Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world appli...Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world applications.Few-shot object detection presents a new research idea that aims to localize and classify objects in images using only limited annotated examples.However,the inherent challenge in few-shot object detection lies in the insufficient sample diversity to fully characterize the sample feature distribution,which consequently impacts model performance.Inspired by contrastive learning principles,we propose an Implicit Feature Contrastive Learning(IFCL)module to address this limitation and augment feature diversity for more robust representational learning.This module generates augmented support sample features in a mixed feature space and implicitly contrasts them with query Region of Interest(RoI)features.This approach facilitates more comprehensive learning of both intra-class feature similarity and inter-class feature diversity,thereby enhancing the model’s object classification and localization capabilities.Extensive experiments on PASCAL VOC show that our method achieves a respective improvement of 3.2%,1.8%,and 2.3%on 10-shot of three Novel Sets compared to the baseline model FPD.展开更多
In the metric-based meta-learning detection model,the distribution of training samples in the metric space has great influence on the detection performance,and this influence is usually ignored by traditional meta-det...In the metric-based meta-learning detection model,the distribution of training samples in the metric space has great influence on the detection performance,and this influence is usually ignored by traditional meta-detectors.In addition,the design of metric space might be interfered with by the background noise of training samples.To tackle these issues,we propose a metric space optimisation method based on hyperbolic geometry attention and class-agnostic activation maps.First,the geometric properties of hyperbolic spaces to establish a structured metric space are used.A variety of feature samples of different classes are embedded into the hyperbolic space with extremely low distortion.This metric space is more suitable for representing tree-like structures between categories for image scene analysis.Meanwhile,a novel similarity measure function based on Poincarédistance is proposed to evaluate the distance of various types of objects in the feature space.In addition,the class-agnostic activation maps(CCAMs)are employed to re-calibrate the weight of foreground feature information and suppress background information.Finally,the decoder processes the high-level feature information as the decoding of the query object and detects objects by predicting their locations and corresponding task encodings.Experimental evaluation is conducted on Pascal VOC and MS COCO datasets.The experiment results show that the effectiveness of the authors’method surpasses the performance baseline of the excellent few-shot detection models.展开更多
Now object detection based on deep learning tries different strategies.It uses fewer data training networks to achieve the effect of large dataset training.However,the existing methods usually do not achieve the balan...Now object detection based on deep learning tries different strategies.It uses fewer data training networks to achieve the effect of large dataset training.However,the existing methods usually do not achieve the balance between network parameters and training data.It makes the information provided by a small amount of picture data insufficient to optimize model parameters,resulting in unsatisfactory detection results.To improve the accuracy of few shot object detection,this paper proposes a network based on the transformer and high-resolution feature extraction(THR).High-resolution feature extractionmaintains the resolution representation of the image.Channels and spatial attention are used to make the network focus on features that are more useful to the object.In addition,the recently popular transformer is used to fuse the features of the existing object.This compensates for the previous network failure by making full use of existing object features.Experiments on the Pascal VOC and MS-COCO datasets prove that the THR network has achieved better results than previous mainstream few shot object detection.展开更多
Traditional object detectors based on deep learning rely on plenty of labeled samples,which are expensive to obtain.Few-shot object detection(FSOD)attempts to solve this problem,learning detection objects from a few l...Traditional object detectors based on deep learning rely on plenty of labeled samples,which are expensive to obtain.Few-shot object detection(FSOD)attempts to solve this problem,learning detection objects from a few labeled samples,but the performance is often unsatisfactory due to the scarcity of samples.We believe that the main reasons that restrict the performance of few-shot detectors are:(1)the positive samples is scarce,and(2)the quality of positive samples is low.Therefore,we put forward a novel few-shot object detector based on YOLOv4,starting from both improving the quantity and quality of positive samples.First,we design a hybrid multivariate positive sample augmentation(HMPSA)module to amplify the quantity of positive samples and increase positive sample diversity while suppressing negative samples.Then,we design a selective non-local fusion attention(SNFA)module to help the detector better learn the target features and improve the feature quality of positive samples.Finally,we optimize the loss function to make it more suitable for the task of FSOD.Experimental results on PASCAL VOC and MS COCO demonstrate that our designed few-shot object detector has competitive performance with other state-of-the-art detectors.展开更多
Few-shot object detection receives much attention with the ability to detect novel class objects using limited annotated data.The transfer learning-based solution becomes popular due to its simple training with good a...Few-shot object detection receives much attention with the ability to detect novel class objects using limited annotated data.The transfer learning-based solution becomes popular due to its simple training with good accuracy,however,it is still challenging to enrich the feature diversity during the training process.And fine-grained features are also insufficient for novel class detection.To deal with the problems,this paper proposes a novel few-shot object detection method based on dual-domain feature fusion and patch-level attention.Upon original base domain,an elementary domain with more category-agnostic features is superposed to construct a two-stream backbone,which benefits to enrich the feature diversity.To better integrate various features,a dual-domain feature fusion is designed,where the feature pairs with the same size are complementarily fused to extract more discriminative features.Moreover,a patch-wise feature refinement termed as patch-level attention is presented to mine internal relations among the patches,which enhances the adaptability to novel classes.In addition,a weighted classification loss is given to assist the fine-tuning of the classifier by combining extra features from FPN of the base training model.In this way,the few-shot detection quality to novel class objects is improved.Experiments on PASCAL VOC and MS COCO datasets verify the effectiveness of the method.展开更多
