[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam expl...[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam explosion and dilute acid hydrolysis as experimental materials,we measured and analyzed the effects of different treatments and particle size of maize stalk were analyzed. [Result] The optimal fermentative biohydrogen production was found under following parameters:pretreatment of 0.8% dilute H2SO4 following steam explosion,particle size of maize stalk of 0.425-0.850 mm,liquid-solid ratio [0.8% H2SO4 (M):stalk (W)] of 10:1. [Conclusion] Post steam explosion,dilute 0.8% dilute H2SO4 intensified hydrolysis on maize stalk could produce fermentative biohydrogen production capacity.展开更多
Acetone-butanol-ethanol(ABE)fermentation is a primary strategy for producing bio-based n-butanol from abundant renewable biomass.In the typical ABE production chain,distillation is an essential unit for high purity AB...Acetone-butanol-ethanol(ABE)fermentation is a primary strategy for producing bio-based n-butanol from abundant renewable biomass.In the typical ABE production chain,distillation is an essential unit for high purity ABE productions,but has long been criticized by the energy-inefficient processes due to the extremely low solvents concentration received in the upstream fermentation system.Over the past decades,efforts have been dedicated to developing eco-efficient ABE distillation processes aimed at reducing both energy costs and capital investments.In this review,a comprehensive overview on ABE distillation systems is provided from physico-chemical properties in feed and thermodynamics to the process constructions and applications.The recent trends in distillation sequence construction that fitting with the rapid developed upstream in situ product recovery(ISPR)systems are emphasized.Furthermore,towards developing a more efficient ABE distillation system,the review takes a broad overview of the intensification strategies for ABE distillation.Along with systematic introduction of the key examples,the future directions for ABE distillation techniques development are also discussed towards a sustainable and low-carbon emission biorefineries.展开更多
The objective of this study was to observe the forage yield, silage fermentative quality, anthocyanin stability, and antioxidant activity during the storage period and in vitro rumen fermentation of anthocyanin-rich p...The objective of this study was to observe the forage yield, silage fermentative quality, anthocyanin stability, and antioxidant activity during the storage period and in vitro rumen fermentation of anthocyanin-rich purple corn (Zea mays L.) stover (PS) and sticky corn stover (SS). Forage yield of corn stover was weighed and ensiled with two treatments: (1) hybrid sticky waxy corn stover (control), and (2) hybrid purple waxy corn stover (treatment). Samples were stored in mini-silos for periods of 0, 7, 14, 21,42, 63, 84, and 105 d. The results showed that PS had significantly higher (P〈0.05) yields of dry matter (DM), organic matter (OM), gross energy (GE), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and total anthocyanins than that of the SS. Anthocyanin-rich purple corn stover silage (PSS) showed higher (P〈0.05) levels of DM and CP relative to the sticky corn stover silage (SSS). Although anthocyanin-rich PSS displayed a lower (P〈0.05) level of pelargonidin-3-glucoside (P3G), it had higher (P〈0.05) levels of peonidin (Peo) and pelargonidin (Pel) compared to the control. Delphinidin (Del) and malvidin (Mal) were not detected in SSS during the ensilage period; in PSS, Del was no longer detected after 7 d of ensilage. Specifically, total anthocyanins in anthocyanin-rich PSS decreased rapidly (P〈0.05) prior to 7 d of ensilage, and then remained at relatively stable (P〉0.05) constants. Compared to the anthocyanin-rich PSS, SSS displayed significantly higher (P〈0.05) pH value and ammonia nitrogen (NH3-N) content. Propionic acid (PA) at 0 d and butyric acid (BA) during the entire study period were not detected, whereas anthocyanin-rich PSS showed a higher (P〈0.05) level of lactic acid (LA) than that of the SSS. Compared with the SSS extract, anthocyanin-rich PSS extract showed a higher (P〈0.05) level of 2,2-diphenyl-1-picryihydrazyl (DPPH) scavenging activity and displayed a lower (P〈0.05) half maximal inhibitory concentration (IC50) value. Moreover, anthocyanin-rich PSS reduced (P〈0.05) gas production (GP), and displayed lower levels of immediately soluble fraction and ratio of acetic acid (AA) to PA at 12 h, but the other parameters were unaffected (P〉0.05) relative to the control. Taken together, the results indicated that: (1) anthocyanins could be stable in silage; (2) anthocyanin-rich PSS showed better silage fermentative quality and stronger antioxidant activity; and (3) anthocyanin-rich PSS had no negative effect on rumen fermentation parameters.展开更多
The effects of Previously Fermented Juice (PFJ) on the fermentative quality and changes in chemical composition during fermentation of rice straw silage were investigated. The results showed that the PFJ and diluted...The effects of Previously Fermented Juice (PFJ) on the fermentative quality and changes in chemical composition during fermentation of rice straw silage were investigated. The results showed that the PFJ and diluted the PFJ (dPFJ) treated silages had significantly (p〈0.05) lower pH and ammonia-nitrogen content, while significantly higher lactic acid content compared with treatments. This study confirmed that the applying of the PFJ and the dPFJ improved fermentation quality of silage.展开更多
Objective:To detect and evaluate the various methods for metallo-β-lactamases(MBL) production in Pseudomonas aeruginosa(P.aeruginosa) and Acinetobacter species.Methods:A total of 109 P.aeruginosa and 85 Acinetobacter...Objective:To detect and evaluate the various methods for metallo-β-lactamases(MBL) production in Pseudomonas aeruginosa(P.aeruginosa) and Acinetobacter species.Methods:A total of 109 P.aeruginosa and 85 Acinetobacter species were screened for imipenem resistance by Kirby- Bauer disc diffusion methods.Detection of MBL production was(lone by imipenem-EDTA combined disc test,double disc synerygy test(DDST) and imipenem-EDTA MBL E test.Results: A total of 63(57.8%) strains of P.aeruginosa and 46(54.1%) strains of Acinetobacter spp.were found to be resistant to imipenem.Of the 63 imipenem resistant P.aeruginosa tested for MBL production.44(69.89;) were found to be positive and among 46 imipenem resistant Acinetobacter. 19(41.3%) were shown to be the MBL producers.Conclusions:Imipenem-EDTA combined disc test and MBL E test are equally effective for MBL detection in both P.aeruginosa and Acinetobacter spp.,but given the cost-constraints,combined disc can be used as a convenient screening method in the clinical microbiology laboratory.展开更多
The effects of initial substrate (5-60 g /L) and biomass concentration (0.5-3 g /L) on fermentative hydrogen production by mixed cultures were investigated in batch tests using glucose as substrate.The experimental re...The effects of initial substrate (5-60 g /L) and biomass concentration (0.5-3 g /L) on fermentative hydrogen production by mixed cultures were investigated in batch tests using glucose as substrate.The experimental results showed that the hydrogen production increases as the initial substrate concentration increases from 0 to 25 g /L.It indicated that the shift in the metabolic pathway or in the composition of the bacterial flora occurs.The maximum hydrogen yield of 1.78 mol /mol-glucose is obtained at the substrate concentration of 15 g /L.This study also shows that initial biomass concentration affects the hydrogen yield as the cumulative hydrogen production has been increased with the increase of initial cell concentration up to 1.5 g /L and reached the highest level.The maximum hydrogen yield is obtained at the cell concentration of 1.5 g /L.It indicated that the optimum biomass /substrate ratio,maximizing the hydrogen yield and the hydrogen production rate,is determined to be 0.1 g biomass /g glucose.展开更多
