-CP concentration can be determined by utilizing a lock-in amplifier to measure the change in the fluorescence lifetime of an oxygen-sensitive membrane, in which the tris(2,2′-bipyridyl) ruthenium(II) chloride complexes(Ru(II)(byp)3Cl2) were immobilized in cellulose acetate(CA) via simple hybridized approach. The experimental results show the good linear relationship between the phase delay of sensitive membrane and 2-CP concentration in its detection range of 1×10-7 to 1×10-5 mol/L and 1×10-5 to 1×10-4 mol/L. The detection limit of the sensor is 7×10-8 mol/L(S/N=3) and the response time is 5 min. Our experimental measurements confirmed good response characteristics of the as-prepared fiber optic 2-CP sensor, as well as its capability to detect the 2-CP concentration in practical water samples.
文摘With the aid of the latest fiber optic sensing technology parameters in the cure process of ther- mosetting resin-matrix composite, such as temperature, viscosity,void and residual stress, can be monitored entirely and efficiently.In this paper, experiment results of viscosity measurement in composite cure process in autoclave using fiber optic sensors are presented. Based on the sensed information, a computer program is utilized to control the cure process. With this technology, the cure process becomes more apparent and controllable, which will greatly improve the cured products and reduce the cost.
基金the financial support under grant No.NSC 93-2212-E-155-007 for this work
文摘Fiber optic sensor has been widely used as a structural health monitoring device by either embedding into or surface bonding onto the structures. The strain of optic fiber induced by the host material is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the length of bonding. The strains between the fiber optics and host structure are not exact the same. The existence of the protective coating and adhesive layer would affect the strain measured by the surface bonding optic sensor. The analytical expression of the strain in the optic fiber induced by the host material was presented. The results were validated by the finite element method. The theoretical predictions reveal that the strain in the optical fiber is lower than the strain of host material. Parametric study shows that a long bonding length and high modulus of protective coating would increase the percentage of strain transferring into the optical fiber. Experiments were conducted by using Mach-Zehnder interferometer to measure the strain of the surface bonding optic fiber induced by the host structure. Good agreements were observed in comparison with the experimental results and theoretical predictions.
文摘Salinity is an important property of industrial and natural waters. It is defined as the measure of the mass of dissolved salts in a given mass of solution. High salinity has an impact on people and industries reliant on water. High levels of salt can reduce crop yields, limit the choice of crops that can be grown and, at higher concentrations over long periods, can kill trees and make the land unsuitable for agricultural purposes. Salinity increases the “hardness” of water, which can mean more soap and detergents have to be used or water softeners installed and maintained. This can also cause scaling in pipes and heaters. The experimental determination of the salt content by drying and weighing presents some difficulties due to the loss of some components. The only reliable way to determine the true or absolute salinity of natural water is to make a complete chemical analysis. However, the method is time consuming and cannot yield the precision necessity for accurate work. Thus to determine salinity, one normally used method involves the measurement of a physical property such as conductivity, density or refractive index. The paper reports the refractometric fiber optic sensor for detection of salinity of water. The mathematical model is developed for detection of the refractive index of liquid and simulated in MATLAB. The fiber optic sensor probe is developed to measure the refractive index of the solution containing different amount of salt dissolved in water i.e. different molar concentrations. Experiments are carried out using the developed probe for these solutions. Experimental results are showing good agreement with the simulated results.
基金supported by the following:the National Natural Science Foundation of China(Nos.62405141 and 22479079)Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(No.NY222178).
文摘The hydrogen evolution reaction(HER)in electrochemical water splitting is crucial for green hydrogen production,yet its efficiency is limited by bubble dynamics at the electrode surface.Accumulated bubbles can block active sites,hinder mass transport,and increase local resistance,causing energy loss.Thus,precise bubble monitoring is crucial for understanding performance limitations and optimizing catalyst design.Conventional bubble monitoring techniques,such as optical microscopy,high-speed imaging,and electrochemical impedance,are constrained by real-time accuracy,complex post-processing,or signal interference at high current densities.Here,we present an in situ fiber optic sensing system that enables precise,real-time monitoring of bubble dynamics during HER.Unlike traditional methods,this system leverages the sensitivity and real-time capability of fiber optic sensors to quantify key parameters,such as growth rate,detachment rate,intake/output ratio,and detaching size.Its reliability and adaptability were validated using two different Pt/C-loaded carbon paper catalysts with distinct catalytic properties.Notably,the system also achieves a bubble detection limit of 79μm,which meets the spatial resolution requirements for monitoring bubble dynamics relevant to electrocatalytic activity in HER.This sensing platform establishes a practical framework for connecting interfacial gas evolution to electrochemical performance,offering valuable insight for optimizing HER efficiency through catalyst design.
