Quantum measurement problem has existed many years and inspired a large of literature in both physics and philosophy,but there is still no conclusion and consensus on it.We show it can be subsumed into the quantum the...Quantum measurement problem has existed many years and inspired a large of literature in both physics and philosophy,but there is still no conclusion and consensus on it.We show it can be subsumed into the quantum theory if we extend the Feynman path integral by considering the relativistic effect of Feynman paths.According to this extended theory,we deduce not only the Klein-Gordon equation,but also the wave-function-collapse equation.It is shown that the stochastic and instantaneous collapse of the quantum measurement is due to the "potential noise" of the apparatus or environment and "inner correlation" of wave function respectively.Therefore,the definite-status of the macroscopic matter is due to itself and this does not disobey the quantum mechanics.This work will give a new recognition for the measurement problem.展开更多
Feynman-Path Integral in Banach Space: In 1940, R.P. Feynman attempted to find a mathematical representation to express quantum dynamics of the general form for a double-slit experiment. His intuition on several slits...Feynman-Path Integral in Banach Space: In 1940, R.P. Feynman attempted to find a mathematical representation to express quantum dynamics of the general form for a double-slit experiment. His intuition on several slits with several walls in terms of Lagrangian instead of Hamiltonian resulted in a magnificent work. It was known as Feynman Path Integrals in quantum physics, and a large part of the scientific community still considers them a heuristic tool that lacks a sound mathematical definition. This paper aims to refute this prejudice, by providing an extensive and self-contained description of the mathematical theory of Feynman Path Integration, from the earlier attempts to the latest developments, as well as its applications to quantum mechanics. About a hundred years after the beginning of modern physics, it was realized that light could in fact show behavioral characteristics of both waves and particles. In 1927, Davisson and Germer demonstrated that electrons show the same dual behavior, which was later extended to atoms and molecules. We shall follow the method of integration with some modifications to construct a generalized Lebesgue-Bochner-Stieltjes (LBS) integral of the form , where u is a bilinear operator acting in the product of Banach spaces, f is a Bochner summable function, and μ is a vector-valued measure. We will demonstrate that the Feynman Path Integral is consistent and can be justified mathematically with LBS integration approach.展开更多
In this paper,we explore a theoretical framework aimed at bridging general relativity and quantum mechanics by employing the Feynman path integral formalism.Starting from Einstein’s field equations,we cautiously prop...In this paper,we explore a theoretical framework aimed at bridging general relativity and quantum mechanics by employing the Feynman path integral formalism.Starting from Einstein’s field equations,we cautiously propose a transition to quantum behavior with the normalization of covariant derivatives at the Planck scale.Following Richard Feynman’s path integral approach,we extend this formalism into curved spacetime and consider its possible implications for black hole physics.Additionally,we draw on Roger Penrose’s ideas regarding black hole entropy and conformal cyclic cosmology.This model suggests that black holes,rather than representing the final stages of gravitational collapse,might contribute to the formation of new universes,in line with Penrose’s concept of cyclic cosmology.We carefully examine both Schwarzschild and Kerr black holes and suggest that quantum tunneling across event horizons could theoretically permit a transition from black holes to white holes,potentially facilitating cosmological cycles.This approach could offer new insights into the information paradox and contribute,albeit modestly,to the ongoing discourse surrounding the unification of general relativity and quantum mechanics.展开更多
Feynman’s path integral reformulates the quantum Schrödinger differential equation to be an integral equation.It has been being widely used to compute internuclear quantum-statistical effects on many-body molecu...Feynman’s path integral reformulates the quantum Schrödinger differential equation to be an integral equation.It has been being widely used to compute internuclear quantum-statistical effects on many-body molecular systems.In this Review,the molecular Schrödinger equation will first be introduced,together with the BornOppenheimer approximation that decouples electronic and internuclear motions.Some effective semiclassical potentials,e.g.,centroid potential,which are all formulated in terms of Feynman’s path integral,will be discussed and compared.These semiclassical potentials can be used to directly calculate the quantum canonical partition function without individual Schrödinger’s energy eigenvalues.As a result,path integrations are conventionally performed with Monte Carlo and molecular dynamics sampling techniques.To complement these techniques,we will examine how Kleinert’s variational perturbation(KP)theory can provide a complete theoretical foundation for developing non-sampling/non-stochastic methods to systematically calculate centroid potential.To enable the powerful KP theory to be practical for many-body molecular systems,we have proposed a new path-integral method:automated integrationfree path-integral(AIF-PI)method.Due to the integration-free and computationally inexpensive characteristics of our AIF-PI method,we have used it to perform ab initio path-integral calculations of kinetic isotope effects on proton-transfer and RNA-related phosphoryl-transfer chemical reactions.The computational procedure of using our AIF-PI method,along with the features of our new centroid path-integral theory at the minimum of the absolute-zero energy(AMAZE),are also highlighted in this review.展开更多
The second-order temporal interference of two independent single-mode continuous-wave lasers is discussed by em- ploying two-photon interference in Feynman's path integral theory. It is concluded that whether the sec...The second-order temporal interference of two independent single-mode continuous-wave lasers is discussed by em- ploying two-photon interference in Feynman's path integral theory. It is concluded that whether the second-order temporal interference pattern can or cannot be retrieved via two-photon coincidence counting rate is dependent on the resolution time of the detection system and the frequency difference between these two lasers. Two identical and tunable single-mode continuous-wave diode lasers are employed to verify the predictions. These studies are helpful to understand the physics of two-photon interference with photons of different spectra.展开更多
基金Supported by the National Basic Research Program of China (973 Program) under Grant No. G2009CB929300the National Natural Science Foundation of China under Grant Nos. 10905016,10874013,60776061 and 60821061
文摘Quantum measurement problem has existed many years and inspired a large of literature in both physics and philosophy,but there is still no conclusion and consensus on it.We show it can be subsumed into the quantum theory if we extend the Feynman path integral by considering the relativistic effect of Feynman paths.According to this extended theory,we deduce not only the Klein-Gordon equation,but also the wave-function-collapse equation.It is shown that the stochastic and instantaneous collapse of the quantum measurement is due to the "potential noise" of the apparatus or environment and "inner correlation" of wave function respectively.Therefore,the definite-status of the macroscopic matter is due to itself and this does not disobey the quantum mechanics.This work will give a new recognition for the measurement problem.