The biological hydrogen generating from fermentation of low-cost lignocellulosic feedstocks by hydrogen-producing bacteria has attracted many attentions in recent years. In the present investigation, ten hydrogen-prod...The biological hydrogen generating from fermentation of low-cost lignocellulosic feedstocks by hydrogen-producing bacteria has attracted many attentions in recent years. In the present investigation, ten hydrogen-producing bacteria were newly isolated from the intestine of wild common carp (</span><span style="font-family:Verdana;"><i>Cyprinus carpio</i></span><span style="font-family:Verdana;"> L.), and identified belonging to the genera of </span><i><span style="font-family:Verdana;">Enterobacter</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Klebsiella</span></i><span style="font-family:Verdana;"> based on analysis of the 16S rDNA gene sequence and examination of the physiological and biochemical characteristics. All the isolates inherently owned the ability to metabolize xylose especially the cotton stalk hydrolysate for hydrogen production with hydrogen yield (HY) higher than 100 mL</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">·</span></span><span></span><span></span><span style="font-family:""><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">. In particular, two isolates, WL1306 and WL1305 obtained higher HY, hydrogen production rate (HPR), and hydrogen production potential (HPP) using cotton stalk hydrolysate as sugar substrate than the mixed sugar of glucose & xylose, which obtained the HY of 249.5 ± 29.0, 397.0 ± 36.7 mL</span></span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPR of 10.4 ± 1.2, 16.5 ± 1.5 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">h</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPP of 19.5 ± 2.3, 31.0 ± 2.8 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">g</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><sub><span style="font-family:Verdana;">sugar</span></sub><span style="font-family:Verdana;">, separately. The generation of soluble metabolites, such as the lactate, formate, acetate, succinate and ethanol reflected the mixed acid fermentation properties of the hydrogen production pathway.展开更多
Hydrogen (H2) production from lignocellulosic materials may be enhanced by removing lignin and increasing the porosity of the material prior to enzymatic hydrolysis. Alkaline pretreatment conditions, used to deligni...Hydrogen (H2) production from lignocellulosic materials may be enhanced by removing lignin and increasing the porosity of the material prior to enzymatic hydrolysis. Alkaline pretreatment conditions, used to delignify disposable wooden chopsticks (DWC) waste, were investigated. The effects of NaOH concentration, temperature and retention time were examined and it was found that retention time had no effect on lignin removal or carbohydrate released in enzymatic hydrolysate. The highest percentage of lignin removal (41%) was obtained with 2% NaOH at 100℃, correlated with the highest carbohydrate released (67 mg/gpretreated DWC) in the hydrolysate. An enriched culture from a hot spring was used as inoculum for fermentative H2 production, and its optimum initial pH and temperature were determined to be 7.0 and 50℃, respectively. Furthermore, enzymatic hydrolysate from pretreated DWC was successfully demonstrated as a substrate for fermentative H2 production by the enriched culture. The maximum H2 yield and production rate were achieved at 195 mL H2/g total sugarsconsumed and 1 16 mL Hz/(L.day), respectively.展开更多
In this study,experiments were designed to reveal in-depth information of the effect of pH and hydraulic retention time(HRT)on biohydrogen fermentation from liquid swine manure supplemented with glucose using an Ana...In this study,experiments were designed to reveal in-depth information of the effect of pH and hydraulic retention time(HRT)on biohydrogen fermentation from liquid swine manure supplemented with glucose using an Anaerobic Sequencing Batch Reactor(ASBR)System.Five values of HRT(8,12,16,20,and 24 h)were first tested and the best HRT determined was further studied at five p H levels(4.4,4.7,5.0,5.3,and 5.6).The results showed that for HRT 24 h,there was a dividing H2 content(around 37%)related to the total biogas production rate for the ASBR System running at p H 5.0.When the H2 content went beyond 37%,an appreciable decline in biogas production rate was observed,implying that there might exist an H2 content limit in the biogas.For other HRTs(8 through 20 h),an average H2 content of 42%could be achieved.In the second experiment(HRT 12 h),the highest H2 content(35%)in the biogas was found to be associated with p H 5.0.The upswing of p H from 5.0 to 5.6 had a significantly more impact on biogas H2 content than the downswing of p H from5.0 to 4.3.The results also indicated good linear relationships of biogas and H2 production rates with HRT(r=0.9971 and0.9967,respectively).Since the optimal ASBR operating conditions were different for the biogas/H2 production rates and the H2 yield,a compromised combination of the running parameters was determined to be HRT 12 h and pH 5.0 in order to achieve good biogas/H2 productions.展开更多
The present study focused on production of mycelial chitosan from fungal mycelium by submerged fermentation with ecologically more balanced process. Different fungal strains were screened and Absidia butleri NCIM 977 ...The present study focused on production of mycelial chitosan from fungal mycelium by submerged fermentation with ecologically more balanced process. Different fungal strains were screened and Absidia butleri NCIM 977 was found to produce the highest mycelial chitosan. The one-factor-at-a-time method was adopted to investigate the effect of batch time, environmental factors (i.e. initial pH and temperature) and medium components (i.e. carbon and nitrogen) on the yield of mycelial chitosan. Among these variables, the optimal condition to increase in yield of mycelial chitosan was found to be batch time (72 h), pH (5.5), temperature (30°C), carbon source (glucose) and nitrogen source (tryptone and yeast extract). Subsequently, a three-level Box– Behnken factorial design was employed combining with response surface methodology (RSM) to maximise yield of mycelial chitosan by determining optimal concentrations and investigating the interactive effects of the most significant media components (i.e. carbon and nitrogen sources). The optimum value of parameters obtained through RSM was glucose (1.58%), tryptone (1.61%) and yeast extract (1.11%). There was an increase in mycelial chitosan yield after media optimization by one-factor-at-a-time and statistical analysis from 683 mg/L to 1 g/L. Mycelial chitosan was characterized for total glucosamine content (80.68%), degree of deacetylation (DD) (79.89%), molecular weight (8.07 × 104 Da) and, viscosity (73.22 ml/g). The results of this study demonstrated that fungi are promising alternative sources of chitosan with high DD and high purity.展开更多
The biodegradation of dimethyl phthalate(DMP)was investigated under fermentative conditions in this study.The nature of the intermediate compounds and the extent of mineralization were probed using high-pressure liqui...The biodegradation of dimethyl phthalate(DMP)was investigated under fermentative conditions in this study.The nature of the intermediate compounds and the extent of mineralization were probed using high-pressure liquid chromatography(HPLC)and liquid chromatography-mass spectrometry(LC-MS)methods.The fermentative bacteria were able to biodegrade the DMP under anaerobic conditions,with the biodegradation rate of 0.36 mg DMP/(L·h).The results demonstrated that the DMP degradation under fermentative conditions ...展开更多
The sludge paper of the industry treated with probiotics in solid state fermentation (SSF) could be used as ingredient in rations for animal feeding. This study assessed the effect of four probiotic (Prozoot15?) level...The sludge paper of the industry treated with probiotics in solid state fermentation (SSF) could be used as ingredient in rations for animal feeding. This study assessed the effect of four probiotic (Prozoot15?) levels (PT) on chemical and fermentative characteristics in SSF of the paper sludge (PS) at controlled temperature (30°C) in laboratory scale. The tested treatments (T) were: T1 (0% PS), T2 (50 g/kg PS), T3 (100 g/kg PS) and T4 (150 g/kg PS), which were fermented at 0, 24, 48 and 72 h, according to a completely randomized design, in a 4 × 4 factorial arrangement with six repetitions per sampling. All treatments included (g/kg DM) 300 molasses, 15 urea, 20 ammonium sulfate, 9 calcium carbonate and 5 of vitamin and mineral premix, plus the PS which was substituted by the PT at 0, 50, 100 and 150 g/kg DM. The results showed a decrease in pH in all treatments at 24 h;however the lowest pH was at 72 h of fermentation. At 72 h of fermentation, the PT addition in T4 increased crude protein, true protein and yeast counts展开更多
