The measurement of the pairing gap is crucial for investigating the physical properties of superconductors or superfluids.We propose a strategy to measure the pairing gap through the dynamical excitations.With the ran...The measurement of the pairing gap is crucial for investigating the physical properties of superconductors or superfluids.We propose a strategy to measure the pairing gap through the dynamical excitations.With the random phase approximation(RPA),we study the dynamical excitations of a two-dimensional attractive Fermi-Hubbard model by calculating its dynamical structure factor.Two distinct collective modes emerge:a Goldstone phonon mode at transferred momentum q=[0,0]and a roton mode at q=[p,p].The roton mode exhibits a sharp molecular peak in the low-energy regime.Notably,the area under the roton molecular peak scales with the square of the pairing gap,which holds even in three-dimensional and spin-orbit coupled(SOC)optical lattices.This finding suggests an experimental approach to measure the pairing gap in lattice systems by analyzing the dynamical structure factor at q=[p,p].展开更多
We investigate a one-dimensional two-component system in an optical lattice of attractive interactions under a spin- dependent external potential. Based on the density-matrix renormalization group methods, we obtain i...We investigate a one-dimensional two-component system in an optical lattice of attractive interactions under a spin- dependent external potential. Based on the density-matrix renormalization group methods, we obtain its phase diagram as a function of the external potential imbalance and the strength of the attractive interaction through the analysis on the density profiles and the momentum pair correlation functions. We find that there are three different phases in the system, a coexisted fully polarized and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, a normal polarized phase, and a Bardeen- Cooper-Schrieffer (BCS) phase. Different from the systems of spin-independent external potential, where the FFLO phase is normally favored by the attractive interactions, in the present situation, the FFLO phases are easily destroyed by the attractive interactions, leading to the normal polarized or the BCS phase.展开更多
A unified algebraic approach to both the hard-core Fermi- and Bose-Hubbard models is extended to boththe finite- and infinite-site with periodic condition cases. Excitation energies and the corresponding wavefunctions...A unified algebraic approach to both the hard-core Fermi- and Bose-Hubbard models is extended to boththe finite- and infinite-site with periodic condition cases. Excitation energies and the corresponding wavefunctions ofboth the models with nearest neighbor hopping are exactly derived by using a new and simple algebraic method. It isfound that spectra of both the models are determined simply by eigenvalue problem of N × N hopping matrix, where Nis the number of sites for finite system or the period of sites for infinite system.展开更多
基金supported by the National Natural Science Foundation of China[Grant Nos.U23A2073(P.Z.)and 11547034(H.Z.)].
文摘The measurement of the pairing gap is crucial for investigating the physical properties of superconductors or superfluids.We propose a strategy to measure the pairing gap through the dynamical excitations.With the random phase approximation(RPA),we study the dynamical excitations of a two-dimensional attractive Fermi-Hubbard model by calculating its dynamical structure factor.Two distinct collective modes emerge:a Goldstone phonon mode at transferred momentum q=[0,0]and a roton mode at q=[p,p].The roton mode exhibits a sharp molecular peak in the low-energy regime.Notably,the area under the roton molecular peak scales with the square of the pairing gap,which holds even in three-dimensional and spin-orbit coupled(SOC)optical lattices.This finding suggests an experimental approach to measure the pairing gap in lattice systems by analyzing the dynamical structure factor at q=[p,p].
基金supported by the National Natural Science Foundation of China(Grant Nos.11374266 and 11174253)the Program for New Century Excellent Talents in University,China
文摘We investigate a one-dimensional two-component system in an optical lattice of attractive interactions under a spin- dependent external potential. Based on the density-matrix renormalization group methods, we obtain its phase diagram as a function of the external potential imbalance and the strength of the attractive interaction through the analysis on the density profiles and the momentum pair correlation functions. We find that there are three different phases in the system, a coexisted fully polarized and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, a normal polarized phase, and a Bardeen- Cooper-Schrieffer (BCS) phase. Different from the systems of spin-independent external potential, where the FFLO phase is normally favored by the attractive interactions, in the present situation, the FFLO phases are easily destroyed by the attractive interactions, leading to the normal polarized or the BCS phase.
文摘A unified algebraic approach to both the hard-core Fermi- and Bose-Hubbard models is extended to boththe finite- and infinite-site with periodic condition cases. Excitation energies and the corresponding wavefunctions ofboth the models with nearest neighbor hopping are exactly derived by using a new and simple algebraic method. It isfound that spectra of both the models are determined simply by eigenvalue problem of N × N hopping matrix, where Nis the number of sites for finite system or the period of sites for infinite system.