本文以辽河油田沈阳采油厂某采油作业区石油污染土壤为研究对象,探究H2O2浓度、FeSO4浓度、反应体系pH、水土比、反应时间等因素对石油污染土壤中石油烃降解效果的影响。研究结果表明,H2O2投加浓度对石油烃的降解效果影响显著,氧化剂和...本文以辽河油田沈阳采油厂某采油作业区石油污染土壤为研究对象,探究H2O2浓度、FeSO4浓度、反应体系pH、水土比、反应时间等因素对石油污染土壤中石油烃降解效果的影响。研究结果表明,H2O2投加浓度对石油烃的降解效果影响显著,氧化剂和催化剂浓度对Fenton反应过程中石油烃的氧化效果有较大影响,反应体系pH值为6.0时石油烃的去除效果最佳,合理的水土比能够提高氧化效率。不同程度污染土壤的修复效果表明,反应24 h后,Fenton反应基本完成,石油烃去除率分别为49.22%,55.31%和61.98%,该研究结果可为污染土壤环境修复提供科学依据。In this paper, the effects of H2O2 concentration, FeSO4 concentration, reaction system pH, water and soil ratio, and reaction time on the degradation of petroleum hydrocarbons in oil-polluted soil were studied in an oil production area of Shenyang oil production plant of Liaohe Oilfield. The research results show that the concentration of H2O2 has a significant impact on the degradation effect of petroleum hydrocarbons, and the concentration of oxidant and catalyst has a great impact on the oxidation effect of petroleum hydrocarbons in the Fenton reaction process. When the pH value of the reaction system is 6.0, the removal effect of petroleum hydrocarbons is the best, and reasonable water and soil ratio can improve the oxidation efficiency. The remediation effects of contaminated soil of different degrees show that after 24 h of reaction, Fenton reaction is basically completed, and the removal rates of petroleum hydrocarbons are 49.22%, 55.31% and 61.98%, respectively. The research results can provide scientific basis for the remediation of contaminated soil environment.展开更多
文摘本文以辽河油田沈阳采油厂某采油作业区石油污染土壤为研究对象,探究H2O2浓度、FeSO4浓度、反应体系pH、水土比、反应时间等因素对石油污染土壤中石油烃降解效果的影响。研究结果表明,H2O2投加浓度对石油烃的降解效果影响显著,氧化剂和催化剂浓度对Fenton反应过程中石油烃的氧化效果有较大影响,反应体系pH值为6.0时石油烃的去除效果最佳,合理的水土比能够提高氧化效率。不同程度污染土壤的修复效果表明,反应24 h后,Fenton反应基本完成,石油烃去除率分别为49.22%,55.31%和61.98%,该研究结果可为污染土壤环境修复提供科学依据。In this paper, the effects of H2O2 concentration, FeSO4 concentration, reaction system pH, water and soil ratio, and reaction time on the degradation of petroleum hydrocarbons in oil-polluted soil were studied in an oil production area of Shenyang oil production plant of Liaohe Oilfield. The research results show that the concentration of H2O2 has a significant impact on the degradation effect of petroleum hydrocarbons, and the concentration of oxidant and catalyst has a great impact on the oxidation effect of petroleum hydrocarbons in the Fenton reaction process. When the pH value of the reaction system is 6.0, the removal effect of petroleum hydrocarbons is the best, and reasonable water and soil ratio can improve the oxidation efficiency. The remediation effects of contaminated soil of different degrees show that after 24 h of reaction, Fenton reaction is basically completed, and the removal rates of petroleum hydrocarbons are 49.22%, 55.31% and 61.98%, respectively. The research results can provide scientific basis for the remediation of contaminated soil environment.