CaTiO 3-Fex was characterized by X-ray diffractometry, scanning electron microscopy equipped with an energy dispersive spectrometry system, Fourier transform infrared spectra, and UV-visible spectra. Effects of Fe con...CaTiO 3-Fex was characterized by X-ray diffractometry, scanning electron microscopy equipped with an energy dispersive spectrometry system, Fourier transform infrared spectra, and UV-visible spectra. Effects of Fe content on photocatalytic activity of CaTiO3-Fex were investigated through measuring photocatalytic degradation rate of methylene blue. The results show that chemical compositions of CaTiO3-Fex remained unchanged with increasing Fe content from 0 to 4.745%. However, the light absorption ability of CaTiO3-Fex exhibited a significant increase with increasing Fe content. Photocatalytic degradation of methylene blue over CaTiO3-Fex followed the first-order reaction kinetics. Based on changes of the concentration of methylene blue and its degradation kinetics, CaTiO3-Fe0.474% has shown to have optimal photocatalytic activity. The degradation rate of methylene blue over CaTiO3-Fe0.474% was almost 100% under UV-visible light irradiation for 3.0 h. The kobs of methylene blue over CaTiO 3-Fe0.474% was 1.33 h-1 and was 7 times that over CaTiO3-Fe0.展开更多
CaO-SiO2-Al2O3-MgO-Fex O slag occurs in the production process of Corex ironmaking technology. Most of its metallurgical properties, especially the phosphorus property, are different from the slag produced from blast ...CaO-SiO2-Al2O3-MgO-Fex O slag occurs in the production process of Corex ironmaking technology. Most of its metallurgical properties, especially the phosphorus property, are different from the slag produced from blast furnace or converter. In order to explore the dephosphorization ability of CaO-SiO2-Al2O3-MgO-Fex O slag, its phosphorus capacity was measured at 1673 K by gas-slag-metal equilibrium technique. An iron crucible was used as the reaction vessel, Ag alloy with 0.2 % P was used as the metal phase which equilibrated with CaO-SiO2-Al2O3-MgO-Fex O slag, and a constant flow of CO-CO2-N2 gas was used to provide oxygen partial pressure in the experi- ment. The effects of MgO, Fex O and basicity on slag phosphorus capacity were investigated by single factor test. The results show that the phosphorus capacity rises firstly and then decreases with increasing MgO content under the condition of basicity 1.3, Fe2 O content of 20% and A12 03 content of 12%. The phosphorus value reaches maximum as the MgO content is 8%. When the basicity of slag is 1.1, MgO content is 10%, and Al2O3 is 12%, the phos- phorus capacity increases with the increase of Fe, O content. The phosphorus capacity rises linearly when the basicity is increased from 1.1 to 1. 5.展开更多
基金Project(51090384)supported by the National Natural Science Foundation of ChinaProject(2012AA062304)supported by the Hi-tech Research and Development Program of China+1 种基金Project(2012CBA01205)supported by the National Basic Research Program of ChinaProject(N110502002)supported by Fundamental Research Funds for the Central Universities,China
文摘CaTiO 3-Fex was characterized by X-ray diffractometry, scanning electron microscopy equipped with an energy dispersive spectrometry system, Fourier transform infrared spectra, and UV-visible spectra. Effects of Fe content on photocatalytic activity of CaTiO3-Fex were investigated through measuring photocatalytic degradation rate of methylene blue. The results show that chemical compositions of CaTiO3-Fex remained unchanged with increasing Fe content from 0 to 4.745%. However, the light absorption ability of CaTiO3-Fex exhibited a significant increase with increasing Fe content. Photocatalytic degradation of methylene blue over CaTiO3-Fex followed the first-order reaction kinetics. Based on changes of the concentration of methylene blue and its degradation kinetics, CaTiO3-Fe0.474% has shown to have optimal photocatalytic activity. The degradation rate of methylene blue over CaTiO3-Fe0.474% was almost 100% under UV-visible light irradiation for 3.0 h. The kobs of methylene blue over CaTiO 3-Fe0.474% was 1.33 h-1 and was 7 times that over CaTiO3-Fe0.
基金Item Sponsored by the State Key Program of National Natural Science Foundation of China(U1360205)National Natural Science Foundation of China(51174074)
文摘CaO-SiO2-Al2O3-MgO-Fex O slag occurs in the production process of Corex ironmaking technology. Most of its metallurgical properties, especially the phosphorus property, are different from the slag produced from blast furnace or converter. In order to explore the dephosphorization ability of CaO-SiO2-Al2O3-MgO-Fex O slag, its phosphorus capacity was measured at 1673 K by gas-slag-metal equilibrium technique. An iron crucible was used as the reaction vessel, Ag alloy with 0.2 % P was used as the metal phase which equilibrated with CaO-SiO2-Al2O3-MgO-Fex O slag, and a constant flow of CO-CO2-N2 gas was used to provide oxygen partial pressure in the experi- ment. The effects of MgO, Fex O and basicity on slag phosphorus capacity were investigated by single factor test. The results show that the phosphorus capacity rises firstly and then decreases with increasing MgO content under the condition of basicity 1.3, Fe2 O content of 20% and A12 03 content of 12%. The phosphorus value reaches maximum as the MgO content is 8%. When the basicity of slag is 1.1, MgO content is 10%, and Al2O3 is 12%, the phos- phorus capacity increases with the increase of Fe, O content. The phosphorus capacity rises linearly when the basicity is increased from 1.1 to 1. 5.