The increased demand for machinery and transport has led to an overwhelming increase in the use of fossil fuels in the last century. Concerning the economic and environmental concern, macroalgae with high fermentable ...The increased demand for machinery and transport has led to an overwhelming increase in the use of fossil fuels in the last century. Concerning the economic and environmental concern, macroalgae with high fermentable polysaccharide content (mainly mannitol, cellulose and laminarin), can serve as an excellent alternative to food crops for bioethanol production, a renewable liquid fuel. In this study, Saccharina latissima, a brown macroalgae readily available on the Norwegian coast was used as the carbohydrate source for the fermentative production of bioethanol. The macroalgae harvested was found to contain 31.31 ± 1.73 g of reducing sugars per 100 g of dry Saccharina latissima upon enzymatic hydrolysis. The subsequent fermentation with Saccharomyces cerevisiae produced an ethanol yield of 0.42 g of ethanol per g of reducing sugar, resulting in a fermentation efficiency of 84% as compared to the theoretical maximum. Using these results, an evaluation of the fermentation process has demonstrated that the brown macroalgae Saccharina latissima could become a viable bioethanol source in the future.展开更多
At present, Argentina does not count with a production of indigenous yeast strains with suitable technological and oenological features to be used in the regional winery industry. Isolation and molecular characterizat...At present, Argentina does not count with a production of indigenous yeast strains with suitable technological and oenological features to be used in the regional winery industry. Isolation and molecular characterization of these microorganisms and its fermentation attributes would be relevant to the sustainable development of the activity in the country and to recognize and preserve the biodiversity of the region. Eight strains isolated from grapes and musts from the North Patagonian region and genetically identified as Saccharomyces cerevisiae, were studied for their fermentation behavior, emphasizing in hexose transport through the plasma membrane, which is the limiting step of the process. Thus, sugar consumption profiles were analyzed in different media at laboratory scale, to be subsequently applied to the fermentation of natural musts. Three of the eight initial strains were selected, named NNM10, NIF8 and NMN16 according to their fermentation profiles. The expression of hexose transporters during fermentations revealed interesting differences in the response of each strain to sugar consumption, where transporters HXT2 and HXT5 showed significant changes in expression in Patagonian strains, which are normally associated to endurance to culture stress conditions. The results obtained by combining the characteristics studied, at molecular and physiological level, are extremely encouraging. Native strain NMN16, showed a high potential for application in local winemaking. Assays carried out on a pilot scale will determine the feasibility of applying this strain with promising technological features at industrial scale.展开更多
Dark fermentation is a biological process that converts organic molecules into molecular hydrogen and stands out as one of the most promising methods for extracting bioenergy from wastewater.The accumulation of endpro...Dark fermentation is a biological process that converts organic molecules into molecular hydrogen and stands out as one of the most promising methods for extracting bioenergy from wastewater.The accumulation of endproducts causes varying inhibitory effects on the process,posing a key challenge.This study explored the efficacy and mechanisms of biochar as a cost-effective solution to mitigating the inhibitory effects of end-products in major types of dark fermentative hydrogen production processes and provided for the first time a quantitative analysis of the relative contribution of each mechanistic pathway.Results showed that biochar was more effective in butyratetype than ethanol-type fermentations.In butyrate-type fermentation facing endogenous and exogenous volatile acid inhibition,biochar increased hydrogen production by 145.74%and 64.95%,respectively.In ethanol-type fermentation,biochar increased hydrogen production by 10.53%and 18.09%under endogenous and exogenous inhibitions from ethanol,respectively.Mechanistic analyses revealed three primary pathways through which biochar mitigated product inhibition:pH buffering,cell colonization,and inhibitor adsorption.The relative contribution of each pathway varied by fermentation type.In butyrate-type fermentation,pH buffering was critical,accounting for 42.9%of the mitigation effect,while cell colonization was primary in ethanol-type fermentation,contributing 32.4%.This study demonstrated the different roles of biochar in mitigating production inhibition in diverse fermentation types,highlighting its potential to enhance hydrogen energy recovery in dark fermentation.展开更多
BACKGROUND:Breast hyperplasia is a common benign breast disease mainly caused by endocrine disorders,manifested as abnormal hyperplasia of breast tissue.In recent years,traditional Chinese medicine compounds and probi...BACKGROUND:Breast hyperplasia is a common benign breast disease mainly caused by endocrine disorders,manifested as abnormal hyperplasia of breast tissue.In recent years,traditional Chinese medicine compounds and probiotics have shown good potential in regulating the endocrine system and improving the intestinal microecology,providing new ideas for the treatment of breast hyperplasia.OBJECTIVE:To explore the effects and mechanisms of traditional Chinese medicine compounds and fermented probiotic compounds on breast hyperplasia in mice,providing new theoretical and experimental bases for the clinical treatment and prevention of breast hyperplasia.METHODS:(1)Network pharmacology tools were used to predict the anti-breast-hyperplasia activity of Herba Gueldenstaedtiae(Euphorbia humifusa),as well as its potential targets and signaling pathways.The databases included:TCMSP,OMIM,GeneCards database,UniProt website,Venny2.1.0 website,Metascape,HERB website,and STRING database,all of which are open-access databases.Network pharmacology can predict and screen key information such as the targets corresponding to the active ingredients of traditional Chinese medicine,disease targets,and action pathways through network analysis and computer-system analysis.Therefore,it has been increasingly widely used in the research of traditional Chinese medicine.(2)A breast hyperplasia model was induced in mice by injecting estrogen and progesterone.Mice in the normal blank group were injected intraperitoneally with normal saline every day.Mice in the model group and drugadministration groups were injected intraperitoneally with estradiol benzoate injection at a concentration of 0.5 mg/kg every day for 25 days.From the 26th day,the injection of estradiol benzoate injection was stopped.Mice in the normal blank group were injected intramuscularly with normal saline every day,and mice in the model group and drug-administration groups were injected intramuscularly with progesterone injection at a concentration of 5 mg/kg for 5 days.After the model was established,each group was given drugs respectively.The normal blank group and the model group were gavaged with 0.2 mL/d of normal saline;the positive blank group(Xiaozheng Pill group)was gavaged with an aqueous solution of Xiaozheng Pill at 0.9 mg/g;the low-,medium-and high-dose groups of Compound Herba Gueldenstaedtiae were gavaged with an aqueous solution of the compound medicine at 0.75,1.5,and 3.0 mg/(g·d)respectively;the low-,medium-and high-dose groups of traditional Chinese medicine-bacteria fermentation were gavaged with an aqueous solution of the compound medicine at 0.75,1.5,and 3.0 mg/(g·d)respectively.The administration was continuous for 30 days.RESULTS AND CONCLUSION:(1)The results of network pharmacology research showed that the Compound Herba Gueldenstaedtiae(Euphorbia humifusa)contained 46 active ingredients,which were related to 1213 potential targets.After comparison with 588 known breast-hyperplasia targets,it was speculated that 50 of these targets might be related to the direct effect of the compound on breast hyperplasia.(2)After drug intervention,there was no significant change in the high-dose group of Compound Herba Gueldenstaedtiae compared with the normal blank group.The liver indicators of the other intervention groups all significantly decreased(P<0.05).(3)In terms of kidney and uterine indicators,the medium-dose group of Compound Herba Gueldenstaedtiae decreased significantly compared with the normal blank group(P<0.05).In terms of the uterine index,the model group increased significantly compared with the normal blank group(P<0.01).(4)After 1-month drug treatment,the number of lobules and acini in the breast tissue of the Xiaozheng Pill group,the low,medium,and high-dose group of Compound Herba Gueldenstaedtiae,the low,medium,and highdose groups of traditional Chinese medicine-bacteria fermentation decreased,and the duct openings narrowed.With the increase of drug dose,diffuse hyperplasia of breast tissue was significantly improved.(5)The ELISA results showed that compared with the model group,the estrogen level was lower in the medium-dose group of traditional Chinese medicine-bacteria fermentation after the intervention(P<0.05).In addition,the follicle-stimulating hormone level in the low-dose group of Compound Herba Gueldenstaedtiae was lower than that of the model group(P<0.05).(6)The intervention in the mouse model led to changes in the abundance of short chain fatty acids and intestinal flora in all groups.To conclude,the Compound Herba Gueldenstaedtiae and its probiotic fermentation products significantly improved mammary gland hyperplasia in mice by regulating hormone levels,improving the structure of the gut microbiota,and increasing the content of shortchain fatty acids,providing new ideas and potential sources of drugs for the treatment of breast hyperplasia.展开更多