Few-shot point cloud 3D object detection(FS3D)aims to identify and locate objects of novel classes within point clouds using knowledge acquired from annotated base classes and a minimal number of samples from the nove...Few-shot point cloud 3D object detection(FS3D)aims to identify and locate objects of novel classes within point clouds using knowledge acquired from annotated base classes and a minimal number of samples from the novel classes.Due to imbalanced training data,existing FS3D methods based on fully supervised learning can lead to overfitting toward base classes,which impairs the network’s ability to generalize knowledge learned from base classes to novel classes and also prevents the network from extracting distinctive foreground and background representations for novel class objects.To address these issues,this thesis proposes a category-agnostic contrastive learning approach,enhancing the generalization and identification abilities for almost unseen categories through the construction of pseudo-labels and positive-negative sample pairs unrelated to specific classes.Firstly,this thesis designs a proposal-wise context contrastive module(CCM).By reducing the distance between foreground point features and increasing the distance between foreground and background point features within a region proposal,CCM aids the network in extracting more discriminative foreground and background feature representations without reliance on categorical annotations.Secondly,this thesis utilizes a geometric contrastive module(GCM),which enhances the network’s geometric perception capability by employing contrastive learning on the foreground point features associated with various basic geometric components,such as edges,corners,and surfaces,thereby enabling these geometric components to exhibit more distinguishable representations.This thesis also combines category-aware contrastive learning with former modules to maintain categorical distinctiveness.Extensive experimental results on FS-SUNRGBD and FS-ScanNet datasets demonstrate the effectiveness of this method with average precision exceeding the baseline by up to 8%.展开更多
Deep learning-based object detection has revolutionized various fields,including agriculture.This paper presents a systematic review based on the PRISMA 2020 approach for object detection techniques in agriculture by ...Deep learning-based object detection has revolutionized various fields,including agriculture.This paper presents a systematic review based on the PRISMA 2020 approach for object detection techniques in agriculture by exploring the evolution of different methods and applications over the past three years,highlighting the shift from conventional computer vision to deep learning-based methodologies owing to their enhanced efficacy in real time.The review emphasizes the integration of advanced models,such as You Only Look Once(YOLO)v9,v10,EfficientDet,Transformer-based models,and hybrid frameworks that improve the precision,accuracy,and scalability for crop monitoring and disease detection.The review also highlights benchmark datasets and evaluation metrics.It addresses limitations,like domain adaptation challenges,dataset heterogeneity,and occlusion,while offering insights into prospective research avenues,such as multimodal learning,explainable AI,and federated learning.Furthermore,the main aim of this paper is to serve as a thorough resource guide for scientists,researchers,and stakeholders for implementing deep learning-based object detection methods for the development of intelligent,robust,and sustainable agricultural systems.展开更多
To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-cap...To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-captured images has posed a challenge for traditional target detection methods,especially in identifying small objects in high-resolution images.This study presents an enhanced object detection algorithm based on the Faster Regionbased Convolutional Neural Network(Faster R-CNN)framework,specifically tailored for detecting small-scale electrical components like insulators,shock hammers,and screws in transmission line.The algorithm features an improved backbone network for Faster R-CNN,which significantly boosts the feature extraction network’s ability to detect fine details.The Region Proposal Network is optimized using a method of guided feature refinement(GFR),which achieves a balance between accuracy and speed.The incorporation of Generalized Intersection over Union(GIOU)and Region of Interest(ROI)Align further refines themodel’s accuracy.Experimental results demonstrate a notable improvement in mean Average Precision,reaching 89.3%,an 11.1%increase compared to the standard Faster R-CNN.This highlights the effectiveness of the proposed algorithm in identifying electrical components in high-resolution aerial images.展开更多
Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dens...Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dense small objects is challenging.展开更多
Top-view fisheye cameras are widely used in personnel surveillance for their broad field of view,but their unique imaging characteristics pose challenges like distortion,complex scenes,scale variations,and small objec...Top-view fisheye cameras are widely used in personnel surveillance for their broad field of view,but their unique imaging characteristics pose challenges like distortion,complex scenes,scale variations,and small objects near image edges.To tackle these,we proposed peripheral focus you only look once(PF-YOLO),an enhanced YOLOv8n-based method.Firstly,we introduced a cutting-patch data augmentation strategy to mitigate the problem of insufficient small-object samples in various scenes.Secondly,to enhance the model's focus on small objects near the edges,we designed the peripheral focus loss,which uses dynamic focus coefficients to provide greater gradient gains for these objects,improving their regression accuracy.Finally,we designed the three dimensional(3D)spatial-channel coordinate attention C2f module,enhancing spatial and channel perception,suppressing noise,and improving personnel detection.Experimental results demonstrate that PF-YOLO achieves strong performance on the challenging events for person detection from overhead fisheye images(CEPDTOF)and in-the-wild events for people detection and tracking from overhead fisheye cameras(WEPDTOF)datasets.Compared to the original YOLOv8n model,PFYOLO achieves improvements on CEPDTOF with increases of 2.1%,1.7%and 2.9%in mean average precision 50(mAP 50),mAP 50-95,and tively.On WEPDTOF,PF-YOLO achieves substantial improvements with increases of 31.4%,14.9%,61.1%and 21.0%in 91.2%and 57.2%,respectively.展开更多
Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones...Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built.展开更多
In this paper,a two-stage light detection and ranging(LiDAR) three-dimensional(3D) object detection framework is presented,namely point-voxel dual transformer(PV-DT3D),which is a transformer-based method.In the propos...In this paper,a two-stage light detection and ranging(LiDAR) three-dimensional(3D) object detection framework is presented,namely point-voxel dual transformer(PV-DT3D),which is a transformer-based method.In the proposed PV-DT3D,point-voxel fusion features are used for proposal refinement.Specifically,keypoints are sampled from entire point cloud scene and used to encode representative scene features via a proposal-aware voxel set abstraction module.Subsequently,following the generation of proposals by the region proposal networks(RPN),the internal encoded keypoints are fed into the dual transformer encoder-decoder architecture.In 3D object detection,the proposed PV-DT3D takes advantage of both point-wise transformer and channel-wise architecture to capture contextual information from the spatial and channel dimensions.Experiments conducted on the highly competitive KITTI 3D car detection leaderboard show that the PV-DT3D achieves superior detection accuracy among state-of-the-art point-voxel-based methods.展开更多
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scal...In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scale object detection algorithm based on an improved YOLOv8 has been proposed. Firstly, a lightweight attention mechanism, Triplet Attention, is introduced to enhance the algorithm’s ability to extract multi-dimensional and multi-scale features, thereby improving the receptive capability of the feature maps. Secondly, the Diverse Branch Block (DBB) is integrated into the CSP Bottleneck with two Convolutions (C2F) module to strengthen the fusion of semantic information across different layers. Thirdly, a new decoupled detection head is proposed by redesigning the original network head based on the Diverse Branch Block module to improve detection accuracy and reduce missed and false detections. Finally, the Minimum Point Distance based Intersection-over-Union (MPDIoU) is used to replace the original YOLOv8 Complete Intersection-over-Union (CIoU) to accelerate the network’s training convergence. Comparative experiments and dehazing pre-processing tests were conducted on the RTTS and VOC-Fog datasets. Compared to the baseline YOLOv8 model, the improved algorithm achieved mean Average Precision (mAP) improvements of 4.6% and 3.8%, respectively. After defogging pre-processing, the mAP increased by 5.3% and 4.4%, respectively. The experimental results demonstrate that the improved algorithm exhibits high practicality and effectiveness in foggy traffic scenarios.展开更多
UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,comp...UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,complex backgrounds,and variable lighting persist due to the unique perspective of UAV imagery.To address these issues,this paper introduces DAFPN-YOLO,an innovative model based on YOLOv8s(You Only Look Once version 8s).Themodel strikes a balance between detection accuracy and speed while reducing parameters,making itwell-suited for multi-object detection tasks from drone perspectives.A key feature of DAFPN-YOLO is the enhanced Drone-AFPN(Adaptive Feature Pyramid Network),which adaptively fuses multi-scale features to optimize feature extraction and enhance spatial and small-object information.To leverage Drone-AFPN’smulti-scale capabilities fully,a dedicated 160×160 small-object detection head was added,significantly boosting detection accuracy for small targets.In the backbone,the C2f_Dual(Cross Stage Partial with Cross-Stage Feature Fusion Dual)module and SPPELAN(Spatial Pyramid Pooling with Enhanced LocalAttentionNetwork)modulewere integrated.These components improve feature extraction and information aggregationwhile reducing parameters and computational complexity,enhancing inference efficiency.Additionally,Shape-IoU(Shape Intersection over Union)is used as the loss function for bounding box regression,enabling more precise shape-based object matching.Experimental results on the VisDrone 2019 dataset demonstrate the effectiveness ofDAFPN-YOLO.Compared to YOLOv8s,the proposedmodel achieves a 5.4 percentage point increase inmAP@0.5,a 3.8 percentage point improvement in mAP@0.5:0.95,and a 17.2%reduction in parameter count.These results highlight DAFPN-YOLO’s advantages in UAV-based object detection,offering valuable insights for applying deep learning to UAV-specific multi-object detection tasks.展开更多
Accurate defect detection plays a critical role in ensuring product quality and equipment reliability.Small-object detection poses unique challenges due to weak feature representation and significant background interf...Accurate defect detection plays a critical role in ensuring product quality and equipment reliability.Small-object detection poses unique challenges due to weak feature representation and significant background interference.To address these issues,this study incorporates three key innovations into the YOLOv8 framework:the use of GhostNet convolution for lightweight and efficient feature extraction,the addition of a P2 detection layer to enhance small-object detection capabilities,and the integration of the Triplet Attention mechanism to capture comprehensive spatial and channel dependencies.These improvements collectively optimize detection performance for small objects while reducing computational complexity.Experimental results demonstrate that the enhanced model achieves a mean average precision(mAP@0.5)of 97.46%and a mAP@0.5∶0.95 of 61.84%,representing a performance improvement of 1.9%and 3.2%,respectively,compared to the baseline YOLOv8 model.Additionally,the model achieves a frame rate of 158 FPS,maintaining real-time detection capabilities while reducing the parameter count by 50%,further underscoring its efficiency and suitability for smallobject detection in complex scenarios.展开更多
Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f...Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance.展开更多
