期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于第三类极限数学理论的Goldbach猜想和Fermat猜想的同时证明
1
作者 李英杰 《广东医学院学报》 2003年第1期7-15,共9页
目的 :基于第三类极限的数学理论用一个定理同时证明Goldbach猜想和Fermat猜想。方法 :把数学与计算机、相对绝对、有限无限、时间空间有机地结合成一个统一整体 ,把用计算机证明两个猜想的问题转化为计算机运行的时空问题 ,再把计算机... 目的 :基于第三类极限的数学理论用一个定理同时证明Goldbach猜想和Fermat猜想。方法 :把数学与计算机、相对绝对、有限无限、时间空间有机地结合成一个统一整体 ,把用计算机证明两个猜想的问题转化为计算机运行的时空问题 ,再把计算机运行的时空问题转化为数学问题 ,进行严格的数学推导 ,取极限。结果 :一次性地证明了 ( 1+1)、一次性地证明了Goldbach猜想的两个部分、一次性地证明了Fermat猜想、一次性地用一个定理同时证明了Goldbach猜想和Fermat猜想。结论 展开更多
关键词 第三类极限数学理论 GOLDBACH猜想 fermat猜想 同时证明
在线阅读 下载PDF
域的有限乘法子群元素和的性质研究
2
作者 关恕 《西安科技大学学报》 CAS 北大核心 2005年第2期267-269,共3页
在简述域的有限子群的一些基本概念的基础上,探索有限子群的元素和的性质,从而又得到剩余类群的性质,以及寻找一个群的元素的负元素的方法。例如:从定理"如果an≡1(modp),(p为素数,a与p互素),则a+a2+a3+…+an为p的倍数",可推... 在简述域的有限子群的一些基本概念的基础上,探索有限子群的元素和的性质,从而又得到剩余类群的性质,以及寻找一个群的元素的负元素的方法。例如:从定理"如果an≡1(modp),(p为素数,a与p互素),则a+a2+a3+…+an为p的倍数",可推论出:设a与p互素,则a+a2+…+ap-1为p的倍数。类似可得:2+22+23+24为5的倍数,2+22+23+24+25+26为7的倍数,等等。 展开更多
关键词 性质研究 群元素 乘法 有限子群 倍数 互素 定理 素数 类似
在线阅读 下载PDF
Extensions of the Constructivist Real Number System
3
作者 E. E. Escultura 《Advances in Pure Mathematics》 2018年第8期720-754,共35页
The paper reviews the most consequential defects and rectification of traditional mathematics and its foundations. While this work is only the tip of the iceberg, so to speak, it gives us a totally different picture o... The paper reviews the most consequential defects and rectification of traditional mathematics and its foundations. While this work is only the tip of the iceberg, so to speak, it gives us a totally different picture of mathematics from what we have known for a long time. This journey started with two teasers posted in SciMath in 1997: 1) The equation 1 = 0.99… does not make sense. 2) The concept ?does not exist. The first statement sparked a debate that raged over a decade. Both statements generated a series of publications that continues to grow to this day. Among the new findings are: 3) There does not exist nondenumerable set. 4) There does not exist non-measurable set. 5) Cantor’s diagonal method is flawed. 6) The real numbers are discrete and countable. 7) Formal logic does not apply to mathematics. The unfinished debate between logicism, intuitionism-constructivism and formalism is resolved. The resolution is the constructivist foundations of mathematics with a summary of all the rectification undertaken in 2015, 2016 and in this paper. The extensions of the constructivist real number system include the complex vector plane and transcendental functions. Two important results in the 2015 are noted: The solution and resolution of Hilbert’s 23 problems that includes the resolution of Fermat’s last theorem and proof Goldbach’s conjecture. 展开更多
关键词 CONSTRUCTIVISM DARK Number fermat’s CONJECTURE g-Norm g-Sequence g-limit Goldbach’s CONJECTURE TRUNCATION Vector Operators j and
在线阅读 下载PDF
On Ohtsuki's Invariants of Integral Homology 3-Spheres 被引量:6
4
作者 Xiaosong Lin Zhenghan Wang Department of Mathematics, University of California, Riverside, CA 92521, U. S. A.Department of Mathematics, Indiana University, Bloomington, IN 47405, U. S. A. Department of Mathematics, University of California, La Jolla, CA 92093, U. S. A. 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1999年第3期293-316,共24页
We provide some more explicit formulae to facilitate the computation of Ohtsuki’s rational invariants λ<sub>n</sub> of integral homology 3-spheres extracted from Reshetikhin-Turaev SU(2) quantum invari... We provide some more explicit formulae to facilitate the computation of Ohtsuki’s rational invariants λ<sub>n</sub> of integral homology 3-spheres extracted from Reshetikhin-Turaev SU(2) quantum invari- ants. Several interesting consequences will follow from our computation of λ<sub>2</sub>. One of them says that λ<sub>2</sub> is always an integer divisible by 3. It seems interesting to compare this result with the fact shown by Murakami that λ<sub>1</sub> is 6 times the Casson invariant. Other consequences include some general criteria for distinguishing homology 3-spheres obtained from surgery on knots by using the Jones polynomial. 展开更多
关键词 Finite type invariant fermat limit Homology sphere Surgery formula
原文传递
拉格朗日中值定理及应用 被引量:1
5
作者 杨雄 《阴山学刊(自然科学版)》 2016年第3期23-25,共3页
微分中值定理是微分学中的重要定理,具有广泛的应用,它严谨地解释了连续函数自变量增量与函数值增量之间的关系。本文对Lagrange中值定理应用进行了一些探讨和归纳。
关键词 fermat Rolle LAGRANGE 中值定理 不等式 极限
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部