The increasingly severe energy crisis has strengthened the determination to develop environmentally friendly energy.And hydrogen has emerged as a candi-date for clean energy.Among many hydrogen generation methods,bioh...The increasingly severe energy crisis has strengthened the determination to develop environmentally friendly energy.And hydrogen has emerged as a candi-date for clean energy.Among many hydrogen generation methods,biohydrogen stands out due to its environmental sustainability,simple operating environ-ment,and cost advantages.This review focuses on the rational design of catalysts for fermentative hydrogen production.The principles of microbial dark fermen-tation and photo-fermentation are elucidated exhaustively.Various strategies to increase the efficiency of fermentative hydrogen production are summa-rized,and some recent representative works from microbial dark fermentation and photo-fermentation are described.Meanwhile,perspectives and discussions on the rational design of catalysts for fermentative hydrogen production are provided.展开更多
Decreasing hydrogen partial pressure can not only increase the activity of the hydrogen enzyme but also decrease the products inhibition, so it is an appropriate method to enhance the fermentative hydrogen production ...Decreasing hydrogen partial pressure can not only increase the activity of the hydrogen enzyme but also decrease the products inhibition, so it is an appropriate method to enhance the fermentative hydrogen production from anaerobic mixed culture. The effect ofbiogas release method on anaerobic fermentative hydrogen production in batch culture system was compared, i.e., Owen method with intermediately release, continuous releasing method, and continuous releasing + CO2 absorbing. The experi- mental results showed that, at 35℃, initial pH 7.0 and glucose concentration of 10 g.L-1, the hydrogen produc- tion was only 28 mL when releasing gas by Owen method, while it increased two times when releasing the biogas continuously. The cumulative hydrogen production could reach 155 mL when carbon dioxide in the gas stream was continuously absorbed by 1 mol.L-1 NaOH. The results showed that acetate was dominated, accounting for 43% in the dissolved fermentation products in Owen method, whereas the butyrate predominated and reached 47%-53% of the total liquid end products when releasing gas continuously. It is concluded that the homoacetogenesis could be suppressed when absorbing CO2 in the gas phase in fermentative hydrogen production system.展开更多
Food waste(FW)is a promising renewable low-cost biomass substrate for enhancing the economic feasibility of fermentative propionate production.Although lipids,a common component of food waste,can be used as a carbon s...Food waste(FW)is a promising renewable low-cost biomass substrate for enhancing the economic feasibility of fermentative propionate production.Although lipids,a common component of food waste,can be used as a carbon source to enhance the production of volatile fatty acids(VFAs)during co-fermentation,few studies have evaluated the potential for directional propionate production from the co-fermentation of lipids and FW.In this study,co-fermentation experiments were conducted using different combinations of lipids and FW for VFA production.The contributions of lipids and FW to propionate production,hydrolysis of substrates,and microbial composition during.cofermentation were evaluated.The results revealed that lipids shifted the fermentation type of FW from butyric to propionic acid fermentation.Based on the estimated propionate production kinetic parameters,the maximum propionate productivity increased significantly with an increase in lipid content,reaching 6.23 g propionate/(L·d)at a lipid content of 50%.Propionate-producing bacteria Prevotella,Veillonella,and norank f Propionibacteriaceae were enriched in the presence of lipids,and the succinate pathway was identified as a prominent fermentation route for propionate production.Moreover,the Kyoto Encyclopedia of Genes and Genomes functional annotation revealed that the expression of functional genes associated with amino acid metabolism was enhanced by the presence of lipids.Collectively,these findings will contribute to gaining a better understanding of targeted propionate production from FW.展开更多
Cotton waste fabrics are currently preferred over lignocellulose feedstocks for the production of bioethanol due to presence of higher percentage of cellulose and lower percentage of hemicellulose and lignin.Aspergill...Cotton waste fabrics are currently preferred over lignocellulose feedstocks for the production of bioethanol due to presence of higher percentage of cellulose and lower percentage of hemicellulose and lignin.Aspergillus sp.with ability of secreting cellulase enzyme has converted pre-treated lignocellulosic biomass into bioethanol via solid state fermentation process.In this study,A.terreus MZ769058 as new fungal strain had showed significant production of bioethanol by anaerobic fermentation of pre-treated cotton fabrics waste.This fungal strain was immobilized using sodium alginate entrapment methodology.The production of ethanol was estimated as 58.06 g/l via solid state fermentation process of media supplemented with 1.5 g cotton fabrics after inoculation with immobilized beads of A.terreus MZ769058.The production of ethanol was enhanced by 1.03 times after optimization of fermentative condition with immobilized cell beads.Response surface methodology was applied for optimization of parameters such as media pH(1.5-9.5),temperature(20-60°C),fermentation time(24-72 h),and number of immobilization beads(5-25).Regression analysis with 99.43%value of coefficient of determination(R2)had confirmed the quadratic model for these variables.The interactive effects of variables were studied by contour plots and response surface plots.The predicted yield of bioethanol was further validated by performing experiment of solid-state fermentation process under the optimized predicted variables at pH(5.5),temperature(30°C),fermentation time period(48 h)and immobilized beads(20).The production of bioethanol was enhanced up to 60.02 g/l under these optimum variables.The product of ethanol was further characterised using Fourier transform infrared(FTIR)spectroscopy.FTIR analysis had confirmed aromatic skeleton vibration in C-O stretching with the functional group at 1007.28,1069.92,1122.851636.60 and 855.29 cm^(−1).The acetyl group in hemicellulose’s molecules with C-H and C-O stretching had been also confirmed with peak at 1381.56 cm^(−1) and 1122.85 cm^(−1).The immobilized beads of this new fungal strain could be used efficiently for production of ethanol in media supplemented with cotton waste fabrics at large scale in industrial sector in future.展开更多
基金Supported by National Basic Research Program of China(2006CB708407 2009CB220005)+2 种基金National Natural Science Foun-dation of China (90610001 20871106)Program of 211 Projectfor Zhengzhou University from Ministry of Education~~
文摘[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam explosion and dilute acid hydrolysis as experimental materials,we measured and analyzed the effects of different treatments and particle size of maize stalk were analyzed. [Result] The optimal fermentative biohydrogen production was found under following parameters:pretreatment of 0.8% dilute H2SO4 following steam explosion,particle size of maize stalk of 0.425-0.850 mm,liquid-solid ratio [0.8% H2SO4 (M):stalk (W)] of 10:1. [Conclusion] Post steam explosion,dilute 0.8% dilute H2SO4 intensified hydrolysis on maize stalk could produce fermentative biohydrogen production capacity.