The YOLO(You Only Look Once)series,a leading single-stage object detection framework,has gained significant prominence in medical-image analysis due to its real-time efficiency and robust performance.Recent iterations...The YOLO(You Only Look Once)series,a leading single-stage object detection framework,has gained significant prominence in medical-image analysis due to its real-time efficiency and robust performance.Recent iterations of YOLO have further enhanced its accuracy and reliability in critical clinical tasks such as tumor detection,lesion segmentation,and microscopic image analysis,thereby accelerating the development of clinical decision support systems.This paper systematically reviews advances in YOLO-based medical object detection from 2018 to 2024.It compares YOLO’s performance with othermodels(e.g.,Faster R-CNN,RetinaNet)inmedical contexts,summarizes standard evaluation metrics(e.g.,mean Average Precision(mAP),sensitivity),and analyzes hardware deployment strategies using public datasets such as LUNA16,BraTS,andCheXpert.Thereviewhighlights the impressive performance of YOLO models,particularly from YOLOv5 to YOLOv8,in achieving high precision(up to 99.17%),sensitivity(up to 97.5%),and mAP exceeding 95%in tasks such as lung nodule,breast cancer,and polyp detection.These results demonstrate the significant potential of YOLO models for early disease detection and real-time clinical applications,indicating their ability to enhance clinical workflows.However,the study also identifies key challenges,including high small-object miss rates,limited generalization in low-contrast images,scarcity of annotated data,and model interpretability issues.Finally,the potential future research directions are also proposed to address these challenges and further advance the application of YOLO models in healthcare.展开更多
Knowledge distillation(KD)is an emerging model compression technique for learning compact object detector models.Previous KD often focused solely on distilling from the logits layer or the feature intermediate layers,...Knowledge distillation(KD)is an emerging model compression technique for learning compact object detector models.Previous KD often focused solely on distilling from the logits layer or the feature intermediate layers,which may limit the comprehensive learning of the student network.Additionally,the imbalance between the foreground and background also affects the performance of the model.To address these issues,this paper employs feature-based distillation to enhance the detection performance of the bounding box localization part,and logit-based distillation to improve the detection performance of the category prediction part.Specifically,for the intermediate layer feature distillation,we introduce feature resampling to reduce the risk of the student model merely imitating the teacher model.At the same time,we incorporate a Spatial Attention Mechanism(SAM)to highlight the foreground features learned by the student model.In terms of output layer feature distillation,we divide the traditional distillation targets into target-class objects and non-target-class objects,aiming to improve overall distillation performance.Furthermore,we introduce a one-to-many matching distillation strategy based on Feature Alignment Module(FAM),which further enhances the studentmodel’s feature representation ability,making its feature distribution closer to that of the teacher model,and thus demonstrating superior localization and classification capabilities in object detection tasks.Experimental results demonstrate that our proposedmethodology outperforms conventional distillation techniques in terms of object detecting performance.展开更多
Three-dimensional(3D)object detection is crucial for applications such as robotic control and autonomous driving.While high-precision sensors like LiDAR are expensive,RGB-D sensors(e.g.,Kinect)offer a cost-effective a...Three-dimensional(3D)object detection is crucial for applications such as robotic control and autonomous driving.While high-precision sensors like LiDAR are expensive,RGB-D sensors(e.g.,Kinect)offer a cost-effective alternative,especially for indoor environments.However,RGB-D sensors still face limitations in accuracy and depth perception.This paper proposes an enhanced method that integrates attention-driven YOLOv9 with xLSTM into the F-ConvNet framework.By improving the precision of 2D bounding boxes generated for 3D object detection,this method addresses issues in indoor environments with complex structures and occlusions.The proposed approach enhances detection accuracy and robustness by combining RGB images and depth data,offering improved indoor 3D object detection performance.展开更多
At present, salient object detection (SOD) has achieved considerable progress. However, the methods that perform well still face the issue of inadequate detection accuracy. For example, sometimes there are problems of...At present, salient object detection (SOD) has achieved considerable progress. However, the methods that perform well still face the issue of inadequate detection accuracy. For example, sometimes there are problems of missed and false detections. Effectively optimizing features to capture key information and better integrating different levels of features to enhance their complementarity are two significant challenges in the domain of SOD. In response to these challenges, this study proposes a novel SOD method based on multi-strategy feature optimization. We propose the multi-size feature extraction module (MSFEM), which uses the attention mechanism, the multi-level feature fusion, and the residual block to obtain finer features. This module provides robust support for the subsequent accurate detection of the salient object. In addition, we use two rounds of feature fusion and the feedback mechanism to optimize the features obtained by the MSFEM to improve detection accuracy. The first round of feature fusion is applied to integrate the features extracted by the MSFEM to obtain more refined features. Subsequently, the feedback mechanism and the second round of feature fusion are applied to refine the features, thereby providing a stronger foundation for accurately detecting salient objects. To improve the fusion effect, we propose the feature enhancement module (FEM) and the feature optimization module (FOM). The FEM integrates the upper and lower features with the optimized features obtained by the FOM to enhance feature complementarity. The FOM uses different receptive fields, the attention mechanism, and the residual block to more effectively capture key information. Experimental results demonstrate that our method outperforms 10 state-of-the-art SOD methods.展开更多
基金funded by the China Chongqing Municipal Science and Technology Bureau,grant numbers CSTB2024TIAD-CYKJCXX0009,CSTB2024NSCQ-LZX0043,CSTB2022NSCQ-MSX0288Chongqing Municipal Commission of Housing and Urban-Rural Development,grant number CKZ2024-87+3 种基金the Chongqing University of Technology Graduate Education High-Quality Development Project,grant number gzlsz202401the Chongqing University of Technology—Chongqing LINGLUE Technology Co.,Ltd.Electronic Information(Artificial Intelligence)Graduate Joint Training Basethe Postgraduate Education and Teaching Reform Research Project in Chongqing,grant number yjg213116the Chongqing University of Technology-CISDI Chongqing Information Technology Co.,Ltd.Computer Technology Graduate Joint Training Base.