文摘Feynman-Path Integral in Banach Space: In 1940, R.P. Feynman attempted to find a mathematical representation to express quantum dynamics of the general form for a double-slit experiment. His intuition on several slits with several walls in terms of Lagrangian instead of Hamiltonian resulted in a magnificent work. It was known as Feynman Path Integrals in quantum physics, and a large part of the scientific community still considers them a heuristic tool that lacks a sound mathematical definition. This paper aims to refute this prejudice, by providing an extensive and self-contained description of the mathematical theory of Feynman Path Integration, from the earlier attempts to the latest developments, as well as its applications to quantum mechanics. About a hundred years after the beginning of modern physics, it was realized that light could in fact show behavioral characteristics of both waves and particles. In 1927, Davisson and Germer demonstrated that electrons show the same dual behavior, which was later extended to atoms and molecules. We shall follow the method of integration with some modifications to construct a generalized Lebesgue-Bochner-Stieltjes (LBS) integral of the form , where u is a bilinear operator acting in the product of Banach spaces, f is a Bochner summable function, and μ is a vector-valued measure. We will demonstrate that the Feynman Path Integral is consistent and can be justified mathematically with LBS integration approach.
文摘In this paper,we explore a theoretical framework aimed at bridging general relativity and quantum mechanics by employing the Feynman path integral formalism.Starting from Einstein’s field equations,we cautiously propose a transition to quantum behavior with the normalization of covariant derivatives at the Planck scale.Following Richard Feynman’s path integral approach,we extend this formalism into curved spacetime and consider its possible implications for black hole physics.Additionally,we draw on Roger Penrose’s ideas regarding black hole entropy and conformal cyclic cosmology.This model suggests that black holes,rather than representing the final stages of gravitational collapse,might contribute to the formation of new universes,in line with Penrose’s concept of cyclic cosmology.We carefully examine both Schwarzschild and Kerr black holes and suggest that quantum tunneling across event horizons could theoretically permit a transition from black holes to white holes,potentially facilitating cosmological cycles.This approach could offer new insights into the information paradox and contribute,albeit modestly,to the ongoing discourse surrounding the unification of general relativity and quantum mechanics.
基金supported by HK RGC(ECS-209813)NSF of China(NSFC-21303151)+2 种基金HKBU FRG(FRG2/12-13/037)startup funds(38-40-088 and 40-49-495)to K.-Y.WongThe computing resources for our work summarized in this Review were supported in part by Minnesota Supercomputing Institute,and High Performance Cluster Computing Centre and Office of Information Technology at HKBU(sciblade&jiraiya).
文摘Feynman’s path integral reformulates the quantum Schrödinger differential equation to be an integral equation.It has been being widely used to compute internuclear quantum-statistical effects on many-body molecular systems.In this Review,the molecular Schrödinger equation will first be introduced,together with the BornOppenheimer approximation that decouples electronic and internuclear motions.Some effective semiclassical potentials,e.g.,centroid potential,which are all formulated in terms of Feynman’s path integral,will be discussed and compared.These semiclassical potentials can be used to directly calculate the quantum canonical partition function without individual Schrödinger’s energy eigenvalues.As a result,path integrations are conventionally performed with Monte Carlo and molecular dynamics sampling techniques.To complement these techniques,we will examine how Kleinert’s variational perturbation(KP)theory can provide a complete theoretical foundation for developing non-sampling/non-stochastic methods to systematically calculate centroid potential.To enable the powerful KP theory to be practical for many-body molecular systems,we have proposed a new path-integral method:automated integrationfree path-integral(AIF-PI)method.Due to the integration-free and computationally inexpensive characteristics of our AIF-PI method,we have used it to perform ab initio path-integral calculations of kinetic isotope effects on proton-transfer and RNA-related phosphoryl-transfer chemical reactions.The computational procedure of using our AIF-PI method,along with the features of our new centroid path-integral theory at the minimum of the absolute-zero energy(AMAZE),are also highlighted in this review.
基金Project supported by the National Natural Science Foundation of China(Grant No.11404255)the Doctor Foundation of Education Ministry of China(Grant No.20130201120013)
文摘The second-order temporal interference of two independent single-mode continuous-wave lasers is discussed by em- ploying two-photon interference in Feynman's path integral theory. It is concluded that whether the second-order temporal interference pattern can or cannot be retrieved via two-photon coincidence counting rate is dependent on the resolution time of the detection system and the frequency difference between these two lasers. Two identical and tunable single-mode continuous-wave diode lasers are employed to verify the predictions. These studies are helpful to understand the physics of two-photon interference with photons of different spectra.