基金funded by the National Natural Science Foundation of China(22078018)the Natural Science Foundation of Beijing(2222016).
文摘Acetone-butanol-ethanol(ABE)fermentation is a primary strategy for producing bio-based n-butanol from abundant renewable biomass.In the typical ABE production chain,distillation is an essential unit for high purity ABE productions,but has long been criticized by the energy-inefficient processes due to the extremely low solvents concentration received in the upstream fermentation system.Over the past decades,efforts have been dedicated to developing eco-efficient ABE distillation processes aimed at reducing both energy costs and capital investments.In this review,a comprehensive overview on ABE distillation systems is provided from physico-chemical properties in feed and thermodynamics to the process constructions and applications.The recent trends in distillation sequence construction that fitting with the rapid developed upstream in situ product recovery(ISPR)systems are emphasized.Furthermore,towards developing a more efficient ABE distillation system,the review takes a broad overview of the intensification strategies for ABE distillation.Along with systematic introduction of the key examples,the future directions for ABE distillation techniques development are also discussed towards a sustainable and low-carbon emission biorefineries.
基金SUT-OROG scholarshipthe Higher Education Promotion and National Research University Project of Thailand (NRU)the Office of the Higher Education Commission (FtR 06/2559) for funding support
文摘The objective of this study was to observe the forage yield, silage fermentative quality, anthocyanin stability, and antioxidant activity during the storage period and in vitro rumen fermentation of anthocyanin-rich purple corn (Zea mays L.) stover (PS) and sticky corn stover (SS). Forage yield of corn stover was weighed and ensiled with two treatments: (1) hybrid sticky waxy corn stover (control), and (2) hybrid purple waxy corn stover (treatment). Samples were stored in mini-silos for periods of 0, 7, 14, 21,42, 63, 84, and 105 d. The results showed that PS had significantly higher (P〈0.05) yields of dry matter (DM), organic matter (OM), gross energy (GE), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and total anthocyanins than that of the SS. Anthocyanin-rich purple corn stover silage (PSS) showed higher (P〈0.05) levels of DM and CP relative to the sticky corn stover silage (SSS). Although anthocyanin-rich PSS displayed a lower (P〈0.05) level of pelargonidin-3-glucoside (P3G), it had higher (P〈0.05) levels of peonidin (Peo) and pelargonidin (Pel) compared to the control. Delphinidin (Del) and malvidin (Mal) were not detected in SSS during the ensilage period; in PSS, Del was no longer detected after 7 d of ensilage. Specifically, total anthocyanins in anthocyanin-rich PSS decreased rapidly (P〈0.05) prior to 7 d of ensilage, and then remained at relatively stable (P〉0.05) constants. Compared to the anthocyanin-rich PSS, SSS displayed significantly higher (P〈0.05) pH value and ammonia nitrogen (NH3-N) content. Propionic acid (PA) at 0 d and butyric acid (BA) during the entire study period were not detected, whereas anthocyanin-rich PSS showed a higher (P〈0.05) level of lactic acid (LA) than that of the SSS. Compared with the SSS extract, anthocyanin-rich PSS extract showed a higher (P〈0.05) level of 2,2-diphenyl-1-picryihydrazyl (DPPH) scavenging activity and displayed a lower (P〈0.05) half maximal inhibitory concentration (IC50) value. Moreover, anthocyanin-rich PSS reduced (P〈0.05) gas production (GP), and displayed lower levels of immediately soluble fraction and ratio of acetic acid (AA) to PA at 12 h, but the other parameters were unaffected (P〉0.05) relative to the control. Taken together, the results indicated that: (1) anthocyanins could be stable in silage; (2) anthocyanin-rich PSS showed better silage fermentative quality and stronger antioxidant activity; and (3) anthocyanin-rich PSS had no negative effect on rumen fermentation parameters.
基金Supported by the Scientific Research of Anhui Educational Committee (KJ2010B053)
文摘The effects of Previously Fermented Juice (PFJ) on the fermentative quality and changes in chemical composition during fermentation of rice straw silage were investigated. The results showed that the PFJ and diluted the PFJ (dPFJ) treated silages had significantly (p〈0.05) lower pH and ammonia-nitrogen content, while significantly higher lactic acid content compared with treatments. This study confirmed that the applying of the PFJ and the dPFJ improved fermentation quality of silage.
文摘Objective:To detect and evaluate the various methods for metallo-β-lactamases(MBL) production in Pseudomonas aeruginosa(P.aeruginosa) and Acinetobacter species.Methods:A total of 109 P.aeruginosa and 85 Acinetobacter species were screened for imipenem resistance by Kirby- Bauer disc diffusion methods.Detection of MBL production was(lone by imipenem-EDTA combined disc test,double disc synerygy test(DDST) and imipenem-EDTA MBL E test.Results: A total of 63(57.8%) strains of P.aeruginosa and 46(54.1%) strains of Acinetobacter spp.were found to be resistant to imipenem.Of the 63 imipenem resistant P.aeruginosa tested for MBL production.44(69.89;) were found to be positive and among 46 imipenem resistant Acinetobacter. 19(41.3%) were shown to be the MBL producers.Conclusions:Imipenem-EDTA combined disc test and MBL E test are equally effective for MBL detection in both P.aeruginosa and Acinetobacter spp.,but given the cost-constraints,combined disc can be used as a convenient screening method in the clinical microbiology laboratory.