文摘Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world applications.Few-shot object detection presents a new research idea that aims to localize and classify objects in images using only limited annotated examples.However,the inherent challenge in few-shot object detection lies in the insufficient sample diversity to fully characterize the sample feature distribution,which consequently impacts model performance.Inspired by contrastive learning principles,we propose an Implicit Feature Contrastive Learning(IFCL)module to address this limitation and augment feature diversity for more robust representational learning.This module generates augmented support sample features in a mixed feature space and implicitly contrasts them with query Region of Interest(RoI)features.This approach facilitates more comprehensive learning of both intra-class feature similarity and inter-class feature diversity,thereby enhancing the model’s object classification and localization capabilities.Extensive experiments on PASCAL VOC show that our method achieves a respective improvement of 3.2%,1.8%,and 2.3%on 10-shot of three Novel Sets compared to the baseline model FPD.
基金National Natural Science Foundation of China,Grant/Award Number:61602157Henan scientific and technological project,Grant/Award Number:242102210020Basal Research Fund,Grant/Award Number:NSFRF240618。
文摘In the metric-based meta-learning detection model,the distribution of training samples in the metric space has great influence on the detection performance,and this influence is usually ignored by traditional meta-detectors.In addition,the design of metric space might be interfered with by the background noise of training samples.To tackle these issues,we propose a metric space optimisation method based on hyperbolic geometry attention and class-agnostic activation maps.First,the geometric properties of hyperbolic spaces to establish a structured metric space are used.A variety of feature samples of different classes are embedded into the hyperbolic space with extremely low distortion.This metric space is more suitable for representing tree-like structures between categories for image scene analysis.Meanwhile,a novel similarity measure function based on Poincarédistance is proposed to evaluate the distance of various types of objects in the feature space.In addition,the class-agnostic activation maps(CCAMs)are employed to re-calibrate the weight of foreground feature information and suppress background information.Finally,the decoder processes the high-level feature information as the decoding of the query object and detects objects by predicting their locations and corresponding task encodings.Experimental evaluation is conducted on Pascal VOC and MS COCO datasets.The experiment results show that the effectiveness of the authors’method surpasses the performance baseline of the excellent few-shot detection models.
基金the National Natural Science Foundation of China under grant 62172059 and 62072055Hunan Provincial Natural Science Foundations of China under Grant 2020JJ4626+2 种基金Scientific Research Fund of Hunan Provincial Education Department of China under Grant 19B004“Double First-class”International Cooperation and Development Scientific Research Project of Changsha University of Science and Technology under Grant 2018IC25the Young Teacher Growth Plan Project of Changsha University of Science and Technology under Grant 2019QJCZ076.
文摘Now object detection based on deep learning tries different strategies.It uses fewer data training networks to achieve the effect of large dataset training.However,the existing methods usually do not achieve the balance between network parameters and training data.It makes the information provided by a small amount of picture data insufficient to optimize model parameters,resulting in unsatisfactory detection results.To improve the accuracy of few shot object detection,this paper proposes a network based on the transformer and high-resolution feature extraction(THR).High-resolution feature extractionmaintains the resolution representation of the image.Channels and spatial attention are used to make the network focus on features that are more useful to the object.In addition,the recently popular transformer is used to fuse the features of the existing object.This compensates for the previous network failure by making full use of existing object features.Experiments on the Pascal VOC and MS-COCO datasets prove that the THR network has achieved better results than previous mainstream few shot object detection.
基金the China National Key Research and Development Program(Grant No.2016YFC0802904)National Natural Science Foundation of China(Grant No.61671470)62nd batch of funded projects of China Postdoctoral Science Foundation(Grant No.2017M623423)to provide fund for conducting experiments。
文摘Traditional object detectors based on deep learning rely on plenty of labeled samples,which are expensive to obtain.Few-shot object detection(FSOD)attempts to solve this problem,learning detection objects from a few labeled samples,but the performance is often unsatisfactory due to the scarcity of samples.We believe that the main reasons that restrict the performance of few-shot detectors are:(1)the positive samples is scarce,and(2)the quality of positive samples is low.Therefore,we put forward a novel few-shot object detector based on YOLOv4,starting from both improving the quantity and quality of positive samples.First,we design a hybrid multivariate positive sample augmentation(HMPSA)module to amplify the quantity of positive samples and increase positive sample diversity while suppressing negative samples.Then,we design a selective non-local fusion attention(SNFA)module to help the detector better learn the target features and improve the feature quality of positive samples.Finally,we optimize the loss function to make it more suitable for the task of FSOD.Experimental results on PASCAL VOC and MS COCO demonstrate that our designed few-shot object detector has competitive performance with other state-of-the-art detectors.
基金supported in part by Beijing Natural Science Foundation(Nos.L233030 and 2022MQ05)in part by the National Natural Science Foundation of China(Nos.62073322,61836015,and 61633020).
文摘Few-shot object detection receives much attention with the ability to detect novel class objects using limited annotated data.The transfer learning-based solution becomes popular due to its simple training with good accuracy,however,it is still challenging to enrich the feature diversity during the training process.And fine-grained features are also insufficient for novel class detection.To deal with the problems,this paper proposes a novel few-shot object detection method based on dual-domain feature fusion and patch-level attention.Upon original base domain,an elementary domain with more category-agnostic features is superposed to construct a two-stream backbone,which benefits to enrich the feature diversity.To better integrate various features,a dual-domain feature fusion is designed,where the feature pairs with the same size are complementarily fused to extract more discriminative features.Moreover,a patch-wise feature refinement termed as patch-level attention is presented to mine internal relations among the patches,which enhances the adaptability to novel classes.In addition,a weighted classification loss is given to assist the fine-tuning of the classifier by combining extra features from FPN of the base training model.In this way,the few-shot detection quality to novel class objects is improved.Experiments on PASCAL VOC and MS COCO datasets verify the effectiveness of the method.