基金supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.15JK1573)the Postgraduate Innovation and Practice Ability Development Fund of Xi’an Shiyou University (No.YCS21211084)。
文摘We proposed a fiber optic high temperature sensor based on the Mach-Zehnder interference(MZI)structure,which is composed of two lengths of multi-mode fibers(MMFs),a length of few-mode fiber(FMF)and two sections of single-mode fibers(SMFs).Firstly,the two sections of MMFs were spliced with two sections of SMFs.Then,the MMFs were fused to two ends of FMF to form a symmetrically structured fiber-optic MZI structure.In this structure,the MMF served as the optical mode field coupling element,and the cladding and core of the FMF are the interference arm and the reference arm of the MZI structure,respectively.We investigated the sensor's response characteristics of the temperature and strain.The experimental results indicate that the sensor is sensitive to temperature variation,and the temperature response sensitivity is up to 61.4 pm/℃ in the range of 40-250℃,while the sensor has weak strain sensitivity,its strain sensitivity is only-0.72 pm/μe in the strain range of 0-1400μe.Moreover,the sensor has good stability and repeatability.In brief,the proposed fiber optic high temperature sensor has good properties,such as high sensitivity,compact structure,good stability and repeatability,which can be used for monitoring the temperature of submerged oil electric pump units under oil wells.
文摘Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%.
基金supported by the National Natural Science Foundation of China(No.12072056)the National Key Research and Development Program of China(No.2018YFA0702800)+1 种基金the Jiangsu-Czech Bilateral Co-Funding R&D Project(No.BZ2023011)the Fundamental Research Funds for the Central Universities(No.B220204002).
文摘Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures.
文摘A temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering(FSBS)in highly nonlinear fiber(HNLF)with high sensitivity and high accuracy is proposed and demonstrated in this paper.High-order acoustic modes(HOAMs)are used to achieve individual or simultaneous measurement of the two parameters.Transverse acoustic waves(TAWs)involved in the FSBS process can efficiently sense the mechanical or environmental changes outside the fiber cladding,which will be reflected in a linear shift of the acoustic resonance frequency.By analyzing the frequencies of specific scattering peaks,the temperature and acoustic impedance outside the fiber cladding can be obtained simultaneously.The highest measured temperature and acoustic impedance sensitivities are 184.93 k Hz/℃and444.56 k Hz/MRayl,and the measurement accuracies are 0.09℃and 0.009 MRayl,respectively,which are both at desirable levels.We believe this work can provide potential application solutions for sensing fields involving temperature or acoustic impedance measurements.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235).
文摘The rapid expansion of urban development has led to the extensive construction of civil infrastructures.However,these urban development zones frequently face potential geohazards,primarily due to the lack of detailed site investigations and long-term monitoring of subsurface geological conditions.Understanding the temporal and spatial distributions of underground multi-field information is vital for successful engineering construction and effective utilization of urban underground space.In this study,a fiber optic nerve system(FONS)was utilized in the Tianfu New Area,Sichuan Province,China,to obtain comprehensive subsurface multi-physical information,including geological deformation,temperature,and surface hydrological data.The FONS incorporates three advanced fiber optic sensing techniques,i.e.fiber Bragg grating(FBG),Brillouin optical time domain reflectometry(BOTDR),and Raman optical time domain reflectometry(ROTDR).Fully-and quasi-distributed strain/temperature sensing cables have been installed in nine monitoring boreholes,covering various geological features such as plains,terraces,and areas within active fault zones.The field monitoring results confirm the feasibility of employing FONS for geological investigations within urban development zones,offering a valuable reference for future applications of this cost-effective technology in geohazard mitigation.