基金Sponsored by the State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology(Grant No.2010DX06)the National High Technology Research and Development Program of China(Grant No.2006AA05Z109)the Harbin Science and Technology Bureau(Grant No.2009RFXXS004)
文摘The effects of initial substrate (5-60 g /L) and biomass concentration (0.5-3 g /L) on fermentative hydrogen production by mixed cultures were investigated in batch tests using glucose as substrate.The experimental results showed that the hydrogen production increases as the initial substrate concentration increases from 0 to 25 g /L.It indicated that the shift in the metabolic pathway or in the composition of the bacterial flora occurs.The maximum hydrogen yield of 1.78 mol /mol-glucose is obtained at the substrate concentration of 15 g /L.This study also shows that initial biomass concentration affects the hydrogen yield as the cumulative hydrogen production has been increased with the increase of initial cell concentration up to 1.5 g /L and reached the highest level.The maximum hydrogen yield is obtained at the cell concentration of 1.5 g /L.It indicated that the optimum biomass /substrate ratio,maximizing the hydrogen yield and the hydrogen production rate,is determined to be 0.1 g biomass /g glucose.
文摘The biological hydrogen generating from fermentation of low-cost lignocellulosic feedstocks by hydrogen-producing bacteria has attracted many attentions in recent years. In the present investigation, ten hydrogen-producing bacteria were newly isolated from the intestine of wild common carp (</span><span style="font-family:Verdana;"><i>Cyprinus carpio</i></span><span style="font-family:Verdana;"> L.), and identified belonging to the genera of </span><i><span style="font-family:Verdana;">Enterobacter</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Klebsiella</span></i><span style="font-family:Verdana;"> based on analysis of the 16S rDNA gene sequence and examination of the physiological and biochemical characteristics. All the isolates inherently owned the ability to metabolize xylose especially the cotton stalk hydrolysate for hydrogen production with hydrogen yield (HY) higher than 100 mL</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">·</span></span><span></span><span></span><span style="font-family:""><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">. In particular, two isolates, WL1306 and WL1305 obtained higher HY, hydrogen production rate (HPR), and hydrogen production potential (HPP) using cotton stalk hydrolysate as sugar substrate than the mixed sugar of glucose & xylose, which obtained the HY of 249.5 ± 29.0, 397.0 ± 36.7 mL</span></span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPR of 10.4 ± 1.2, 16.5 ± 1.5 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">h</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPP of 19.5 ± 2.3, 31.0 ± 2.8 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">g</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><sub><span style="font-family:Verdana;">sugar</span></sub><span style="font-family:Verdana;">, separately. The generation of soluble metabolites, such as the lactate, formate, acetate, succinate and ethanol reflected the mixed acid fermentation properties of the hydrogen production pathway.
基金supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) (Monbukagakusho Scholarship)MEXT-ARDA under the Asia Core Program (ACP)
文摘Hydrogen (H2) production from lignocellulosic materials may be enhanced by removing lignin and increasing the porosity of the material prior to enzymatic hydrolysis. Alkaline pretreatment conditions, used to delignify disposable wooden chopsticks (DWC) waste, were investigated. The effects of NaOH concentration, temperature and retention time were examined and it was found that retention time had no effect on lignin removal or carbohydrate released in enzymatic hydrolysate. The highest percentage of lignin removal (41%) was obtained with 2% NaOH at 100℃, correlated with the highest carbohydrate released (67 mg/gpretreated DWC) in the hydrolysate. An enriched culture from a hot spring was used as inoculum for fermentative H2 production, and its optimum initial pH and temperature were determined to be 7.0 and 50℃, respectively. Furthermore, enzymatic hydrolysate from pretreated DWC was successfully demonstrated as a substrate for fermentative H2 production by the enriched culture. The maximum H2 yield and production rate were achieved at 195 mL H2/g total sugarsconsumed and 1 16 mL Hz/(L.day), respectively.
基金the funding for this project was provided by the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR),USA
文摘In this study,experiments were designed to reveal in-depth information of the effect of pH and hydraulic retention time(HRT)on biohydrogen fermentation from liquid swine manure supplemented with glucose using an Anaerobic Sequencing Batch Reactor(ASBR)System.Five values of HRT(8,12,16,20,and 24 h)were first tested and the best HRT determined was further studied at five p H levels(4.4,4.7,5.0,5.3,and 5.6).The results showed that for HRT 24 h,there was a dividing H2 content(around 37%)related to the total biogas production rate for the ASBR System running at p H 5.0.When the H2 content went beyond 37%,an appreciable decline in biogas production rate was observed,implying that there might exist an H2 content limit in the biogas.For other HRTs(8 through 20 h),an average H2 content of 42%could be achieved.In the second experiment(HRT 12 h),the highest H2 content(35%)in the biogas was found to be associated with p H 5.0.The upswing of p H from 5.0 to 5.6 had a significantly more impact on biogas H2 content than the downswing of p H from5.0 to 4.3.The results also indicated good linear relationships of biogas and H2 production rates with HRT(r=0.9971 and0.9967,respectively).Since the optimal ASBR operating conditions were different for the biogas/H2 production rates and the H2 yield,a compromised combination of the running parameters was determined to be HRT 12 h and pH 5.0 in order to achieve good biogas/H2 productions.
文摘The present study focused on production of mycelial chitosan from fungal mycelium by submerged fermentation with ecologically more balanced process. Different fungal strains were screened and Absidia butleri NCIM 977 was found to produce the highest mycelial chitosan. The one-factor-at-a-time method was adopted to investigate the effect of batch time, environmental factors (i.e. initial pH and temperature) and medium components (i.e. carbon and nitrogen) on the yield of mycelial chitosan. Among these variables, the optimal condition to increase in yield of mycelial chitosan was found to be batch time (72 h), pH (5.5), temperature (30°C), carbon source (glucose) and nitrogen source (tryptone and yeast extract). Subsequently, a three-level Box– Behnken factorial design was employed combining with response surface methodology (RSM) to maximise yield of mycelial chitosan by determining optimal concentrations and investigating the interactive effects of the most significant media components (i.e. carbon and nitrogen sources). The optimum value of parameters obtained through RSM was glucose (1.58%), tryptone (1.61%) and yeast extract (1.11%). There was an increase in mycelial chitosan yield after media optimization by one-factor-at-a-time and statistical analysis from 683 mg/L to 1 g/L. Mycelial chitosan was characterized for total glucosamine content (80.68%), degree of deacetylation (DD) (79.89%), molecular weight (8.07 × 104 Da) and, viscosity (73.22 ml/g). The results of this study demonstrated that fungi are promising alternative sources of chitosan with high DD and high purity.
文摘The biodegradation of dimethyl phthalate(DMP)was investigated under fermentative conditions in this study.The nature of the intermediate compounds and the extent of mineralization were probed using high-pressure liquid chromatography(HPLC)and liquid chromatography-mass spectrometry(LC-MS)methods.The fermentative bacteria were able to biodegrade the DMP under anaerobic conditions,with the biodegradation rate of 0.36 mg DMP/(L·h).The results demonstrated that the DMP degradation under fermentative conditions ...