文摘Few-shot point cloud 3D object detection(FS3D)aims to identify and locate objects of novel classes within point clouds using knowledge acquired from annotated base classes and a minimal number of samples from the novel classes.Due to imbalanced training data,existing FS3D methods based on fully supervised learning can lead to overfitting toward base classes,which impairs the network’s ability to generalize knowledge learned from base classes to novel classes and also prevents the network from extracting distinctive foreground and background representations for novel class objects.To address these issues,this thesis proposes a category-agnostic contrastive learning approach,enhancing the generalization and identification abilities for almost unseen categories through the construction of pseudo-labels and positive-negative sample pairs unrelated to specific classes.Firstly,this thesis designs a proposal-wise context contrastive module(CCM).By reducing the distance between foreground point features and increasing the distance between foreground and background point features within a region proposal,CCM aids the network in extracting more discriminative foreground and background feature representations without reliance on categorical annotations.Secondly,this thesis utilizes a geometric contrastive module(GCM),which enhances the network’s geometric perception capability by employing contrastive learning on the foreground point features associated with various basic geometric components,such as edges,corners,and surfaces,thereby enabling these geometric components to exhibit more distinguishable representations.This thesis also combines category-aware contrastive learning with former modules to maintain categorical distinctiveness.Extensive experimental results on FS-SUNRGBD and FS-ScanNet datasets demonstrate the effectiveness of this method with average precision exceeding the baseline by up to 8%.
文摘Deep learning-based object detection has revolutionized various fields,including agriculture.This paper presents a systematic review based on the PRISMA 2020 approach for object detection techniques in agriculture by exploring the evolution of different methods and applications over the past three years,highlighting the shift from conventional computer vision to deep learning-based methodologies owing to their enhanced efficacy in real time.The review emphasizes the integration of advanced models,such as You Only Look Once(YOLO)v9,v10,EfficientDet,Transformer-based models,and hybrid frameworks that improve the precision,accuracy,and scalability for crop monitoring and disease detection.The review also highlights benchmark datasets and evaluation metrics.It addresses limitations,like domain adaptation challenges,dataset heterogeneity,and occlusion,while offering insights into prospective research avenues,such as multimodal learning,explainable AI,and federated learning.Furthermore,the main aim of this paper is to serve as a thorough resource guide for scientists,researchers,and stakeholders for implementing deep learning-based object detection methods for the development of intelligent,robust,and sustainable agricultural systems.
基金supported by the Shanghai Science and Technology Innovation Action Plan High-Tech Field Project(Grant No.22511100601)for the year 2022 and Technology Development Fund for People’s Livelihood Research(Research on Transmission Line Deep Foundation Pit Environmental Situation Awareness System Based on Multi-Source Data).
文摘To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-captured images has posed a challenge for traditional target detection methods,especially in identifying small objects in high-resolution images.This study presents an enhanced object detection algorithm based on the Faster Regionbased Convolutional Neural Network(Faster R-CNN)framework,specifically tailored for detecting small-scale electrical components like insulators,shock hammers,and screws in transmission line.The algorithm features an improved backbone network for Faster R-CNN,which significantly boosts the feature extraction network’s ability to detect fine details.The Region Proposal Network is optimized using a method of guided feature refinement(GFR),which achieves a balance between accuracy and speed.The incorporation of Generalized Intersection over Union(GIOU)and Region of Interest(ROI)Align further refines themodel’s accuracy.Experimental results demonstrate a notable improvement in mean Average Precision,reaching 89.3%,an 11.1%increase compared to the standard Faster R-CNN.This highlights the effectiveness of the proposed algorithm in identifying electrical components in high-resolution aerial images.
基金supported in part by the National Science Foundation of China(52371372)the Project of Science and Technology Commission of Shanghai Municipality,China(22JC1401400,21190780300)the 111 Project,China(D18003)
文摘Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dense small objects is challenging.
基金supported by National Natural Science Foundation of China(Nos.62171042,62102033,U24A20331)the R&D Program of Beijing Municipal Education Commission(No.KZ202211417048)+2 种基金the Project of Construction and Support for High-Level Innovative Teams of Beijing Municipal Institutions(No.BPHR20220121)Beijing Natural Science Foundation(Nos.4232026,4242020)the Academic Research Projects of Beijing Union University(Nos.ZKZD202302,ZK20202403)。
文摘Top-view fisheye cameras are widely used in personnel surveillance for their broad field of view,but their unique imaging characteristics pose challenges like distortion,complex scenes,scale variations,and small objects near image edges.To tackle these,we proposed peripheral focus you only look once(PF-YOLO),an enhanced YOLOv8n-based method.Firstly,we introduced a cutting-patch data augmentation strategy to mitigate the problem of insufficient small-object samples in various scenes.Secondly,to enhance the model's focus on small objects near the edges,we designed the peripheral focus loss,which uses dynamic focus coefficients to provide greater gradient gains for these objects,improving their regression accuracy.Finally,we designed the three dimensional(3D)spatial-channel coordinate attention C2f module,enhancing spatial and channel perception,suppressing noise,and improving personnel detection.Experimental results demonstrate that PF-YOLO achieves strong performance on the challenging events for person detection from overhead fisheye images(CEPDTOF)and in-the-wild events for people detection and tracking from overhead fisheye cameras(WEPDTOF)datasets.Compared to the original YOLOv8n model,PFYOLO achieves improvements on CEPDTOF with increases of 2.1%,1.7%and 2.9%in mean average precision 50(mAP 50),mAP 50-95,and tively.On WEPDTOF,PF-YOLO achieves substantial improvements with increases of 31.4%,14.9%,61.1%and 21.0%in 91.2%and 57.2%,respectively.
