Transition metal-nitrogen-carbon(M-N-C)with 3d transition metals as noble metal-free catalyzing oxygen reduction reaction(ORR)electrocatalysts still face critical challenges in activity and durability due to the Fento...Transition metal-nitrogen-carbon(M-N-C)with 3d transition metals as noble metal-free catalyzing oxygen reduction reaction(ORR)electrocatalysts still face critical challenges in activity and durability due to the Fenton effect associated with these metals in practical application.To tackle the issue,herein,we report Fenton-inactive rare earth metal La-N-C with dual active sites for efficient ORR,which was synthesized by pyrolyzing a mixed complexing compound of 1,10-phenanthroline as ligand with LaCl_(3)and MgCl_(2)as an activation agent.The as-synthesized La-N-C features an abundant microporous structure with atomically dispersed LaN_(4)O moieties as new active sites,exhibiting outstanding ORR performance.Its half-wave potentials are 0.92 and 0.76 V in 0.1 M KOH and 0.5 M H_(2)SO_(4)respectively,and only a 10 mV half-wave potential loss after 50 K cycles in 0.1 M KOH,achieving the highest level of current non-3d M-N-C ORR electrocatalysts.Meanwhile,the ORR activity is further validated by efficient performance with a power density output of 211 and 480 mW cm^(-2)on a single Zn-air battery and proton exchange membrane fuel cell respectively.Furthermore,theoretical calculations confirm that the unique LaN_(4)O moiety adjacent to the microspore vacancy with graphitic N dopant not only presents a negative shift of the La 5d orbitals,significantly lowering the adsorption energy of*OOH in ORR,but also induces the carbon atom near the graphitic N as one more active site for ORR.This work highlights the potential application of La-N-C as an efficient ORR catalyst in green energy conversion devices.展开更多
基金financially supported by the National Natural Science Foundation of China(22075055)the Guangxi Science and Technology Project(AB16380030)。
文摘Transition metal-nitrogen-carbon(M-N-C)with 3d transition metals as noble metal-free catalyzing oxygen reduction reaction(ORR)electrocatalysts still face critical challenges in activity and durability due to the Fenton effect associated with these metals in practical application.To tackle the issue,herein,we report Fenton-inactive rare earth metal La-N-C with dual active sites for efficient ORR,which was synthesized by pyrolyzing a mixed complexing compound of 1,10-phenanthroline as ligand with LaCl_(3)and MgCl_(2)as an activation agent.The as-synthesized La-N-C features an abundant microporous structure with atomically dispersed LaN_(4)O moieties as new active sites,exhibiting outstanding ORR performance.Its half-wave potentials are 0.92 and 0.76 V in 0.1 M KOH and 0.5 M H_(2)SO_(4)respectively,and only a 10 mV half-wave potential loss after 50 K cycles in 0.1 M KOH,achieving the highest level of current non-3d M-N-C ORR electrocatalysts.Meanwhile,the ORR activity is further validated by efficient performance with a power density output of 211 and 480 mW cm^(-2)on a single Zn-air battery and proton exchange membrane fuel cell respectively.Furthermore,theoretical calculations confirm that the unique LaN_(4)O moiety adjacent to the microspore vacancy with graphitic N dopant not only presents a negative shift of the La 5d orbitals,significantly lowering the adsorption energy of*OOH in ORR,but also induces the carbon atom near the graphitic N as one more active site for ORR.This work highlights the potential application of La-N-C as an efficient ORR catalyst in green energy conversion devices.