文摘The sludge paper of the industry treated with probiotics in solid state fermentation (SSF) could be used as ingredient in rations for animal feeding. This study assessed the effect of four probiotic (Prozoot15?) levels (PT) on chemical and fermentative characteristics in SSF of the paper sludge (PS) at controlled temperature (30°C) in laboratory scale. The tested treatments (T) were: T1 (0% PS), T2 (50 g/kg PS), T3 (100 g/kg PS) and T4 (150 g/kg PS), which were fermented at 0, 24, 48 and 72 h, according to a completely randomized design, in a 4 × 4 factorial arrangement with six repetitions per sampling. All treatments included (g/kg DM) 300 molasses, 15 urea, 20 ammonium sulfate, 9 calcium carbonate and 5 of vitamin and mineral premix, plus the PS which was substituted by the PT at 0, 50, 100 and 150 g/kg DM. The results showed a decrease in pH in all treatments at 24 h;however the lowest pH was at 72 h of fermentation. At 72 h of fermentation, the PT addition in T4 increased crude protein, true protein and yeast counts
文摘The increased demand for machinery and transport has led to an overwhelming increase in the use of fossil fuels in the last century. Concerning the economic and environmental concern, macroalgae with high fermentable polysaccharide content (mainly mannitol, cellulose and laminarin), can serve as an excellent alternative to food crops for bioethanol production, a renewable liquid fuel. In this study, Saccharina latissima, a brown macroalgae readily available on the Norwegian coast was used as the carbohydrate source for the fermentative production of bioethanol. The macroalgae harvested was found to contain 31.31 ± 1.73 g of reducing sugars per 100 g of dry Saccharina latissima upon enzymatic hydrolysis. The subsequent fermentation with Saccharomyces cerevisiae produced an ethanol yield of 0.42 g of ethanol per g of reducing sugar, resulting in a fermentation efficiency of 84% as compared to the theoretical maximum. Using these results, an evaluation of the fermentation process has demonstrated that the brown macroalgae Saccharina latissima could become a viable bioethanol source in the future.
文摘At present, Argentina does not count with a production of indigenous yeast strains with suitable technological and oenological features to be used in the regional winery industry. Isolation and molecular characterization of these microorganisms and its fermentation attributes would be relevant to the sustainable development of the activity in the country and to recognize and preserve the biodiversity of the region. Eight strains isolated from grapes and musts from the North Patagonian region and genetically identified as Saccharomyces cerevisiae, were studied for their fermentation behavior, emphasizing in hexose transport through the plasma membrane, which is the limiting step of the process. Thus, sugar consumption profiles were analyzed in different media at laboratory scale, to be subsequently applied to the fermentation of natural musts. Three of the eight initial strains were selected, named NNM10, NIF8 and NMN16 according to their fermentation profiles. The expression of hexose transporters during fermentations revealed interesting differences in the response of each strain to sugar consumption, where transporters HXT2 and HXT5 showed significant changes in expression in Patagonian strains, which are normally associated to endurance to culture stress conditions. The results obtained by combining the characteristics studied, at molecular and physiological level, are extremely encouraging. Native strain NMN16, showed a high potential for application in local winemaking. Assays carried out on a pilot scale will determine the feasibility of applying this strain with promising technological features at industrial scale.
基金supported by the National Key R&D Program of China(Grant No.2024YFD1501303)National Natural Science Foundation of China(Grant No.42477248,52200041)+2 种基金CAS Pioneer Hundred Talents Program,Natural Science Foundation for Excellent Young Scholars of Liaoning Province(No.2024JH3/10200025)the Liaoning Revitalization Talents Program(XLYC2007192)the Youth Innovation Promotion Association CAS(2020200).
文摘Dark fermentation is a biological process that converts organic molecules into molecular hydrogen and stands out as one of the most promising methods for extracting bioenergy from wastewater.The accumulation of endproducts causes varying inhibitory effects on the process,posing a key challenge.This study explored the efficacy and mechanisms of biochar as a cost-effective solution to mitigating the inhibitory effects of end-products in major types of dark fermentative hydrogen production processes and provided for the first time a quantitative analysis of the relative contribution of each mechanistic pathway.Results showed that biochar was more effective in butyratetype than ethanol-type fermentations.In butyrate-type fermentation facing endogenous and exogenous volatile acid inhibition,biochar increased hydrogen production by 145.74%and 64.95%,respectively.In ethanol-type fermentation,biochar increased hydrogen production by 10.53%and 18.09%under endogenous and exogenous inhibitions from ethanol,respectively.Mechanistic analyses revealed three primary pathways through which biochar mitigated product inhibition:pH buffering,cell colonization,and inhibitor adsorption.The relative contribution of each pathway varied by fermentation type.In butyrate-type fermentation,pH buffering was critical,accounting for 42.9%of the mitigation effect,while cell colonization was primary in ethanol-type fermentation,contributing 32.4%.This study demonstrated the different roles of biochar in mitigating production inhibition in diverse fermentation types,highlighting its potential to enhance hydrogen energy recovery in dark fermentation.
文摘BACKGROUND:Breast hyperplasia is a common benign breast disease mainly caused by endocrine disorders,manifested as abnormal hyperplasia of breast tissue.In recent years,traditional Chinese medicine compounds and probiotics have shown good potential in regulating the endocrine system and improving the intestinal microecology,providing new ideas for the treatment of breast hyperplasia.OBJECTIVE:To explore the effects and mechanisms of traditional Chinese medicine compounds and fermented probiotic compounds on breast hyperplasia in mice,providing new theoretical and experimental bases for the clinical treatment and prevention of breast hyperplasia.METHODS:(1)Network pharmacology tools were used to predict the anti-breast-hyperplasia activity of Herba Gueldenstaedtiae(Euphorbia humifusa),as well as its potential targets and signaling pathways.The databases included:TCMSP,OMIM,GeneCards database,UniProt website,Venny2.1.0 website,Metascape,HERB website,and STRING database,all of which are open-access databases.Network pharmacology can predict and screen key information such as the targets corresponding to the active ingredients of traditional Chinese medicine,disease targets,and action pathways through network analysis and computer-system analysis.Therefore,it has been increasingly widely used in the research of traditional Chinese medicine.(2)A breast hyperplasia model was induced in mice by injecting estrogen and progesterone.Mice in the normal blank group were injected intraperitoneally with normal saline every day.Mice in the model group and drugadministration groups were injected intraperitoneally with estradiol benzoate injection at a concentration of 0.5 mg/kg every day for 25 days.From the 26th day,the injection of estradiol benzoate injection was stopped.Mice in the normal blank group were injected intramuscularly with normal saline every day,and mice in the model group and drug-administration groups were injected intramuscularly with progesterone injection at a concentration of 5 mg/kg for 5 days.After the model was established,each group was given drugs respectively.The normal blank group and the model group were gavaged with 0.2 mL/d of normal saline;the positive blank group(Xiaozheng Pill group)was gavaged with an aqueous solution of Xiaozheng Pill at 0.9 mg/g;the low-,medium-and high-dose groups of Compound Herba Gueldenstaedtiae were gavaged with an aqueous solution of the compound medicine at 0.75,1.5,and 3.0 mg/(g·d)respectively;the low-,medium-and high-dose groups of traditional Chinese medicine-bacteria fermentation were gavaged with an aqueous solution of the compound medicine at 0.75,1.5,and 3.0 mg/(g·d)respectively.The administration was continuous for 30 days.RESULTS AND CONCLUSION:(1)The results of network pharmacology research showed that the Compound Herba Gueldenstaedtiae(Euphorbia humifusa)contained 46 active ingredients,which were related to 1213 potential targets.After comparison with 588 known breast-hyperplasia targets,it was speculated that 50 of these targets might be related to the direct effect of the compound on breast hyperplasia.(2)After drug intervention,there was no significant change in the high-dose group of Compound Herba Gueldenstaedtiae compared with the normal blank group.The liver indicators of the other intervention groups all significantly decreased(P<0.05).(3)In terms of kidney and uterine indicators,the medium-dose group of Compound Herba Gueldenstaedtiae decreased significantly compared with the normal blank group(P<0.05).In terms of the uterine index,the model group increased significantly compared with the normal blank group(P<0.01).(4)After 1-month drug treatment,the number of lobules and acini in the breast tissue of the Xiaozheng Pill group,the low,medium,and high-dose group of Compound Herba Gueldenstaedtiae,the low,medium,and highdose groups of traditional Chinese medicine-bacteria fermentation decreased,and the duct openings narrowed.With the increase of drug dose,diffuse hyperplasia of breast tissue was significantly improved.(5)The ELISA results showed that compared with the model group,the estrogen level was lower in the medium-dose group of traditional Chinese medicine-bacteria fermentation after the intervention(P<0.05).In addition,the follicle-stimulating hormone level in the low-dose group of Compound Herba Gueldenstaedtiae was lower than that of the model group(P<0.05).(6)The intervention in the mouse model led to changes in the abundance of short chain fatty acids and intestinal flora in all groups.To conclude,the Compound Herba Gueldenstaedtiae and its probiotic fermentation products significantly improved mammary gland hyperplasia in mice by regulating hormone levels,improving the structure of the gut microbiota,and increasing the content of shortchain fatty acids,providing new ideas and potential sources of drugs for the treatment of breast hyperplasia.