基金supported by the National Natural Science Foundation of China(Nos.62276204 and 62203343)the Fundamental Research Funds for the Central Universities(No.YJSJ24011)+1 种基金the Natural Science Basic Research Program of Shanxi,China(Nos.2022JM-340 and 2023-JC-QN-0710)the China Postdoctoral Science Foundation(Nos.2020T130494 and 2018M633470).
文摘Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built.
基金supported by the Natural Science Foundation of China (No.62103298)the South African National Research Foundation (Nos.132797 and 137951)。
文摘In this paper,a two-stage light detection and ranging(LiDAR) three-dimensional(3D) object detection framework is presented,namely point-voxel dual transformer(PV-DT3D),which is a transformer-based method.In the proposed PV-DT3D,point-voxel fusion features are used for proposal refinement.Specifically,keypoints are sampled from entire point cloud scene and used to encode representative scene features via a proposal-aware voxel set abstraction module.Subsequently,following the generation of proposals by the region proposal networks(RPN),the internal encoded keypoints are fed into the dual transformer encoder-decoder architecture.In 3D object detection,the proposed PV-DT3D takes advantage of both point-wise transformer and channel-wise architecture to capture contextual information from the spatial and channel dimensions.Experiments conducted on the highly competitive KITTI 3D car detection leaderboard show that the PV-DT3D achieves superior detection accuracy among state-of-the-art point-voxel-based methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.62101275 and 62101274).
文摘In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scale object detection algorithm based on an improved YOLOv8 has been proposed. Firstly, a lightweight attention mechanism, Triplet Attention, is introduced to enhance the algorithm’s ability to extract multi-dimensional and multi-scale features, thereby improving the receptive capability of the feature maps. Secondly, the Diverse Branch Block (DBB) is integrated into the CSP Bottleneck with two Convolutions (C2F) module to strengthen the fusion of semantic information across different layers. Thirdly, a new decoupled detection head is proposed by redesigning the original network head based on the Diverse Branch Block module to improve detection accuracy and reduce missed and false detections. Finally, the Minimum Point Distance based Intersection-over-Union (MPDIoU) is used to replace the original YOLOv8 Complete Intersection-over-Union (CIoU) to accelerate the network’s training convergence. Comparative experiments and dehazing pre-processing tests were conducted on the RTTS and VOC-Fog datasets. Compared to the baseline YOLOv8 model, the improved algorithm achieved mean Average Precision (mAP) improvements of 4.6% and 3.8%, respectively. After defogging pre-processing, the mAP increased by 5.3% and 4.4%, respectively. The experimental results demonstrate that the improved algorithm exhibits high practicality and effectiveness in foggy traffic scenarios.
基金supported by the National Natural Science Foundation of China(Grant Nos.62101275 and 62101274).
文摘UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,complex backgrounds,and variable lighting persist due to the unique perspective of UAV imagery.To address these issues,this paper introduces DAFPN-YOLO,an innovative model based on YOLOv8s(You Only Look Once version 8s).Themodel strikes a balance between detection accuracy and speed while reducing parameters,making itwell-suited for multi-object detection tasks from drone perspectives.A key feature of DAFPN-YOLO is the enhanced Drone-AFPN(Adaptive Feature Pyramid Network),which adaptively fuses multi-scale features to optimize feature extraction and enhance spatial and small-object information.To leverage Drone-AFPN’smulti-scale capabilities fully,a dedicated 160×160 small-object detection head was added,significantly boosting detection accuracy for small targets.In the backbone,the C2f_Dual(Cross Stage Partial with Cross-Stage Feature Fusion Dual)module and SPPELAN(Spatial Pyramid Pooling with Enhanced LocalAttentionNetwork)modulewere integrated.These components improve feature extraction and information aggregationwhile reducing parameters and computational complexity,enhancing inference efficiency.Additionally,Shape-IoU(Shape Intersection over Union)is used as the loss function for bounding box regression,enabling more precise shape-based object matching.Experimental results on the VisDrone 2019 dataset demonstrate the effectiveness ofDAFPN-YOLO.Compared to YOLOv8s,the proposedmodel achieves a 5.4 percentage point increase inmAP@0.5,a 3.8 percentage point improvement in mAP@0.5:0.95,and a 17.2%reduction in parameter count.These results highlight DAFPN-YOLO’s advantages in UAV-based object detection,offering valuable insights for applying deep learning to UAV-specific multi-object detection tasks.
文摘Accurate defect detection plays a critical role in ensuring product quality and equipment reliability.Small-object detection poses unique challenges due to weak feature representation and significant background interference.To address these issues,this study incorporates three key innovations into the YOLOv8 framework:the use of GhostNet convolution for lightweight and efficient feature extraction,the addition of a P2 detection layer to enhance small-object detection capabilities,and the integration of the Triplet Attention mechanism to capture comprehensive spatial and channel dependencies.These improvements collectively optimize detection performance for small objects while reducing computational complexity.Experimental results demonstrate that the enhanced model achieves a mean average precision(mAP@0.5)of 97.46%and a mAP@0.5∶0.95 of 61.84%,representing a performance improvement of 1.9%and 3.2%,respectively,compared to the baseline YOLOv8 model.Additionally,the model achieves a frame rate of 158 FPS,maintaining real-time detection capabilities while reducing the parameter count by 50%,further underscoring its efficiency and suitability for smallobject detection in complex scenarios.