基金W.Z.would like to acknowledge the support from National Natural Science Foundation of China(grant number:22176086)Natural Science Foundation of Jiangsu Province(grant number:BK20210189)+2 种基金State Key laboratory of Pollution Control and Resource Reuse(grant number:PCRR-ZZ-202106)the Fundamental Research Funds for the Central Universities(grant number:021114380183 and 021114380189)the Research Funds from Frontiers Science Center for Critical Earth Material Cycling of Nanjing University,and Research Funds for Jiangsu Distinguished Professor.Y.L.would like to acknowledge the start-up fund from Washington State University.
文摘The increasingly severe energy crisis has strengthened the determination to develop environmentally friendly energy.And hydrogen has emerged as a candi-date for clean energy.Among many hydrogen generation methods,biohydrogen stands out due to its environmental sustainability,simple operating environ-ment,and cost advantages.This review focuses on the rational design of catalysts for fermentative hydrogen production.The principles of microbial dark fermen-tation and photo-fermentation are elucidated exhaustively.Various strategies to increase the efficiency of fermentative hydrogen production are summa-rized,and some recent representative works from microbial dark fermentation and photo-fermentation are described.Meanwhile,perspectives and discussions on the rational design of catalysts for fermentative hydrogen production are provided.
文摘Decreasing hydrogen partial pressure can not only increase the activity of the hydrogen enzyme but also decrease the products inhibition, so it is an appropriate method to enhance the fermentative hydrogen production from anaerobic mixed culture. The effect ofbiogas release method on anaerobic fermentative hydrogen production in batch culture system was compared, i.e., Owen method with intermediately release, continuous releasing method, and continuous releasing + CO2 absorbing. The experi- mental results showed that, at 35℃, initial pH 7.0 and glucose concentration of 10 g.L-1, the hydrogen produc- tion was only 28 mL when releasing gas by Owen method, while it increased two times when releasing the biogas continuously. The cumulative hydrogen production could reach 155 mL when carbon dioxide in the gas stream was continuously absorbed by 1 mol.L-1 NaOH. The results showed that acetate was dominated, accounting for 43% in the dissolved fermentation products in Owen method, whereas the butyrate predominated and reached 47%-53% of the total liquid end products when releasing gas continuously. It is concluded that the homoacetogenesis could be suppressed when absorbing CO2 in the gas phase in fermentative hydrogen production system.
基金the National Natural Science Foundation of China(Nos.51778580 and 51878611)for providing financial support for this project.
文摘Food waste(FW)is a promising renewable low-cost biomass substrate for enhancing the economic feasibility of fermentative propionate production.Although lipids,a common component of food waste,can be used as a carbon source to enhance the production of volatile fatty acids(VFAs)during co-fermentation,few studies have evaluated the potential for directional propionate production from the co-fermentation of lipids and FW.In this study,co-fermentation experiments were conducted using different combinations of lipids and FW for VFA production.The contributions of lipids and FW to propionate production,hydrolysis of substrates,and microbial composition during.cofermentation were evaluated.The results revealed that lipids shifted the fermentation type of FW from butyric to propionic acid fermentation.Based on the estimated propionate production kinetic parameters,the maximum propionate productivity increased significantly with an increase in lipid content,reaching 6.23 g propionate/(L·d)at a lipid content of 50%.Propionate-producing bacteria Prevotella,Veillonella,and norank f Propionibacteriaceae were enriched in the presence of lipids,and the succinate pathway was identified as a prominent fermentation route for propionate production.Moreover,the Kyoto Encyclopedia of Genes and Genomes functional annotation revealed that the expression of functional genes associated with amino acid metabolism was enhanced by the presence of lipids.Collectively,these findings will contribute to gaining a better understanding of targeted propionate production from FW.
文摘Cotton waste fabrics are currently preferred over lignocellulose feedstocks for the production of bioethanol due to presence of higher percentage of cellulose and lower percentage of hemicellulose and lignin.Aspergillus sp.with ability of secreting cellulase enzyme has converted pre-treated lignocellulosic biomass into bioethanol via solid state fermentation process.In this study,A.terreus MZ769058 as new fungal strain had showed significant production of bioethanol by anaerobic fermentation of pre-treated cotton fabrics waste.This fungal strain was immobilized using sodium alginate entrapment methodology.The production of ethanol was estimated as 58.06 g/l via solid state fermentation process of media supplemented with 1.5 g cotton fabrics after inoculation with immobilized beads of A.terreus MZ769058.The production of ethanol was enhanced by 1.03 times after optimization of fermentative condition with immobilized cell beads.Response surface methodology was applied for optimization of parameters such as media pH(1.5-9.5),temperature(20-60°C),fermentation time(24-72 h),and number of immobilization beads(5-25).Regression analysis with 99.43%value of coefficient of determination(R2)had confirmed the quadratic model for these variables.The interactive effects of variables were studied by contour plots and response surface plots.The predicted yield of bioethanol was further validated by performing experiment of solid-state fermentation process under the optimized predicted variables at pH(5.5),temperature(30°C),fermentation time period(48 h)and immobilized beads(20).The production of bioethanol was enhanced up to 60.02 g/l under these optimum variables.The product of ethanol was further characterised using Fourier transform infrared(FTIR)spectroscopy.FTIR analysis had confirmed aromatic skeleton vibration in C-O stretching with the functional group at 1007.28,1069.92,1122.851636.60 and 855.29 cm^(−1).The acetyl group in hemicellulose’s molecules with C-H and C-O stretching had been also confirmed with peak at 1381.56 cm^(−1) and 1122.85 cm^(−1).The immobilized beads of this new fungal strain could be used efficiently for production of ethanol in media supplemented with cotton waste fabrics at large scale in industrial sector in future.