基金supported by the National Natural Science Foundation of China(No.62103298)。
文摘Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance.
基金supported by the National Natural Science Foundation of China under grant number 62066016the Natural Science Foundation of Hunan Province of China under grant number 2024JJ7395+2 种基金the Scientific Research Project of Education Department of Hunan Province of China under grant number 22B0549International and Regional Science and Technology Cooperation and Exchange Program of the Hunan Association for Science and Technology under grant number 025SKX-KJ-04Hunan Province Undergraduate Innovation and Entrepreneurship Training Program(grant number S202410531015).
文摘The YOLO(You Only Look Once)series,a leading single-stage object detection framework,has gained significant prominence in medical-image analysis due to its real-time efficiency and robust performance.Recent iterations of YOLO have further enhanced its accuracy and reliability in critical clinical tasks such as tumor detection,lesion segmentation,and microscopic image analysis,thereby accelerating the development of clinical decision support systems.This paper systematically reviews advances in YOLO-based medical object detection from 2018 to 2024.It compares YOLO’s performance with othermodels(e.g.,Faster R-CNN,RetinaNet)inmedical contexts,summarizes standard evaluation metrics(e.g.,mean Average Precision(mAP),sensitivity),and analyzes hardware deployment strategies using public datasets such as LUNA16,BraTS,andCheXpert.Thereviewhighlights the impressive performance of YOLO models,particularly from YOLOv5 to YOLOv8,in achieving high precision(up to 99.17%),sensitivity(up to 97.5%),and mAP exceeding 95%in tasks such as lung nodule,breast cancer,and polyp detection.These results demonstrate the significant potential of YOLO models for early disease detection and real-time clinical applications,indicating their ability to enhance clinical workflows.However,the study also identifies key challenges,including high small-object miss rates,limited generalization in low-contrast images,scarcity of annotated data,and model interpretability issues.Finally,the potential future research directions are also proposed to address these challenges and further advance the application of YOLO models in healthcare.
基金funded by National Natural Science Foundation of China(61603245).
文摘Knowledge distillation(KD)is an emerging model compression technique for learning compact object detector models.Previous KD often focused solely on distilling from the logits layer or the feature intermediate layers,which may limit the comprehensive learning of the student network.Additionally,the imbalance between the foreground and background also affects the performance of the model.To address these issues,this paper employs feature-based distillation to enhance the detection performance of the bounding box localization part,and logit-based distillation to improve the detection performance of the category prediction part.Specifically,for the intermediate layer feature distillation,we introduce feature resampling to reduce the risk of the student model merely imitating the teacher model.At the same time,we incorporate a Spatial Attention Mechanism(SAM)to highlight the foreground features learned by the student model.In terms of output layer feature distillation,we divide the traditional distillation targets into target-class objects and non-target-class objects,aiming to improve overall distillation performance.Furthermore,we introduce a one-to-many matching distillation strategy based on Feature Alignment Module(FAM),which further enhances the studentmodel’s feature representation ability,making its feature distribution closer to that of the teacher model,and thus demonstrating superior localization and classification capabilities in object detection tasks.Experimental results demonstrate that our proposedmethodology outperforms conventional distillation techniques in terms of object detecting performance.
文摘Three-dimensional(3D)object detection is crucial for applications such as robotic control and autonomous driving.While high-precision sensors like LiDAR are expensive,RGB-D sensors(e.g.,Kinect)offer a cost-effective alternative,especially for indoor environments.However,RGB-D sensors still face limitations in accuracy and depth perception.This paper proposes an enhanced method that integrates attention-driven YOLOv9 with xLSTM into the F-ConvNet framework.By improving the precision of 2D bounding boxes generated for 3D object detection,this method addresses issues in indoor environments with complex structures and occlusions.The proposed approach enhances detection accuracy and robustness by combining RGB images and depth data,offering improved indoor 3D object detection performance.
文摘At present, salient object detection (SOD) has achieved considerable progress. However, the methods that perform well still face the issue of inadequate detection accuracy. For example, sometimes there are problems of missed and false detections. Effectively optimizing features to capture key information and better integrating different levels of features to enhance their complementarity are two significant challenges in the domain of SOD. In response to these challenges, this study proposes a novel SOD method based on multi-strategy feature optimization. We propose the multi-size feature extraction module (MSFEM), which uses the attention mechanism, the multi-level feature fusion, and the residual block to obtain finer features. This module provides robust support for the subsequent accurate detection of the salient object. In addition, we use two rounds of feature fusion and the feedback mechanism to optimize the features obtained by the MSFEM to improve detection accuracy. The first round of feature fusion is applied to integrate the features extracted by the MSFEM to obtain more refined features. Subsequently, the feedback mechanism and the second round of feature fusion are applied to refine the features, thereby providing a stronger foundation for accurately detecting salient objects. To improve the fusion effect, we propose the feature enhancement module (FEM) and the feature optimization module (FOM). The FEM integrates the upper and lower features with the optimized features obtained by the FOM to enhance feature complementarity. The FOM uses different receptive fields, the attention mechanism, and the residual block to more effectively capture key information. Experimental results demonstrate that our method outperforms 10 state-of-the-art SOD methods.